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 

Abstract—Phase-Locked Loop (PLL) circuits are widely 

used in wireless communication and control systems. To achieve 

the best performance of PLL circuits, it requires several model 

simulations to obtain the optimized circuit parameters. This 

paper proposed a time behavioral model of PLL. The new 

behavioral model allows us fine tuning the PLL circuit 

parameters. A new behavioral model of Phase Frequency 

Detector (PFD) is also proposed in this paper. The new PFD 

model allows the calculation of PLL transient response with 

different loop filter. To minimize the computation time, the new 

method applies two calculation techniques: piecewise linear and 

cycle by cycle. The new method takes few seconds to finish the 

calculations while HSPICE takes days to finish a similar 

simulation. Therefore, the new model is efficient and accurate 

for fine tuning the PLL circuit parameters and designing high 

performance PLL. 

 
Index Terms— Phase-Locked Loop (PLL), Phase Frequency 

Detector (PFD), piecewise linear, cycle by cycle, HSPICE 

simulation. 

 

I. INTRODUCTION 

  The Phase-Locked Loop (PLL) circuits are widely used in 

wireless communication and control systems. These circuits 

are the essential parts in System-on-Chip (SoC) integrated 

circuits. They are used for frequency modulation and 

demodulation, clock recovery and synchronization, and 

frequency synthesis. 

  

  In the early days, PLL circuits were pure analog circuits. 

Because there were no computer simulations in those days, 

circuit analyses were done by hand calculations. The 

linearized small signal model was developed to aid PLL 

circuit design [1]. However, any active circuits, which use 

transistors or vacuum tubes, are essentially non-linear circuits. 

Thus signals are controlled sufficiently small so that the 

transistors and vacuum tubes are operated in their linear 

regions. Mathematically, it is more feasible to solve the linear 

equations of PLL model than to solve the large signal 

non-linear equations. By applying the small signal model 

analysis, it provides key circuit performance factors such as 

loop frequency, phase margin, gain, and damping factor. The 

drawback is that the analysis is in frequency domain. In fact, 

the circuit designers would like to see the performance in time 
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domain such as transient responses and settling time of the 

PLL circuits. 

  

  Recently, PLL circuits consist of analog and digital parts so 

that they are mixed signal integrated circuits. Because the 

transistors of digital circuits are operated in saturation region, 

the digital parts in PLL circuits are nonlinear circuits. To 

simulate both analog and digital circuits, the designers have to 

put the entire PLL circuit in HSPICE simulation. However, it 

takes a few days of HSPICE simulations even in a high 

performance workstation [2], [3]. To solve this issue, several 

approaches have been proposed in the past decades [4]–[7]. 

However, they fail to simulate PLL circuits without using 

HSPICE simulations. The main reason is that they were 

unable to model the Phase Frequency Detector (PFD) 

correctly and they still followed the small signal model 

analysis in frequency domain [1]. The fundamental problem is 

that they still use phase angle to do the transient analysis. 

Phase angle is a mathematical concept and it only works in 

frequency domain type of analysis. As a result, those recent 

approaches just apply discrete time analyses of the small 

signal model. 

  

  In this paper, we proposed a novel non-linear transient 

analysis method to simulate PLL circuits. Moreover, a 

complete and exact behavioral model for the digital PFD has 

been proposed. To reduce the computation time, Piecewise 

linear and cycle by cycle techniques are applied in the 

proposed method. The new method takes few seconds to 

finish the calculations while HSPICE takes days to finish a 

similar simulation. 

  

  The rest of this paper is organized as follows. Section II 

discusses the small signal model of PLL. Section III includes 

the proposed PFD behavioral model. Section IV describes the 

detail of non-linear PLL transient analysis. Section V verifies 

the proposed PLL model.  Section VI shows the results of the 

PLL model with charge pumps and Section VII gives the 

conclusions. 

