

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 261 www.erpublication.org



Abstract— The computers viruses have been become a

challenge for computer architecture and self organizing system.

There has been considerable interest in computer viruses since

they first appeared in 1981 and increasing day by day as they

have reached epidemic numbers in many personal computer

environments. Viruses have been written about as a security

problem, as a social problem, and as a possible means of

performing useful tasks in a distributed computing

environment.

However, only recently have some scientists begun to ask if

computer viruses are not a form of computer architecture- a

self-replicating organism. Simply because computer viruses do

not exist as organic molecules may not be sufficient reason to

dismiss the classification of this form of “vandalware” as a form

of life.

This research paper starts with a description of how

computer viruses operate and their history, and of the various

ways computer viruses are structured. It then examines how

viruses meet properties associated with life as defined by some

researchers in the area of computer architecture and self

organizing systems. The paper concludes with some comments

directed towards the definition of artificially “alive” systems

and experimentation.

Index Terms— Computer virus, Computer architecture,

Internet, Software, Network, Worms, Computer

I. INTRODUCTION

 There has been considerable interest in computer viruses

during the last several years. One aspect of this interest has

been to ask if computer viruses are a form of computer

architecture, and what that might imply. To address this, we

must first understand something of the history and structure of

computer viruses. Thus, we will begin with a condensed,

high-level description of computer viruses—their history,

structure, and how they relate to some properties that might

define computer architecture. A more detailed introduction to

the topic of computer viruses may be found in the references,

particularly [9, 2, 3, 5] and [15]. Also of use are [11, 14, 10,

16] and [24], although the lists presented in the latter are

somewhat out of date.

II. WHAT IS A COMPUTER VIRUS?

A computer virus is a computer program that is hidden within

another program that is capable of reproducing copies of itself

and inserting them into other programs or files. It is often

attached to a software or document that a computer user

receives [2, 3]. When the software containing the virus is run

Manuscript received November 21, 2014.

Rashid Husain, Department of Mathematics and Computer

Science,Umaru Musa Yar‘adua University, Katsina State, Nigeria.

Salihu Umar Suru, Department of Computer Science, Kebbi State

University of Science and Technology, Aliero, Kebbi State, Nigeria.

or when the file is opened the virus may infect the computer‘s

software and cause damage.

A computer virus is so-called a virus because it has similar

characteristics with a biological virus. In the same manner

that a biological virus can be transferred from one person to

another a computer virus can likewise be transferred from one

computer to another. A biological virus is capable of

reproducing itself by injecting its DNA into a cell [8, 10]. The

virus which is now inside the cell can use the capabilities of

the cell to reproduce itself. In the same manner, a computer

virus can also attach itself to a program or document in order

for it to replicate itself or to cause damage. Because viruses

can replicate themselves they can cause annoyance as they

reduce the performance of the computer system by taking up

huge memory or disk space. However, other viruses are

malicious which are capable of damaging or corrupting data,

changing data, erasing files or locking up the whole computer

systems. Others however are less harmful as they only spread

themselves within the files in the computer or they can spread

through the internet.

Viruses are attached to an executable file. It is possible that

viruses may exist on the computer without actually causing

damage. But once the computer user runs or opens the

malicious program the computer may become infected. For

this reason, a virus cannot spread without human action by

running an infected program. In 2000, the world realized the

impact a computer virus can cause. The I love you virus

spread throughout the world causing billions of dollars in

damages in different countries. The source of the ‗Love Bug‘

virus was eventually traced in the Philippines [4, 6]. At the

time, the world is still unfamiliar with computer viruses and

the damage they can cause. However, computer viruses have

existed years before the year 2000. In fact, computer viruses

have existed for almost forty years now. The first virus was

said to have been created in 1982 by a 15 year old boy named

Rich Skrenta. (Kim Zetter 2) According to Kim Zetter,

Skrenta created the virus known as the Elk Cloner Program

when he was playing jokes on his friends by introducing in the

Apple II gaming programs a trick code that was capable of

shutting down the computer or doing annoying things while

the user is playing the computer game. The Elk Cloner

Program he created was the self-replicating boot-sector virus

that infected the Apple II computers. The following words

appear on the Apple II computers Skrenta infected with a

virus ―It will get on all your disks, It will infiltrate your chips,

Yes, it‘s Cloner! It will stick to you like glue It will modify

RAM too, Send in the Cloner! Four years after, or in 1986, the

Brain virus was created in 1986 by two Pakistani brothers.

(Kim Zetter 2) The Brain Virus is considered the first attempt

at the marketing of virus. Amjad and Basd Farooq Alvi

created the virus supposedly for the purpose of infecting the

IBM PCs [11, 12]. This virus only infected boot records and

not computer hard drives which the viruses of today do. Once

An Advance Study on Computer Viruses as

Computer architecture

Rashid Husain, Salihu Umar Suru

An Advance Study on Computer Viruses as Computer architecture

 262 www.erpublication.org

infected the PC shall display a message on the screen

advertising the name of the two Pakistani brothers and their

phone numbers so that those whose IBM PCs have been

infected can contact them to obtain a vaccination.

