A method to identify and prioritize potential risks of software projects based on C# codes.

Syyed Javad Mohammadi Bayg, Mehran Mokhtari

Abstract— Identify of potential risks is the first step in the management risk of software projects. It is a key step that other steps are based on it. In this paper a model is presented to improve the process of identifying potential risks. This model can vouch (assure) development of software projects. A matrix solution is given (is presented) to identify the levels of potential risks. Solutions and the causes of risks are classified based on the known and unknown, and also the levels were determind. The design of this model, in addition to strategy (admission, transfer) to avoid risks and probabilities are modified with new informations. A search algorithm (condition-action) is used to identify and prioritize potential risks based on sequence data structure. This algorithm has been implemented based on the C# codes and it also works on boolean variables. To implement the algorithm operating functions such as searching, planning, control, events, and management were used. To complete it these functions provided by the law-condition apply the potential risks are identified and then prioritized. Zero, and one decision variables to store intermediate results in their practice of inference, as intelligently manage event risks. The implementation of this model in various stages leading to optimized selection of the new solution, and output of model reduces the cost, schedule, and quality of software development. Also the risks and complexities and uncertainties are controlled. The validity of this method is assessed qualitatively using a practical example. This example relates to the users of ICT in training and education center in mazandaran were evaluated.

Index Terms— Risk identification, operating functions, matrix solutions-causes, Boolean variables, C#, ICT.

I. INTRODUCTION

The project is a unique process which involves a series of coordinated and controlled activities with requires limited of time, expenses, and resources [2]. Project management applying knowledge, skills, tools, and necessary techniques. Implementation of its activities to provide the needs and expectation of stakeholders. Risks is a situation that can lead to accident. Purpose of identifying risks, is providing a position to assess, reduce and eliminate risk at its best condition. Risks are the possibility of conversion to an incident or accident risk [5] risks are defined as: The probability that an incident or accident risk to be converted [11]. Project risks, that threaten the developing software and organization [1]. Types of risks that may be effective projects, depending on project and organizational environment where software is developed. But manage risks are universal [1]. Managing project risk is any uncertainly, if it occurs, one or more project (time, cost, performance, quality, scope,

Manuscript received December 19, 2014.

Syyed Javad Mohammadi Bayg, Department of Computer Engineering, Islamic Azad niversity, Damghan Branch, Damghan, Iran

customer satisfaction) are affected [8]. Risk management in software project development projects as an independent field research in 1989, it was recognized when bohm's book "software risk management" was published [10]. The purpose of software development projects, building high quality software that provides customer needs in terms of time and budget [9]. However, a variety of risks, complexity and uncertainly in software development that it is hard to control. If you have not done a proper project management, software projects will not reach ang where [9]. Developing of management theories, planning, and developing of their applications, required the use of tools on risk management. In particular strongly felt in centered learning of environment. In general, the following objectives have always been about risk management:

- 1) Identification and definition of project risks and evaluate them in general.
- 2) Eliminate or reduce risks of project, regardless of which party assumes, underlying the risks of project.
- 3) Distribution, transmission of risk in a correct order among the project members.

In general, risk management increases the likelihood of success, and it will reduce the probability of failure and uncertainty in achieving the overall objectives of the organization. In this article there are 5 basic factors for risk project software management include: Recognize potential risks, analyze risks, planning to answer the risks, controlling and (risk monitoring), and decision variables.

Identify risk management of software projects is an essential step, as other steps are based upon it [6].

The main methods and tools employed in the identification of risks are discussed in the following six areas: Search on the list of potential risks, search on the list of prioritized risks, risk response planning, controlling and monitoring risk, event risk, management risk and the termination of the risk. Risk identification rules, based on historical data that is relevant to the project as strengthening ICT users in education training organization in mazandaran provience. Risk identification algorithm is based on the Boolean variable values ok, ok1, ok2, acts on the C# code [Appendix 1].

In this article the main objective is to identify and prioritize potential risks associated with the project strengthening ICT users. The selections of an appropriate strategy for those risks that have been prioritized. Later phases of the proposed model is presented in section 2. In the third section, case study, and forth section discussion and conclusion are presented.

