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Abstract— In this study, a novel computational framework 

for solving a class of optimal control problem for systems 

governed by non-linear Hammerstein integral equations is 

presented. A theorem for the convergence and the validity of the 

approach is also given in detail. Numerical experiments and 

comparisons with exact solutions confirm the efficiency and the 

accuracy of the proposed technique. 

 
Index Terms— Optimal Control problem, Non-linear 

Hammerstein integral equations, Iterative methods, 

Approximate-analytical solution.  

 

I. INTRODUCTION 

 

 Iterative schemes and optimizations related to integral 

equations are two prominent fields of research in applied 

science and engineering. The major purpose of optimization 

is to determine procedures of how optimally change or 

influence real systems to achieve a desired result. This 

requires to realize large-scale optimization strategies with 

increasing complexity which in turn motivates the 

development of numerical techniques for optimization 

purposes. 

 

 On the other hand, in mathematical formulation of physical 

phenomena, integral equations are always encountered and 

have attracted much attention. In fact, integral equations are 

as important as differential equations and appear in a variety 

of applications in many fields including continuum 

mechanics, potential theory, geophysics, electricity and 

magnetism, kinetic theory of gases, hereditary phenomena in 

biology, quantum mechanics, mathematical economics, 

population genetics, medicine, fluid mechanics, steady state 

heat conduction, and radiative heat transfer problems [1, 3, 6, 

7, 9, 10, 12, 13, 14, 21, 23, 25]. In this way there are many 

direct and indirect numerical solution for integral equations 

such as [2, 5, 17, 17, 22]. Furthermore, optimal control of 

systems governed by integral equations are momentous in 

applications such as the optimal control problem related to the 

Ornstein-Uhlenbeck process which arises from statistical 

communication theory [8]. In this paper, we focus on the 
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formulation of a class of optimal control problems governed 

by non-linear Hammerstein integral equations as follows  
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are given functions which are defined on the interval 

1,0  st , and can be expanded to the Taylor series about 

1,0=  cct . Besides, ([0,1]))(),( Ctutx  are the 

trajectory and control functions, respectively. Here, it is 

assumed that the problem (1)-(2) has a unique solution. 

 

 Nevertheless, there is no research to solve the optimal control 

problem (1)-(2). Thus, the main purpose of this study is to 

construct an iterative scheme to obtain the approximate 

solution and also the analytical solution of the problem in the 

form of polynomial series solution. 

 

II. TAYLOR SOLUTION 

 

 In this section, following the work of Mahmoodi [11], it is 

assumed that for a given )(su , the non-linear integral 

equation(2), for which ))(,()),(,(),( txttxtty  , 
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Noting that, Eq.(3) is a Taylor polynomial of degree N  at 

ct = , where )()( cx n
, Nn 0,1,...,=  are coefficients to be 

determined. 

Using Eq.(3), we also consider ))(,( txt  and 

))(,( txt  in Eq.(2) expressed in terms of Taylor 

polynomials as  
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 Which are Taylor polynomials of degree N  at ct = . The 

coefficients Nnnn 0,1,...,=,,  are non-linear 

combinations of )(),...,(),( )((1)(0) cxcxcx N
 as follows:  
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A. Matrix representation of the components 

 

 To obtain the solution of (2) in the form of 

expression (3), we first differentiate it n  times with respect 

to t :  
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 and then analyse it as matrix representation. 

According to [15], Eq.(8) can be written as  
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 Note that, in Eq.(11),  
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 Substituting Eqs.(12) and (13) in Eq.(9) gives  
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 or, briefly,  
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 If we take Nn 0,1,...,= , relation (15) reduces to a system 

of 1N  non-linear equations for 1N  unknown 

coefficients )(),...,(),( )((1)(0) cxcxcx N
, as follows:  
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 And H  and K  are 1)(1)(  NN  matrices 

defined in (16) and (17). The non-linear system of equations 

obtained in (18) can be solved using standard mathematics 

toolboxes as MATLAB. 

 

III. THE ITERATIVE METHOD AND ITS CONVERGENCE 

 

Let Q  be the subset of the product space 

([0,1])([0,1])  CC  contains all pairs (.))(.),( ux , 

which satisfy Eq.(2). Also, let nmQ ,  be the subset of Q  

consisting of all pairs (.))(.),( nm ux , where (.)nu  is a 

parameterized control function as the following polynomial  
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 Here, mjRRe n

j 0,1,...,=,:   are continuous 

functions. Now, we consider the minimizing of J  on nmQ ,  
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nm ux  be the solution of 

minimizing J  on 1,2,...;=,, mQ nm  1,2,...=n , then the 

polynomial form of 1,2,...= (.), nun


 (19) and using (20) 

allow us to apply the proposed method (in Section 2) for 

extracting polynomial solution of (20), which results in 

obtaining a sequence of trajectory functions 1=(...)}{ mmx
 as 

Taylor series, and finally to achieve a minimizing sequence 

nmnm ux ,(.)}(.),{( 
. 

Lemma 1. If J
nm

Qnm inf=
,,  for 1,2,...=,nm , then 



1=,, }{ nmnm  is a convergent sequence.  

Proof.  Proof in [16, 19].  

