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Abstract— In this paper we consider stationary Forced KdV 

equation with positive Forcing term. The supercritical solitary 

wave solutions of the stationary Forced KdV equation are 

obtained. In order to obtain the solutions the domain of the 

problem has been divided in to three parts; the left, the middle 

and the right parts. The solution on the left and the right parts 

are obtained by an analytical method. The solution on the 

middle part is expressed in the terms of Weierstarss elliptic 

function. We have designed computer programs using 

Mathematica to produce the solutions. The complete solution 

was found by matching the solutions of all the three parts. We 

have found out that there are four different solutions according 

to the values of the phase shift. Only one solution is positive. 

Further research can be carried out for negative forcing terms. 

 

Index Terms— Stationary Forced KdV Equation; 

Supercritical solution;. positive Forcin 

 

I. INTRODUCTION 

The forced KdV equation is a first –order approximation of a 

long nonlinear surface wave in a channel flow of an in viscid 

fluid of constant density over a bump or a dent. This equation 

is normally written in the form (Gong and Shen, 1994) 

 

   02  txxf xxxxxxt   (1) 

 

where 0,0    and 0  are constant and f(x) is a 

given function called the forcing term which is differentiable 

and has a compact support i.e. it is nonzero only in a closed 

bounded set. Equation (1) was first derived by Akylas (1984) 

and in an asymptotically reduced result from Euler equations 

of fluid motion and the corresponding boundary conditions. 

The unknown  tx,  represents the first order elevation of 

the free surface of the fluid from it is equilibrium level. The 

forcing function f(x) is due to the bottom topography of the 

fluid domain (such as a bump or dent) or due to an external 

pressure on the free surface such as the wind stress on the 
surface of an ocean. In the absence of the forcing function 

term i.e. f(x) = 0 equation (1) becomes the familiar Korteweg 

deVries(KdV) equation  

 

 002  txxxxxxt    (2) 

when 0t  equation (1) becomes the equation of our 

concern, the stationary forced (sfKdV) equation, 
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 xxf xxxxxx )(2      (3) 

 

Equation (3) was first derived by Shen (1993). The solutions 

of equation (3) are categorized according to the value of 

 (Upstream flow velocity) as follows (Shen, 1993). 

 

(i) Supercritical stationary waves. They occur only when  is 

positive and sufficiently large. 

(ii) Subcritical stationary waves. They occur only when    is 

negative and sufficiently small. 

(iii) Unsteady periodic soliton radiation. This solution 

appears when   is small. Such a solution is called the 

transcritical solution. 

II.  PROBLEM STATEMENT 

 

In this paper we study supercritical solitary wave solutions of 

equation (3) with positive forcing terms in the rectangular 

bump. In this work we shall take the value of    equal to 3 

and the length of rectangular bump equals 2 in order to 

compare with the previous results. 

Solitary waves refer to any surface wave profile that dies out 

at infinity which means that the free surface elevation   has 

the property 

 

 xasand xxx 00,0   (4) 

 

Integrating equation (3) once with respect to the independent 

variable from -∞ to x, we have 

 

0,),(2   xxfxx  (5) 

 

with  xasand x 0,0   (6) 

 

In this paper we shall study equation (5) and (6) with the 

following conditions 
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where a is positive constant representing the length of a 

rectangular bump. 
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 In order to obtain the solution of equation (5) and (6) the 

domain of the problem has been divided in three parts. The 

left (x ≤ -a/2), the middle (-a/2 < x < a/2) and the right parts (x 

≥ a/2). The complete solution was found by matching the 

solutions of all parts. Section 3 and Section 4 describes the 

method of finding solution on the left and the right part 

respectively.  Section 5 describes the solution in the middle 

part. In  Section 6 we  determine the phase shift oL which 

depends on the forcing terms and the continuity conditions 

between each adjacent part. In Section 7 we combine the 

solutions obtained in Section 4 and Section 5. The 

conclusions of this paper are summarized in Section 8. 

III.  LEFT-SIDE SOLUTION 

 

In this Section we need to solve equations (5) and (6) in the 

region of zero forcing term by using analytical method. 

Meanwhile, the solution in the region of non zero forcing term  

will be discussed later in Section 5.  