II.  SMALL SIGNAL MODEL OF PLL 

The basic architecture of PLL consists of a 

phase/frequency detector (PFD), a loop filter (LF), and a 

voltage controlled oscillator (VCO). Fig. 1 shows the basic 

structure of PLL. From Fig. 1, each functional block is 

connected to form a closed loop phase-locked circuit. To 

achieve the best performance of PLL circuits, it requires 

several model simulations to obtain the optimized circuit 

parameters. 

 

 The voltage controlled oscillator, VCO, has a behavioral 

model which can be characterized as the following equation. 
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Fig. 1. The basic structure of PLL. 

 

cntloscVKFF  oosc                              (1) 

where Fosc is the oscillator frequency, Fo is the zero bias free 

running frequency, Vcntl is the control voltage, and Kosc is 

frequency per volt. This structure is adequate because the 

PFD does not detect the minute changes of the frequency 

waveform. The PFD only check the zero crossings or the 

timing edges of the frequency output by the VCO. The loop 

filter (LP) is made up of linear circuit components, R, L, and 

C. Thus, the LP and VCO have existed circuit models for 

transient analysis. However, the digital PFD requires a precise 

and exact model for analysis. 

The linearized small signal model does not attempt to 

model the PFD, especially the digital blocks [1]. It artificially 

creates a phase difference model that can work with the small 

signal model. Most analog circuit designers assume that the 

PFD output voltage is linearly proportional to the phase 

difference between the input frequency and the VCO 

frequency. The controlled voltage of VCO is an average over 

one frequency cycle as follows: 

)( refoscpdcntl   KV                      (2) 

Therefore, it does not model the exact output of a PFD 

because the output may be pulses and may have undesirable 

high frequency signals. This is the reason that a loop filter is 

needed to be inserted between the PFD and the VCO. Because 

phase angle is a mathematical concept, it depends on the 

frequency. The linearized small signal model assumes that the 

PLL is close to lock condition. Thus, the reference frequency 

and oscillator frequency are almost equal and superimposed 

as one frequency that can be used to define the phase angle. 

The phase angle difference is the same from cycle to cycle. 

When the VCO frequency changes slowly, the phase angle 

also changes correspondently in each cycle. If the two 

frequencies are different, the phase angle difference 

accumulates from cycle to cycle. However, equation (2) does 

not consider the accumulated phase angles. Thus, in the 

linearized small signal model, an artificial integrator is added 

to the model after the VCO as shown in Fig. 2. 

For linear analysis, it is assumed that the phase frequency 

detector output is a voltage and this output is a linear function 

of the difference in phase between its inputs as follows: 

)( oscrefpdpd KV                  (3) 

where θref and θosc are the phases of the input and feedback 

signals, respectively. Kpd is the gain factor of the phase 

frequency detector and has units of voltage per radian. Since 

the phase angle is the accumulative volume, an integrator has 

been added to change the VCO output frequency to phase 

angles. 

              
s

fosc
osc                            (4) 

The closed loop transfer function of the PLL is the transfer 

function of phase θosc to the input phase θref  as follows: 
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Fig. 2. Linear small-signal model of phase-locked loop. 
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where Kpll is the PLL gain factor, and Hlp(s) is the transfer 

function of the loop filter as given by 

oscpdpll KKK                             (6) 

p

z
lp
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


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1

1
)(                           (7) 

where 
pz   . The proposed new PFD model includes the 

effect of this integrator and does not use phase angle; p is the 

time constant of the loop filter.  

III. THE PROPOSED PFD BEHAVIORAL MODEL 

A. Description of the Model 

To explain the detail of the PFD behavioral model, the 

HSPICE simulation results of the digital PFD is shown in Fig. 

3. The top waveform is the output of the PFD. The bottom two 

waveforms are the frequency inputs of the PFD. It is noted 

that the period of pulse, T, is defined by the larger period of 

the two input frequencies. The pulse width, W, is the 

accumulation of period difference computed on a cycle by 

cycle basis. Thus, PFD is also considered as an integrator. 

When the sum of pulse width is larger than one period, one 

period of the other frequency is subtracted from the pulse 

width sum to keep the pulse width smaller than one period. 