II. PHASES OF THE PROPOSED MODEL.

First phase: Identification of potential risks phase. Identify of potential risks is the first step in the risk management of software projects [1]. In this phase of the project risks are identified an recognized, then be documented. Also, include recognizing risk, detail, focusing

Mehran Mokhtari, Department of Computer Engineering, Islamic Azad niversity, Damghan Branch, Damghan, Iran

on risk, and look at the process are used to determine the potential risks to the project(as an input). With these tools, the risks are identified and clearly defined and elected. After providing the required inputs, using techniques (interviews, or check lists) can be used to identify project risks. The outputs from risks identification basically are presented are kept in a document that it is called the risk document. Outputs identified in the first phase includes a list of identified risks is associated with their occurrence due. Also, These risks are categorized in three different levels (see Table I) according to the known and unknown solutions, and causes of these risks. Solutions and causes of these risks are categorized after they are identified and concentrated on those.

T	TABLE I. RISK IDENTIFICATION LEVELS[4]						
1	2	Solution					
3	4	known unknown					
Reason for risks	known	valueless low	Risks need high technology(serious),large				
	unknow n	Risks need more accuracy (disaster),c ritical	Simple risk, tolerable(risks that don't need to be solved),middium				

 TABLE I.
 RISK IDENTIFICATION LEVELS[4]

Risks that reasons of those are known, and solution are known, these groups of risks are simple, and tolerable, and valueless,(worthless). Because they lose less expense, and also less time (Table II). This means the risk effective decrease [1], and can pass the dangers [8], or dangers can be transferred transfer/share [8]. By using warrenty and yurantee can transfer the risks, also using preventional can decrease the risks.

 TABLE II.
 Solution matrix(reason known-solution known)[4]

1	2	solution					
3	4	known	unknown				
Reason for		tolerables،Worthless، simple	risks				
risks		Outside risk	Suitable for				
		transfer	situation				
		request	Solution risk				
	unknown	request		Solution risk			

Risks that reasons are unknown, and solutions are known. These group of risks need accuracy, and are disaster, because they lose expenses and need more time (Table III). In general total of disaster risks have to be taken as a consideration.

TABLE III. SOLUTION MATRIX(SOLUTION-CAUSE)(CAUSE UNKNOWN-SOLUTION KNOWN[4]

UNKNOWN-SOLUTION KNOWN[4]						
1	2	solution				
3	4					
	known	known	unknown			
		Need more accuracy(disaster)	risks			
Cause of	unknown	organization risks	Suitable for			
risks		Accept	situation			
		request	Solution			
			risk			

Risks that causes are known, and solutions are unknown,

this group of risks need higher technologies. Because lose a lot of expenses and times [Table IV]. This type of rise need more time, and less expenses, or less time, and more expenses. Also serious risks, have to be considered more than medium risks.

 TABLE IV.
 (solution-causes) matrix(causes known-solution unknown)[4]

1	2	solution			
3	4	known unknown			
Cause s of			Need high technology(serious)	risks	
risks	known		Technical risks	Suitable for	
			(low)-(decrease)	situatio n	
			requested	Solution risk	
	Unknow n				

Phase 2: Phase analysis of potential risks

Risk analysis is a major part of risk management. Qualitative risk analysis includes methods for prioritizing the identified risks. This phase could lead directly to risk response planning. Risk effects might be disaster, serious, tolerable or worthless. When risks are analyzed, it must be decided what the risks are considered in the project. This judgment depends on the combination of likelihood and impact of risks. The most important and the likehood and impact of risks analysis phase is, the previous phase of the output, same as the identified risks.

Techniques and tools used in the second phase is to assess the likelihood and impact of risks. Probability of each specific risk will be reviewed. Grading and classification risk analysis process, each risk identified, and is considered likely to occur and can be seriously discussed. There is no easy way to do this, and depending on the experience and judgment of management. The following techniques are considered. In the quantitative analysis phase, risks are classified as known and unknown. Their causes and solutions, as known or unknown. Each of them will receive the following values low, medium, big crisis, are shown in Table I.