 

Outside the region of the forcing term, equation (5) and (6) 

becomes  

 

)7(0,
22

02  
a

x
a

xx  

)8(00,0  xasand x  

 

We need to find the solution in the negative region (x ≤ -a/2) outside the rectangular bump. In this region 

equations (7) and (8) are written as 

             )9(0,
2

0//2  
a

x  

                              )10(00,0  xasand x  

where equation (10) is the half negative solitary wave conditions. We start by rearranging equation (9) in 

the form 

 

   )11(0,
2

2//  
a

x  

 

where 
dx

d
 /

 

 

The procedure we adopt here in order to integrate equation (11) is that we write 
//    as  

                                                                       )12(
/

///






d

d
  

 

Substituting equation (12) into equation (11) we obtain 

                                              )13(2//  dd   

 

Equation (13) is simply a first order separable equation which can be integrated easily to get 

                                           )14(
322

322/ C 








 

 

Multiplying both sides of equation(14) by 


3
 we then obtain  

                                           )15(
3

2

3

2

3 32/ C











   

 

where 



 is positive constant and C is the integration constant. 

By the half negative solitary wave conditions (10), equation (15) has a real double root, or and or  is 

smaller than the third real root r. Then equation (15) can be written as  

                                           )16(,
2

3 2/ rrrr oo  



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If we now let 

 

,
9

2
xro




   

 

then equation (16) can be written as 

                           )17(.0,
3

1
11

2 







orrswheres

d

d





 

 

Equation (17) can be integrated to yield 


4

3
sec 12

1

s
hs  (18) 

Hence, the actual solution on the left side is  

 

    ,
4

sec
2

3 2

oLxhx 










  (19) 

 

where oL  is the phase shift to be determined in Section 6. 

All graphs of these solutions are shown in Figure 1. In 

Section 6 we shall show how to calculate oL . For the purpose 

of illustration we now use the values of oL  obtained in 

Section 6 to produce the appropriate solution of the sfKdV on 

the left side. 

 

The graphs shown in Figure 1 are the solution of the sfKdV 

equation on the left side when  = 3 and a = 2. The values of 

oL used for this purpose are -0.20752, -0.797065, -1.792481 

and -2.248243 for graph (a), (b), (c) and (d) respectively. 

 
 

Figure 1: Left-Side Solution 

IV. THE RIGHT-SIDE SOLUTION 

In this section we determine the solution on the right side (
2

a
x  )  that out side the rectangular bump. In 

this region equations (7) and (8) become 
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)21(0,0

)20(0,
2

,0//2





xas

x
a

x


  

where equation (21) in normally termed as the positive half solitary wave conditions. 

 

The different between the left and the right region is simply on the solitary wave conditions. The same 

procedure as used for the left side can be applied to find the solution in the right and we thus obtain 

    )22(,
4

sec
2

3
1

2 Lxhx 










  

where the phase shift oLL 1 . All graphs of this solution are shown in Figure 2. 

 

The graphs shown in Figure 2 are the solution of the sfKdV equation on the right side when  = 3 and a = 

2. The values of 1L used for this purpose are 0.20752, 0.797065,  1.792481 and  2.248243 for graph (a), 

(b), (c) and (d) respectively. 

 

 

 
 

Figure 2: Right-Side Solution 

 

 

V. THE MIDDLE SOLUTION 

 

At this stage, we have obtained the solutions at both sides 

outside the region of the forcing terms discussed in Section 3 

and Section 4, respectively. What is left now is to  

 

find the solutions in the middle. This means that we need to 

solve equations (5) and (6) in the region of the forcing terms. 

We will show that the solution in this region can expressed in 

terms of Weierstrass elliptic functions. The solutions we 

obtained in Section 3, 4, and 5 will be combined to give the 

full solutions. This will be presented in Section 7. 

 

In this region, ,
2

a
x   the solution must satisfy  

 

                                   )23(0,12   xx  
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We shall be dealing with equation (23). In order to solve this equation we need to deduce some conditions. 

These conditions come from continuity of .
22

/ a
xand

a
xatand   

 

Now at  
2

a
x  , we have  

 

                                            )24(
22

1

/  



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













a
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a
o  

 

where  

 

                                        )25(,
4

sec
2

3 2

oo Lxh 










   

 

                                   )26(,
24

tanh1 



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





 oo L

a
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
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At 
2

a
x  we have 

 

                            

*)26(
2222

,
22

////
























































aa
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aa
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Integrating equation (23) from –a/2 to x (< a/2), we find 

 

  )27(
322

322/

o








  

 

Equation (27) can be written as  

 

  )28(43

2

2

3

1

2/ bbbb    

 

where 

 

obbandbbb 







34321

2
,,

3

2
  

 

By making the transformation 

 

21 cuc   

 

Equation (28) is converted into 

 

)29()()()( 4213

2

212

3

211

2/2

1 bcucbcucbcucbuc   

 

Dividing both sides of equation (29) by  2

1c  we obtain 
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
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Equation (30) is now written in the  a simplified form as 

 

)31(4 32

32/ guguu   

 

where 
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1

423

2

21

3

1
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1
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1
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
  

 

In equation (31), 2g  is constant and 3g  is a function of   oL  for given  ,,  and a. The general 

solution of equation (31) can be expressed in term of Weierstrass elliptic function (Gong, 1994) 

 

),,()( 32 ggTxxu   

 

where T is a constant. 