The Up pulses get successively wider up to the 4
th

 pulse. The 

width of fifth Up pulse is narrower as the result of one extra 

subtraction. The behavior of PFD output pulse at each cycle is 

modeled by the following codes: 

 

### PULSE width and period calculation for each cycle ### 

 

Tref = 1/Fref; Tosc = 1/Fosc;      # calculate the periods of the input

 frequencies. 

Sum = Sum + ( Tosc - Tref ) ; # calculate the ―phase difference‖       

           and integrate. 

if Sum > 0                           # it is Up pulse 

while Sum > Tosc 

Sum = Sum - Tref ; 

end 

pulsewidth = Sum ; period = Tosc; sign = 1; 

else                                    # it is Down pulse 

while Sum < -Tref 

Sum = Sum + Tosc ; 

end 
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Fig. 3. The simulation results of the digital PFD. 

 

pulsewidth = abs(Sum) ; period = Tref; sign = -1; 

   end; 

end 

 

 At the start, the Sum is reset to zero. The two input 

frequencies are fixed. One pulse cycle is computed. One can 

run the program over several cycles and see that the codes 

produce the same pulses as the HSPICE simulation. The sign 

is used to indicate whether this is an Up or Down pulse. In 

these codes, the sign is set for the VCO and frequency 

increases with the control voltage.  

If the VCO frequency decreases with increasing voltage, 

the sign has to be reversed. The PFD responds only to one 

cycle of the input frequency at a time. It does not care about 

the details within a cycle. In the PLL circuit, this allows 

adjustments of the VCO frequency according to the PFD 

output voltage at each cycle. The proposed behavioral model 

does not require near lock condition and can work with vastly 

different input frequencies. This model can also apply to the 

case that the two input frequencies are equal, but with an 

initial phase difference. The output pulses are constant. The 

pulse width is equal to the initial Sum. The period is just the 

period of either input frequencies, depending whether it is an 

Up pulse or Down pulse. 

B. Modification of the Model with Dead Zone 

In a real PLL circuit, the VCO frequency Fosc varies with 

the time. The pulses can change from Up pulses to Down 

pulses, and vice versa. During the transitions, the period is not 

defined by either of the two input frequencies. Thus, a minor 

correction to the period is needed. It is shown in the following 

codes: 

Previous_sign = sign;      #save the sign from previous   

           cycle; 

Tref = 1/Fref; Tosc = 1/Fosc; 

Sum = Sum + ( Tosc - Tref ) ; 

if Sum > 0                       #Up pulse 

while Sum > Tosc 

Sum = Sum - Tref ; 

end 

pulsewidth = Sum ; sign = 1; 

if previous_sign <0                #transition from Down 

to Up 

period = Tref + pulsewidth;    #correcting the period 

else period = Tosc ; 

end 

else                                                  #Down pulse 

while Sum < -Tref 

Sum = Sum + Tosc ; 

end 

pulsewidth = abs(Sum) ; sign = -1; 

if previous_sign >0                #transition from Up to 

Down 

period = Tosc + pulsewidth;     #correcting the period 

else period = Tref ; 

end 

end; 

end 

 

The PFDs usually have Dead Zone when there are no 

output pulses. For a 10 picoseconds dead zone, it can be easily 

modeled by adding this line of codes: 

If  pulsewidth < 10 ps, then pulsewidth = 0; 

Further refinements to this PFD behavioral model have 

very little effects to the PLL simulations. Therefore, a 

complete behavioral PFD model has been verified and 

proposed, and does not need the near lock assumption on the 

input frequencies. 