For simple, and tolerable risks (risks that are not worth solving) the average value, and the risk of serious (solving them requires high technology great value, and for disaster risk controversial (risks that require high a accuracy) is considered a critical value, the output of this phase is a prioritized list of risks.

Phase 3: Programmed phase to respond to potential risks(risk response)

In this phase, according to the results of the previous phase, we can answer in relating to planning and responding to the risks. Risks response planning is the process in which the necessary activities are being aimed to reduce the threats. In this phase, the most important, and key input, is the output of the previous phase. That is, The list of prioritized risks, because the process of responding to the risks, considered to the priorities of risks. There are several strategies to respond to risks. A strategy or combination of strategies that seen to be selected for each risk. If the selected strategy was not quite effective, or accepted risk occurs, we can use run a retreat. Often a contingency reserve for time or money will be considered. Usually, Threats or risks associated with negative impacts on project objectives, the following four strategies will be considered:

- 4) Avoiding: Change management program to remove the threats.
- 5) Transmission: Shifts negatively associated with ownership of the response to the threat of the third party.
- 6) Reduction: Primary measures to reduce the probability or impact occurred around the threshold of acceptable risk.
- 7) Reception: Where it is rarely possible to eliminate all the risks of the project it will adopt this strategy.

Now it should be investigated which of the above strategies to respond to each of the identified risks, are more effective. As a result, The output will be determined by the risk response process.

Risk response planning process, appropriate responses are chosen and agreed upon, and are included in the risk register.

It is important that the risks are high and the attention to detail moderate, and low risk are on a separate list for the periodic review.

Phase 4: Phase control and monitor risks

Risk monitoring includes regular assessment of risk has been identified to be decided whether the probability of that risk is reduced or not [1]. Is the effect of risk can be changed or not. Risk monitoring is an ongoing process, and the review by management, The key risks should be considered separately and will be discussed by the supervisor [1]. If any changes occur, new risks can be identified through the ongoing monitoring and evaluation mechanisms, like other planned project risk management process is an interactive process that continues throughout the project. When initial plans were drawn, the situation will be monitored. By providing more information about the risks, remodified with new information [1]. This process is simulated using C# codes (Appendix 1).

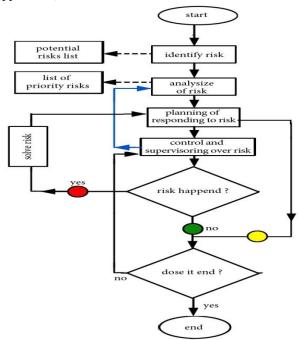


Figure I. Identification processing risk model of software projects

III. CASE STUDY

First Step: Identify Potential Risks

As it was noted risk identification is the first step in the risk management of software projects. Project risk identification process to reinforcement users, information and communication technology (ICT) in education of mazandaran is shown in Figure :I identify risk factors, defines the whole process from input to output this process includes input, output, processing mechanism, which is shown in Figure II.

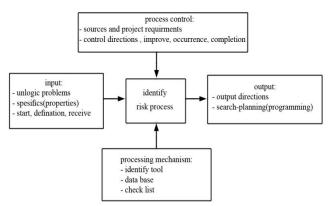


Figure 2. Frame of risk identification.

A. Input

This section is made up of parts begin, define, and receive a risk. At the beginning string variable is used to define each risk. Then an array of type string are defined to hold the list of potential risks. In this paper, 13 risks are determined according to the results of a research project [4]. Also in the definition, the list of potential risks and prioritize risk is defined, and using production rules (if...then...) are stored in the data base. At the reception section, the risks entered into the system by the function Readline() are received. In this section the division between the data base and the system is established based on the production rules (Appendix 1).

Type of risks are associated with the effect (the mean percentage), and probability of risks (qualitative) are shown in Table V.

B. Output

A simple method was used for the identification of risk commands. The instructions for operating functions (search,planning), were implemented by simple structures. Instructions for identifying risks in the search result is prioritized list of potential risks. Search is a function that at each stage, searches for a risk among the potential risk. If it is find, another search function, the risk identified in the list of prioritized risks searches.