   Now, it can be concluded that }{ ,nm  is 

convergent, because it is a nondecreasing and bounded from 

below sequence. 

 Theorem 1. If  =lim ,, nmnm   then JQinf= .  

Proof.  Proof in [16, 19].  

 

  The above discussion and results can be 

summarized in a numerical algorithm for obtaining the 

approximate solutions for the optimal control (1) subject to 

Eq.(2). 

Algorithm 1. Choose 0>1  and 0>2  for the accuracy 

of the solution.   

    • Step 1. Let 1=,, knm , taatu 101 =)(  , 

)(=)( 101 teetx   and (1))(1),(=1 uxJ , where 

),(= 1000 aaee  and ),(= 1011 aaee .  

    • Step 2. Let 1= mm  and 1= kk  and find 
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 .  

    • Step 3. If 11 |<|   kk  then go to Step 4, otherwise 

go to Step 2.  

    • Step 4. Let 1= nn  and 1= kk , find 

J
nm

Qk inf=
,

  and go to Step 5.  

    • Step 5. If 21 |<|   kk  then stop, otherwise go to 

Step 4.  

 

IV. NUMERICAL EXPERIMENTS 

 

Now, we show the efficiency of the method 

described using the following examples. In all examples, the 

approximate solutions will be compared with the exact 

solutions. 

Example 1. Let us first consider the optimal control problem 

governed by Fredholm-Hammerstein integral equation as 

follows  
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 So by using the iteration Algorithm 1, the numerical 

results are illustrated in Table 1 and Figures 1-4.  

  

Table  1:  The Approximate-Analytical results for Example 1  

  Iter    n    m    )(tx    )(tu   J  

 1   1   1   1   t1    0.2   
2   1   2  21 t   t1    0   
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Figure  1: Exact and approximate trajectory functions for 

Example 1, 1= 1,= mn . 

 
Figure  2: Exact and approximate control functions for 

Example 1, 1= 1,= mn . 

 
Figure  3: Exact and approximate trajectory functions for 

Example 1, 2= 1,= mn . 

 
Figure  4: Exact and approximate control functions for 

Example 1, 2= 1,= mn . 

  

Example 2. We consider the optimal control problem 

governed by Volterra-Hammerstein integral equation as 

follows  

,)1)(())((=  2222
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The exact optimal solutions of the problem (23)-(24) 

are  

,1=)(     =)( 2*2* ttuandtttx   

 with the optimal criterion  

0.=))(),((= ** tutxJJ  

 Using the iteration Algorithm 1, the numerical results are 

illustrated in Table 2 and Figures 5-10. 

  

Table  2:  The Approximate-Analytical results for Example 2   

Iter
 

n
 

m
 

)(tx   )(tu    J   

 1  1  1   t    t0.8334   0.2056
  

2  1  2  20.9074tt 
 

t0.88890.9074   0.0086
 

3  2  2   
2tt     

21 t    0   

 
Figure  5: Exact and approximate trajectory functions for 

Example 2, 1= 1,= mn . 

 
Figure  6: Exact and approximate control functions for 

Example 2, 1= 1,= mn . 
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Figure  7: Exact and approximate trajectory functions for 

Example 2, 2= 1,= mn . 

 
Figure  8: Exact and approximate control functions for 

Example 2, 2= 1,= mn . 

   
Figure  9: Exact and approximate trajectory functions for 

Example 2, 2= 2,= mn . 

 
Figure  10: Exact and approximate control functions for 

Example 2, 2= 2,= mn . 

  

Example 3. Finally, Let us consider the optimal control 

problem governed by Volterra-Fredholm-Hammerstein 

integral equation as follows  
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The exact optimal solutions of (25)-(26) are  

,1=)(     ,=)( *2* ttuandtttx   

 with the optimal criterion  

0.=))(),((= ** tutxJJ  

 Table 3 and Figures 11-14 give the numerical results for 

example 10. 

  

Table  3: The Approximate-Analytical results for Example 3 

Iter
  

n
  

m
  

 )(tx    )(tu    J   

 1  1  1  

t1.6670

0.0256


  

tE 65.9824

1.6004


  

 

0.0155
  

2  1  2   
2tt     t1    0   

 
Figure  11: Exact and approximate trajectory functions for 

Example 3, 1= 1,= mn . 

 
Figure  12: Exact and approximate control functions for 

Example 3, 1= 1,= mn . 
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Figure  13: Exact and approximate trajectory functions for 

Example 3, 2= 1,= mn . 

   
Figure  14: Exact and approximate control functions for 

Example 3, 2= 1,= mn . 

V. CONCLUSION 

Optimal control problems governed by non-linear 

Hammerstein integral equations are usually difficult to solve 

analytically and so it is necessary to obtain the approximate 

solutions. The present method is effective for cases where the 

known functions have sufficient derivatives in the given 

interval. One of the advantages of this method is that the 

optimal solutions, i.e. the trajectory and control functions, are 

expressed as a Taylor series truncated at ct = . Therefore 

)(tx  and )(tu  can easily be evaluated for arbitrary values of 

t  with a low computation at effort. This method will not work 

for cases where the given functions do not have enough 

derivatives. An interesting feature of this method is that we 

obtain analytical solution in many cases, as shown in the 

examples. 
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