IV. NON-LINEAR PLL TRANSIENT ANALYSIS 

In the previous discussions, each sub block of the basic 

PLL is modeled properly. The new non-linear transient 

analysis uses the individual block models to simulate the 

entire PLL circuit. The analysis has been finished by using 

Matlab. The model of the three sub block in PLL is 

implemented by Matlab program language. There are three 

parts to the program. With initial PLL circuit conditions, the 

PFD model computes the first pulse. The amplitude of the 

pulse is given the proper voltage or current values. The PFD 

model is almost like the HSPICE voltage/current source 

PULSE which generates each pulse width and period without 

rising and falling times. The PULSE is then applied to the 

loop filter circuit which produces the output voltage for the 

VCO. Since the VCO outputs a clock, the period of the clock 

cycle is the cumulative effect of the control voltage. Therefore, 

the VCO actually outputs an averaged frequency due to the 

varying input voltage and average VCO frequency is 

 

<Fosc> = Fo + Kosc <Vcntl>.                     (8) 

 

The control voltage is averaged over that cycle and the 

average voltage is used to calculate the next VCO frequency 

and period. The loop filter calculation consists of the normal 

circuit calculation and an additional calculation to obtain the 

average output voltage, <Vcntl>. The VCO behavioral model 

in (8) is used to update the <Fosc> for the PFD to calculate the 

next pulse. Moreover, the VCO frequency is changing and 

affecting the pulse when the PFD is outputting. To start, the 

PFD model uses the previous cycle’s average control voltage, 

<Vcntl>, as an estimate to compute the next pulse and the new 

<Vcntl>. The new <Vcntl> is then used to iterate the pulse 

calculation again. If <Vcntl> does not change significantly 

from one cycle to next cycle, the pulse calculation should 

converge after a few iterations. 

 

 The pulse calculation is iterated only once if the proposed 

method is applied. The pulse is a non-linear signal. It can be 

observed that the filter output signal is also non-linear in a 

HSPICE simulation as shown in Fig. 4.  
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Enlarged

As shown in Fig. 5 

 
Fig. 4. The HSPICE simulation results of output voltage for the loop filter. 
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Fig. 5. The output of loop filter within one pulse cycle. 

 

 In HSPICE simulations, it uses very small time steps to 

make the signal piecewise linear [8]. Thus it requires 

hundreds of thousand calculations to simulate one cycle [9]. 

In the proposed method, one cycle is divided into two linear 

regions as shown in Fig. 5. There are only two calculations 

needed per cycle. The output pulse of the PFD is constant in 

these two regions, Va1 and Va2. At the beginning of the cycle, 

the voltage is VN. The linear equation (9) can be used to 

calculate the VmidN in the region Va1. The linear calculation 

(10) is used in the region Va2 to obtain VN1. 

   pWTVNVmidN  1                      (9) 

  pm WVmidNsignVVmidNVN 1         (10) 

where T is the period of pulse, W is the pulse width, Vm is the 

amplitude of pulse signal, sign = 1 if Sum > 0, sign = -1. If 

Sum < 0, and p is the time constant of the loop filter. 

The voltage is averaged over this period to obtain <Vcntl>. 

The voltage VN1 is the new VN in the next cycle’s 

calculation. That is the detail analysis of one cycle 

calculation. This is repeated as many cycles as needed to 

simulate the PLL transient response until it reaches lock 

condition. 

V.  VERIFICATION OF THE PROPOSED PLL MODEL 

To verify the proposed PLL behavioral model, the 

non-linear transient analysis has been applied to simulate two 

regular PLLs: a simple 1
st
 order low passes filter (R-C) and a 

low pass filter with a zero (R1-R2-C). The PFD output pulse 

is computed by the behavioral codes. The small signal models 

of those PLLs have been derived and compare the loop 

frequency and the damping factor  with the proposed model. 

The pulse signal amplitude Vmax is set to ±1.5V. The pulse 

signal is applied to the loop filter. 

 

R

C

Vpd Vcntl

 
Fig. 6. The 1st order low pass filter. 

 

A. First-Order Low Pass Loop Filter 

The first PLL circuit is a simple first order low pass filter as 

shown in Fig. 6. The transfer function of the 1
st
 order low pass 

filter is 

                    
1

1
)(




sRC
sHlp

                   (11) 

where R is the low pass filter resistance, C is the low pass filter 

capacitance. The values are R = 10 K and C = 100 pF. 