If you find it, the active risk response plan is based on four strategies (avoid, transfer, reduce, accept) the appropriate response to each risk. The output of the search algorithm, based on production rules (if...then...). It will be solution, or failure(Appendix 1).

C. Process Control

These statements relate to operating functions (control, event management, completion), which were implemented by simple structures. Also by keeping intermidate results, avoid risks and contingency plans are modified with new information. Thus, These risks are monitored and controlled. The zero-one deciosion variables to store intermediate results of operations itself with reasoning (inference), an intelligent even and non-event to manage risk. If (term or condition) then (Conclusions or actions). Appendix 1.

D. Processing mechanisms

Types of risks in the data base relating to risks and risks are prioritized. The risk of a variety of administrative, technical, and so on. This means that the risk to the environment by the system function (search function, potential risks) using the condition, is to identify and prioritize actions. Risk logged in the list of potential risks that have already been defined in the list, whether it is or not in the list. If it was in the list it goes to the next step, and checks the prioritize list. if it was in the list of prioritized, then planning of the risk response it is activated and the run of the selected of strategy. In the case, the suitable of risk response is presented (A good solution is selected according to Table IV). Since the observations after each act of perception may provide new information about current state, Since the observations after each operation may provide new information about the current state and the leaves, each observation defines a probability that can be programmed for it. In this case, the solution can be implemented as a tree, and it is often search and run for an alternate (interleave). In this case, Algorithm by storing intermediate results (If Control and monitoring risk done And the risk is among of the risk prioritization), Avoidance strategy of risk And potential Will be correct with new information. Otherwise, Do not planning of response to the risks and program completion is invoked (see Appendix 1). Thus, These risks are monitored and controlled. Finally, decision variables to zero and one keeping a inference intermediate results in it action, event and non-event intelligently managing risk. Selected risk response strategies given in the Table III are done. A few steps load to the selection and implementation of solutions in risk categories are done based on the serverity of the consequences and probabilities. As a result, high priority risks, low and medium identified and appropriate strategies should be chosen according to the Table V, and VIII.

This step begins with the first phase of the project risk management process, risk that may threaten the project should be identified. Various categories of project risk can be defined depending on the project that will be changed. It is required for each risk and it is estimated influence on the probability of occurrence of each of the objectives of project. But the actual project, a detailed estimated of the probability of a risk and its influence on each of the goals of the project is not possible. Only a small number of well known risks, the probability and impact of the risks on project objectives can be identified. The other risks due to the lack of historical data is the probability measure of risks can not be a criterion (to measure the uncertainty of expert estimates of risk occurrence). Indeed, rather than the probability of each risk, we will face the degree of Possibility of risk occurrence. Also influence of the risk of ambiguity objectives of the project are covered. In this project 13 risks are identified from article (factors affecting users of ICT in strengthening education of mazandaran provience) of research project of education in the mazandaran provience with the same name it is shown in Table V [5]. The amount of effect, and extent is occurred in each category is shown in table. In total 13 different projects and there risks are included, and their risks are shown as of $k = \{1, 2, ..., 13\}$ according to the Table VI.

solutions	Probability	Effect or	causes	Risk	Kind of risk	Number
	of	serverty of the	(reasons)	identified		of risks
	occurrence	consequences				
unknown		4.64 %	Not interested in using ICT		management	
	low	worthless	continued	interest	_	1
Introduction of using ICT	high	11.29 %	Not having enough	Get	management	2
	-	disaster	knowledge of user, using ICT	familiar	•	
Empowerment by practice	high	10.41 %	Not having enough skills	skill	management	3
	-	disaster	using ICT		•	
unknown	high	9.10 %	Not having enough creation	creation	management	4
	-	serious	using ICT		•	
unknown	high	10.90 %	Not having enough	innovatio	management	
	-	disaster	innovation using ICT	n	•	5
Enowgh software in education	middium	8.02 %	Not having suitable software	software	technical	
center		serious	in education center			6
Enough hardware equipments		5.76 %	Not having enough hardware		technical	
in education center	low	worthless	equipments in education	computer		7
			center	_		
Network setup and installation		5.70 %	Not access to network in	network	technical	
in education center	low	worthless	education center			8
Connect to the internet an lower			Not access to the internet	The	technical	
the connection expense	low	5.40%		internet		9
		worthless				
Buying magazines and books	low	6.63 %	Not having enough books	Magazine	technical	
necessary for education center		worthless	and mazandaran in education	and books		10
			center			
Guide book for software &			Not enough support with ICT		technical	
hardware trouble shoot through	middium	8.42 %		support		
telephone, web, site, email.		serious				11
Goals are known, up to date text			Not enough training for ICT		technical	12
books,software, hardware,						
accuracy of materials, software,		7.91 %		education		
hardware for education, using	low	serious				
new method, for education and						