 

Thus, in the region of the non-zero forcing term (
2

a
x  )  the supercritical solitary wave solution can be 

written as 

 

)32(),,()( 2321 cggTxcx   

 

 

Equations (25) and (26) are now respectively reduced to 
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From Gong and Shen (1993), we find the identity 
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Substituting equations (33) and (34) into equation (35), we then obtain 
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We now observe that in equation (36), the right hand side is independent of constant T. We then have 
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
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Using Mathematica program Substituting equation(37) into equation (32), we get the solution on the 

middle side. All graphs of these solutions are shown in Figure 3. 

 

Figure 3 shows the solutions of the sfKdV in the middle, when  = 3 and a = 2. The values of oL  are 

-0.20752, -0.792481, -1.792481 and  -2.248243 for graph (a), (b), (c) and (d) respectively. 

 

 

 
 

Figure 3: The Middle Solution 

 

VI. THE PHASE SHIFT oL  

 

In this section we shall determine the phase shift oL which depends on the forcing terms and the continuity 

conditions between each adjacent part. 

 

Substituting x = a/2 and x = -a/2 into equation (32) we get 
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Substituting the above expression in equation (26*) we obtain 
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From equations (33), (34), (37) and (38) we can obtain 
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Equation (39) determines the phase shift oL . 

 

Equation (39) have a solitary wave solution only when 0),( oLB   (Gong,1994). 

Hence, 0),( oLB   is the condition used to calculate the phase shift oL . By using Mathematica 

program the function ),( oLB  was plotted versus trial oL . The intersection point with oL -axis was 

found as the values of oL .(see Figure 4) 

 

This curve has four intersection point with oL  -axis, i.e. ),( oLB   has four zero, 20752.00 L , 

792481.1,797065.0   and 248243.2  that means we have four supercritical solitary wave 

solutions. 

 

 

 
 

Figure 4: The Curve of ),( 0LB   versus 0L  

 

VII.  COMPLETE SOLUTIONS  

 

We have obtained the solutions of the sfKdV equation at both 

sides and also in the middle as discussed in Section 3, 4, and 

5, respectively. In this Section we shall give the complete 

solutions of the sfKdV equation. This means that we need to 

combine the solutions in both side with the middle ones. 

 

    We rewrite the solutions outlined in Section 3 as   
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for the right side. 
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The solution in the middle parts 
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By matching equations (40), (41) and (42) we get 

 

                  )43(

.
2

),(
4

sec
2

3

;
22

),,(

;
2

),(
4

sec
2

3

)(

1

2

2321

2
























x
a

Lxh

a
x

a
cggTxc

a
xLxh

x

o

















  

 

 

Equation (43) is the complete solution of sfKdV equation. 

 

The graphs shown in Figure 5 are the complete solutions of the sKdV equation when  = 3 and a = 2. The 

values of oL  are -0.20752, -0.797065, -1.792481 and -2.248243 for graph (a), (b), (c) and (d) 

respectively 

 

 
Figure 5: The Complete Solution 

VIII.   CONCLUSION 

In this paper we have studied the solutions of the stationary 

Korteweg-deVries (sfKdV) equation. In order to obtain the 

solution of the sfKdV equation, the domain of the problem 

has been divided into three parts, the left, the middle and the 

right parts. The solutions on the left and right parts were  

 

obtained in Section 3 and Section 4 by using analytical 

method. The solution on the middle were  obtained in Section 

5. In both cases we have constructed two computer programs 

by using Mathematica to produce the final solutions. The 

complete solution of the sfKdv equation is given in Section 7, 

by matching the solutions of the three parts i.e. the left, the 

middle and the right parts. We have found that the solutions of 

the stationary Korteweg-deVries (sfKdV) equation produce 

four different solutions according to the value of the phase 

shift oL . Only one solution is positive  the three others  

solutions have positive and negative values.. Further research 

can be carried out for negative forcing terms 
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