We then inserted the 2X gain between the loop filter and 

VCO. The output of the loop filter is amplified by 2 before 

being applied to the VCO. The VCO has the behavior as 

follows: 

cntloscoosc VKFF                      (12) 

For example, if the VCO have frequency range from 10 

MHz to 16MHz and voltage from 0V to 3V, then the tuning 

frequency range is ± 3MHz at 13MHz. The actual calculation 

is 

VNF  67

osc 10210          (13) 

The input frequency is 13 MHz and is equivalent to VN = 

1.5V.  Since the VCO has the effect of averaging the output 

frequency, <Fosc> = Fo + Kosc <Vcntl>. We can simulate the 

PLL to produce the waveform of <Vcntl >, which represents 

the PLL’s transient response. The transient response of this 

first order low pass filter PLL <Vcntl > is shown in Fig. 7. The 

result is then compared to the linear small signal calculation. 

By Substituting eq. (11) into eq. (5), the small signal PLL 

transfer function is as follows: 

1

1
)(

2 





pllpll K

s
s

K

RC
sH

           (14) 

An equivalent RLC circuit can be used to understand the 

Damping factor, , as shown in Fig. 8. The transfer function 

of equivalent RLC circuit is derived as 

 
Fig. 7. The output of the 1st order low pass filter. (R=10KΩ and 

C=100pF). 
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Fig. 8. An equivalent RLC circuit. 
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LCLC 


11
2

                   (16) 

Thus, the damping factor of the equivalent RLC circuit is 

LC

R
LC

2

2
 




                 (17) 

Comparing the above equation with the transfer function 

(15) which defines the loop frequency and the damping factor, 

we can obtain 

1
2s

1
)(

0

2

0

2











s
sH

                    (18) 

By defining the parameters RCp  and 

Pll

l
K

1
 , 

from eq. (18), we can obtain  

2

0

1




pllK

RC                            (19) 

0

21






pllK
                            (20) 

The PLL loop frequency is  

lp

Pll

RC

K




1
0 

                   (21) 

The damping factor is 

p

l

PllK 




22

0                          (22) 

By considering the actual circuit parameters in the small 

signal model, the loop frequency 0  and damping factor   

are 

radians 102.45 
1 6

0 
lp

Pll

RC

K


  

         0.204 
22

0 
p

l

PllK 


  

To verify the model, the same circuit parameters are 

applied to nonlinear transient analysis. The results are shown 

in Fig. 9. From the results, the loop frequency is about 

1/0.2610
-5

 = 3.8510
5
 Hz, and =2f=2.4210

6 
radians. We 

compare the waveform to a standard damping waveforms 

which has curves with different damping factor  = 0.1, 0.3, 

0.5, and 0.7. The closest is between 0.1 and 0.3. Therefore, 

both numbers agree with the small signal model calculations. 

ζ=0.1

ζ=0.3

ζ=0.5

ζ=0.7

 
Fig. 9. The results of nonlinear transient analysis with damping factor, 

 = 0.1, 0.3, 0.5 & 0.7. 
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Fig. 10. The 1st order low pass filter with zero. 

 

B. First-Order Low Pass Loop Filter with Zero 

The second PLL is also verified by applying the nonlinear 

transient analysis. This PLL has a zero in the loop filter as 

shown in Fig. 10. 

The transfer function of the 1
st
 order low pass filter with 

zero is 

1)(

1
)(

21

2






CRRs

CsR
sH lp

                   (23) 

By substituting eq. (23) into eq. (5), the transfer function of 

the PLL with this low pass filter is as follows: 

1)
1

(
)(

)1(
)(

2

221

2







sCR
K

s
K

CRR

CsR
sH

PllPll

               (24) 

Let’s define the parameters ,)( 21 CRRp  ,2CRz   

and 

Pll

l
K

1
 , the transfer function H(s) is   

1)(

)1(
)(

2 




ss

s
sH

zllp

z



             (25) 

We then compare (25) with the standard damping equation as 

follows: 