 TABLE V.
 Risks identified on project in enhancing user of ICT in education of mazandaran[3].

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-12, December 2014

new perspectives						
Support of management of		5.77 %	Not enough mazandaran	protection	technical	13
using ICT	low	worthless	support of using ICT			

TABLE VI. THE MAIN RISKS IDENTIFIED IN E	NHANCING	PROJECTS OF USERS OF ICT OF EDUCATION IN MAZANDARAN[3]	
Not having enough access to network in education center	K8	Not having enough desire to reuse and continues user with	K1
& work		ICT	
Not having enough access to the internet in education	K9	Not having enough knowledge, user with ICT	K2
center & work			
Not being equipped with magazine, and book in education	K10	Not having enough skills, user with ICT	K3
center & work			
Not having enough support work with ICT	K11	Not having enough creation, user with ICT	K4
Not having enough training with ICT	K12	Not having enough innovation with ICT	K5
Not having enough support from management	K13	Not having enough software needed in education center, and	K6
Using ICT		work	
Not having enough system of equip	ment of the	internet in education center and work	K7

TABLE VII. RISK CLASSIFICATION BASED ON THE MATRIX OF CONSEQUENCES AND PROBABILITY OF DESCRIPTIVE(QUALITATIVE)

Probability of	consequences				
occurrence	low	medium	high		
	1	2	3		
low	Worthless risk-low risk	Low-low risk	Serious-nedioum risk		
medium	Low,low risk	Serious, medium risk	Low-low risk		
high	Serious, medium risk	Low, low risk	Disaster risk, high		

TABLE VIII. TYPE OF RISKS, AND DESIGNED STRATEGIES

TADLE VIII.	T II L OF KISKS, A	THE DEDIGITE	b bila libolib			
strategies	tegies Variable 2 strategy			Variable 1		
Acceptance of existence method	introduce	Ac	ceptance of existe	nce method		
Introduce operator(user) using ICT		Interne	t creation for ICT	operation(users)	interest	
Absorption of educated users		A	Absorption of interested staff			
stratigies	Variable 4		strategy		Variable 3	
Acceptance of available method		Ac	ceptance of existe	nce method		
Create skill on users	skill	Cr	eation of creativity	y using ICT	creativity	
Absorb skilled users using ICT		Absor	ption of creative o	perators(users)		
strategies	Variable 6		strategy		Variable 5	
Acceptance of available method	software	Ac	ceptance of existe	nce method		
Provision of adequate software		Cre	ation of innovatio	n using ICT	innovation	
Efficient use of software		Absor	ption of innovator	operator(user)		
strategy	Variable 8		strategy		Variable 7	
Acceptance of available method	internet	et Acceptance of existence method		nce method		
Providing access to internet users			Supply enoughcomputer			
Increase speed access to internet		Т	The use of existing computers			
strategy	Variable 10	strategy			Variable 9	
Acceptance of available method	The internet	Acceptance of existence method		network		
Avoiding magazines and books		Providing access to internet users				
Providing softwares necessary digital library		Improve network performance		erformance		
strategy	Variable 12		strategy		Variable 11	
Acceptance of available method		Ac	ceptance of existe	nce method	Method	
Appropriate training		Help with software, hardware support or		ware support or	support or	
	education		guidance		guidance	
Using new training & various methods for users(virtual))		rt software, hardw			
		telepho	ne, web site, emai			
			technical assis	tance		
	strategy		Variable 13			
1	Acceptance of existence method Acceptance of available methode		protection			
Protection of	of management using	g ICT				

TABLE IX.	SELECT APPROPRIATE STRATEGIES FOR ACCEPTABLE AND UNACCEPTABLE RISKS
-----------	---

Appropriate strategy	Effect(severity of consequences)kind of risk	Kind of risk	row	
Acceptance of available method	4.64 %	Interest	1	
Acceptance of available method	5.40 %	internet	2	(A)
Acceptance of available method	5.70 %	network	3	Acceptable risks with law
Acceptance of available method	5.76 %	computer	4	impact percent
Acceptance of available method	5.77 %	support	5	
Acceptance of available method	6.63 %	Magazines &	6	
		books		
Software & hardware, the internet, guide	8.41 %	Help or	7	(B)

,books		support		Tolerable risks with
Appropriate and ontime training	7.91 %	training	8	medium impact percent
Supply enough software	8.02 %	software	9	
Absorbtion of creative users	9.10 %	creative	10	(C)
Absorbtion of skilled users using ICT	10.41 %	skill	11	Unacceptable risks with
Hire innovator users	10.90 %	innovation	12	effective percent
Hire users with sufficient information literacy	11.24 %	Familiarity	13	
		knowledge		

Step Three: Select the response risk strategies after identifying the key risks for the project must be designed to appropriate risks response strategies to deal with them. The first phase of the project design appropriate strategies for risk management, plan risk response phase of the project. For each risk can be a strategy or combination of strategies designed and selected for example, if you select one of the two risks have generally contradict each other, we are not allowed to have another choice. How to select and combine the strategies that can be selected for each risk as an important strategic constraints in order to be considered a project risk.

The amount due the unknown impact strategies, are often ambiguous, unless the strategy is on target to eliminiate completely the risk (probability or impact on the target become zero) [5]. For each k-risk, one or more strategies are designed, using indices, $L=\{1,2,3,...,Lk\}$, we have shown in Table [8]. It is clear that strategies to deal with risk Boolean decision variables are zero-one problems in C# CODE.

The first strategy is to accept the status situation that is related to the risks with high probabilities, or unacceptable risks. The second strategy is related to the risks with medium probabilities, or tolerable risks. The third strategy is related to low probability risks, or acceptable risks.

IV.CONCLUSION

In this paper, a model was developed for identifying software project risks. In this model, four strategies is anticipated (is discaused) (have been studied) for dealing with risks. Notable cases of this model is , programs to avoid risks, and that may be amended with new information. Model for risk identification process, the initial group project, group planning, group process, group process monitoring and control, process termination is made . The initial group is defined includes starting the process, and the risk. Phases of the planning process of risk identification is made, qualitative, quantitative risk analysis, and risk response planning.

First processing group is included starting section, definition, and receiving risks. Program processing group has formed of identification phase risks, qualitative analysis, and risk response planning. Process group(group process), to implement new solution uses PDCA (plan-do-check-action) risk planning,(implementation, control and monitoring, and corrective action). Process end group, uses function factors (control, occurrence, therapy) with simple structures were implemented and control, and monitoring the risks.

To identify risk it is used from example application (potential project of ICT users in education of mazandaran). In this example were used real data. Data base for potential risks and prioritization occurs. Algorithms, risk logged in the data base search function, and algorithms if there is existence, gives the appropriate response to it. This response is based on

four strategies. It is clear that strategies to deal with the problem of risk decision variables are zero and one, which is designed in C# code [Appendix 1] so the Boolean variable values of ok, and ok1 are used, to identify, and prioritization of risks. Zero decision variables and a response plan do control, and monitoring, and response planning for risks. On other section decision variables zero and one (0k2) managers the occurrence and or non-occurrence of risks. For worthless and low strategy risks are selected with least probability. For medium risks (seriously strategy with most tolerant (transfer strategy), and for the most disaster risks as appropriate response strategies most likely to be selected as shown in Table VII and VIII. The first strategy is the same as accepting the status situation. Means risks with high probability, and unacceptable risks, second strategy relate to risks with medium probabilities or tolerable probabilities. Third strategy related to risks with low probabilities, or acceptable. The advantages of this method is a simple algorithm to evolve a simple mechanism on and off for each risk, and the strategies for tolerable risks acceptable and unacceptable risks.