1
2

1

0

2

0

2








ss

                           (26) 

From eq. (25) and eq. (26), we can obtain 

2

0

1


 lp

                                 (27) 

0

2
)(




  zl

                           (28) 
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Fig. 11. The output of the low pass filter with zero. (R1=36KΩ , R2=4KΩ , 

and C=100 pF) 

 

Initialization
N = 100

i = 1
Vm = 1.5V

Sum = 0
VN = (Vcntl(i)-Vm)/2

Tref = 1/Fref

Tosc = 1/Fosc

Circuit Parameters of PLL

The output frequency of VCO is given by
Fosc = Fo + Kosc× Vcntl

= 10MHz + 2 × 106 × (VN + Vm)

Sum = Sum + (Tosc - Tref)
The Sum indicate whether it is Up or Down pulse 

Calculating VmidN
T = Tref (if Tref > Tosc)
T = Tosc (if Tosc > Tref)

W = abs(Sum)
VmidN = VN × (1-(T-W))/τp)

Calculating VN1
Sign = 1 (if Sum>0)
Sign = -1(if Sum<0)

VN1 = VmidN + (Vm × sign-VmidN)W/τp

Calculating Va1, Va2
Va1 = (VN + VmidN)(T-W)/2T

Va2 = (VN1 + VmidN)W/2T

Calculating VaN
VaN = Va1 + Va2 (VaN<=3V)

Calculating Vcntl(i)

Vcntl(i) = 2 × VaN +Vm

VN = VN1

i = i +1

Polt Vcntl(i) 

Vcntl(i) shows the transient response of the first 

low pass filter PLL

i = n or  Vcntl(i) converge

i < n

Fig. 12. Calculation flowchart of the regular PLL. 
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The small signal model damping factor is  
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Fig. 13. The basic structure of PLL with charge pump. 

 

It is assumed that R1 =36 KΩ, R2 = 4 KΩ, and C = 100 pF. 

From eq. (29), the small signal model loop frequency is 

6

0 1023.1
1


lp

  radians 

From equation (30), the damping factor is 

0.35 
2

)(

2

)(0 






lp

zlzl




  

For the same circuit parameters, the transient response of 

the low pass filter with zero is shown in Fig. 11. From the 

waveform, the damping factor is between 0.3 and 0.5 and it is 

closer to 0.3. The loop frequency is about 1/(0.56  10
5
) 

=1.7910
5
 Hz, and =2f=1.1210

6
 radians. The damping 

factor and the loop frequency are in very close agreement with 

the small signal model calculations. To describe the proposed 

method, a flowchart of the above calculations for the new PLL 

model is illustrated in Fig. 12. The new model is verified by 

using Matlab as analytical tool. 

VI. THE EXPERIMENT RESULTS 

To convert the logic states of the PFD into current pulses, a 

charge pump is usually inserted between PFD and loop filter. 

Fig. 13 shows the basic structure of PLL with charge pump. 

By adding the charge pump, the current pulses of PFD are 

integrated by the capacitor in the loop filter into analog 

signals and it is suitable for controlling the VCO.  

The non-linear transient analysis can be applied to simulate 

a PLL with charge pump. The PFD output pulse is calculated 

by behavioral codes as previous discussion. However, the 

pulse signal amplitude is set to ± 100µA. The pulse signal is 

applied to the loop filter as shown in Fig. 14. Moreover, there 

is no 2X amplifier after the loop filter.  

The transfer function of the second order loop filter is as 

follows: 
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21

21
21
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







R
CC

CC
sCCs

CsR
H lp

          (31) 

where R2 is a resistor, C1 and C2 are capacitors. By substituting 

eq. (31) into eq. (5), the charge pump PLL closed-loop 

transfer function is 

1)1)((

1
)(

222

21

21

21

2

22









CsRR
CC

CC
sCC

K

s

CsR
sH

PLL

   (32) 

Let’s define the variables τz and τp as the following time 

constants. 

22CRz                                   (33) 
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Fig. 14. The 2nd order loop filter. 

 

Thus, H(s) can be expressed by the following equation. 
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The closed-loop transfer function is equal to 
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From eq. (33) and eq. (34), we can obtain 
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1
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
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Generally, the loop frequency is close to ω0. We can 

express the denominator of H(s) in a form similar to the 

damping equation as follows:  
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It is noted that the damping factor is loop frequency 

dependent. The denominator of a standard 2
nd

 order damping 

equation transfer function is shown as below: 
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The unit of KPll is same as the frequency. We can express KPll 

as follows: 

oscpdpll KIK                                 (42) 

Finally, the o  and   can be calculated as follows: 
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KPll
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If o , then 
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To calculate the loop frequency ω0 and the damping factor , 

we plot in the circuit parameters in the equations. Assume that 

the circuit parameters are Ipd=100µA, R2=100KΩ, C2=45pF, 

and C1=5pF. The Kosc is from the VCO model,  

Fosc = Fo + Kosc Vcntl = 10
7
 + 2 × 10

6
 Hz 

0.99 ×106

 
Fig. 15. Gain of PLL with charge pump for R2=100K. 

 

 
Fig. 16. Result of simulated Vcntl for R2=100kΩ. (Ipd=100µA and 

C= 50pF). 

 

Thus, Kosc = 2 × 10
6
. From eq. (33) and (34) 

Z  = R2C2 = 100×10
3
×45×10

-12
 = 4.5×10

-6 
 sec. 
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Therefore,   ω0=2×10
6
  

2

)( PZo 



 =4.05 

These two numbers are calculated from the traditional 

definitions of ω0 and . The damping factor seems to be large. 

The small signal equation does not tell what the real loop 

frequency is. The numerator of the H(s) is usually ignored. 

There is another calculation from the small signal equation by 

including the numerator. We can use H(s) to calculate gain 

versus frequency for R2=100K. Fig. 15 shows the gain of 

PLL with charge pump for R2=100K. From the curve, the 

maximum gain appears when the frequency is at 0.99×10
6 
Hz. 

Thus,  

 =2 f =2×0.99×10
6
= 6.22×10

6  
radians 

2

)(
2

2

o

PZo



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



  = 0.1475 

 To verify the model, we compared both  and  with the 

real transient simulation. The result of the non-linear transient 

simulation is shown in Fig. 16. From the result, the loop 

frequency is about 1 MHz. The calculated  is 0.99×10
6 

as 
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shown in Fig. 15. The damping factor,  , is between 0.1 and 

0.2, or about 0.15. The calculated  is 0.15. From the 

simulation results, the calculated frequency  and damping 

factor  are very close to the real ones. The proposed PLL 

model is accurate to present the real circuit. Thus, the loop 

frequency and the damping factor can be derived from the 

proposed small signal linear equations precisely. 

VII. CONCLUSIONS 

In this paper, a novel behavioral model that can handle two 

widely different input frequencies and accompanied with a 

non-near lock assumption PLL circuit for the digital phase 

frequency detector (PFD) is proposed. The model can also 

handle the dead zone of a PLL circuit as well. To reduce the 

computation time, a new non-linear transient analysis is 

proposed for PLL circuits. The analysis method takes few 

seconds to finish the calculations while HSPICE takes days to 

finish a similar simulation.  

 A new non-linear transient analysis method is applied to 

simulate two regular PLL circuits. This new non-linear 

transient analysis results indicated that we obtained the same 

results as the traditional small signal model analysis.  

In this behavioral model, a PLL circuit with a charge pump is 

also simulated by using the non-linear transient analysis. Our 

simulation results indicated that the loop frequency and the 

damping factor can be derived from the new small signal 

linear equations efficiently. Therefore, we believed that the 

proposed non-linear transient analysis in this behavioral 

model is very practical to simulate PLL circuits. By using the 

newly proposed method, the circuit designers can optimize 

their PLL circuit parameters more efficiently comparing to 

the HSPICE simulations. 
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