Note that the values of the intensity of effect of risks have been carried out from project, as a result using qualitative variables to classify and prioritize risks may be a good way. Also using the values of Boolean ok, ok1, ok2 in c# code. Boolean variable design help identify a strategy for each of the risks.

The resulting optimization solution and select of an appropriate solution to deal with the risks. The distinguishes of the results of this paper with the paper [5] is, in this paper the research have access to numeric values (percent boost users factors influencing ICT), have been extracted from the project. Thus, structural constraints and criteria were involved for selection of risk management used to derive conclusions. Considering the range of numerical values for the mean of the impact of 4.64 to 11.24, and Table VII and IX. These values were classified into 3 intervals. Experts with linguistic variables in this paper in three categories (low, medium, high) were classified. The implementation of this model is varies stages leading to optimized selection of the new solution transparent and effective management. Output reduces the cost, schedule, and quality of software development. Risks and complexities, and uncertainties are controlled. Finally it is suggested that this model is implemented as an expert system using a suitable software.

Appendix 1: C# Codes

using system; using system.text; using system; namespace Risk {

public main[]

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-2, Issue-12, December 2014

return false; String [] RiskListPotential=new string []{List of Risks } boolean EventRisk (String Risk) Potential}; String [] RiskListPriority=new string []{List of Risks Prioritize}; if(Risk.Isactive) var Risk=""; return true; boolean ok,ok1=false; else Readline(Risk); return false; ok=SearchRiskPotential(Risk); } if(ok==true) void RiskTreatment (String Risk) ł ok1=SearchRiskPriority(Risk); Risk.Treatment(); if(ok1==true) ł boolean Completion() { label 100: if(PlanningRisk==true) int flag=Readline(); if(flag==1)if(Control&RiskOversight==true && ok1==true) return; else if(ok2==true) close; } RiskTreatment(); } goto 100; } ł else REFERENCES [1] I. Sommervillel, "Software Engineering," 8th ed, 2007. Completion(); Z. Hadidoust, "Improving risk management and project management [2] to assist," in the Fifth National Iranian Gas Pipeline, 2008. } M. Mokhtari, "Factors Affecting Users of ICT in education to strengthen the province," 2008. [3] } else [4] M. Mokhtari, "Boost creativity and innovation management skills with problem solving techniques," creativity of the Second National Completion(); Conference, TRIZ and innovation of engineering and management, 2008.ł M. Moenipour, "Optimal portfolio selection strategy for dealing with [5] } risk in project-based research organizations (Case study: Engineering ł Institute of Agriculture)," Sixth International Conference on Project Management, 2008. } [6] N. A. Feng, "Method for Software Project Risk Identification Based on GA,IEEE," 2009. boolean SearchRiskPotential (String Risk) [7] H. Can, "Risk Management in Software Project Management," 4th Electronic System-integration Technoology Conference, 2012. M. Gabel, "Project Risk Management Guidance for WSDOT Projects," if(RiskListPotential.Find(Risk)) [8] 2013. return true; H. Christine Jiau, "An Analysis Model for Software Project Development," 2006. [9] else return false; [10] L. Sarigiannidis, "Software Development Project Risk Management: A New Conceptual Framework," Journal of Software Engineering and } Applications, 2011. boolean SearchRiskPriority (String Risk) Project Management Body of Knowledge, PMI, 2004 if(RiskListPriority.Find (Risk)) return true: else return false; ł boolean PlanningRisk (String Risk) if(Risk.isprogramed) return true; else return false; ł boolean Control&RiskOversight (String Risk) if(Risk.Iscontroled&analyzed) return true; else