2.1 Related Software

Worms are another form of software that is often referred to

as a computer virus. Unlike viruses, worms are programs that

can run independently and travel from machine to machine

across network connections; worms may have portions of

themselves running on many different machines. Worms do

not change other programs, although they may carry other

code that does, such as a true virus. It is their replication

behavior that leads some people to believe that worms are a

form of virus, especially those people using Cohen‘s formal

definition (which incidentally would also classify standard

network file transfer programs as viruses). The fact that

worms do not modify existing programs is a clear distinction

between viruses and worms, however. In 1982, John Shoch

and Jon Hupp of Xerox PARC (Palo Alto Research Center)

described the first computer worms [23]. They were working

with an experimental, networked environment using one of

the first local area networks. While searching for something

that would use their networked environment, one of them

remembered reading The Shockwave Rider by John Brunner,

written in 1975. This science fiction novel described

programs that traversed networks, carrying information with

them. Those programs were called tapeworms in the novel.

Shoch and Hupp named their own programs worms, because

they saw a parallel to Brunner‘s tapeworms. The Xerox

worms were actually useful — they would travel from

workstation to workstation, reclaiming file space, shutting off

idle workstations, delivering mail, and doing other useful

tasks. The Internet Worm of November 1988 is often cited as

the canonical example of a damaging worm program [26, 27,

22]. The Worm clogged machines and networks as it spread

out of control, replicating on thousands of machines around

the Internet. Some authors (e.g., [7]) labeled the Internet

Worm as a virus, but those arguments are not convincing (cf.

the discussion in [25]). Most people working with

self-replicating code now accept the Worm as a form of

software distinct from computer viruses.

Few computer worms have been written in the time since then,

especially worms that have caused damage, because they are

not easy to write. Worms require a network environment and

an author who is familiar not only with the network services

and facilities, but also with the operating facilities required to

support them once they have reached their targets. Worms

have also appeared in other science fiction literature. Recent

―cyberpunk‖ novels such as Neuromancer by William Gibson

[13] refer to worms by the term ―virus.‖ The media has also

often referred incorrectly to worms as viruses. This paper

focuses only on viruses as defined above. Many of the

comments about viruses and computer architecture may also

be applied to worm programs.

Harold Thimble by coined the term liveware to describe

another form of self-propagating software that carries

information or program updates.[33] Liveware shares many

of the characteristics of both viruses and worms, but has the

additional distinction of announcing its presence and

requesting permission from the user to execute its intended

functions. There have been no reports of liveware being

discovered or developed other than by Thimble by and his

colleagues.

Other forms of self-reproducing and usually malicious

software have also been written. Although no formal

definitions have been accepted by the entire community to

describe this software, there are some informal definitions

that seem to be commonly accepted (cf. [21]). Several of these

are often discussed by analogy to living organisms. This

tendency towards anthropomorphism has perhaps led to some

confusion about the nature of this software. Rather than

discuss each of these software forms here, possibly adding to

the confusion, the remainder of this paper will focus on

computer viruses only; the interested reader may peruse the

cited references.

III. VIRUS STRUCTURE AND OPERATION

True viruses have two major components: one that handles the

spread of the virus, and a ―payload‖ or ―manipulation‖ task.

The payload task may not be present (has null effect), or it

may await a set of predetermined circumstances before

triggering. For a computer virus to work, it somehow must

add itself to other executable code. The viral code is usually

executed before the code of its infected host (if the host code

is ever executed again). One form of classification of

computer viruses is based on the three ways a virus may add

itself to host code: as a shell, as an add-on, and as intrusive

code.

A fourth form, the so-called companion virus, is not really a

virus at all, but a form of Trojan horse that uses the execution

path mechanism to execute in place of a normal program.

Unlike all other viral forms, it does not alter any existing code

in any fashion: companion viruses create new executable files

with a name similar to an existing program and chosen so that

they are normally executed prior to the ―real‖ program. As

companion viruses are not real viruses unless one uses a more

encompassing definition of virus, they will not be described

further here.

Shell viruses A shell virus is one that forms a ―shell‖ (as in

―eggshell‖ rather than ―Unix shell‖) around the original code.

In effect, the virus becomes the program, and the original host

program becomes an internal subroutine of the viral code. An

extreme example of this would be a case where the virus

moves the original code to a new location and takes on its

identity. When the virus is finished executing, it retrieves the

host program code and begins its execution. Almost all boot

program viruses (described below) are shell viruses.

Add-on viruses Most viruses are add-on viruses. They

function by appending their code to the host code, and/or by

relocating the host code and inserting their own code to the

beginning. The add-on virus then alters the startup

information of the program, executing the viral code before

the code for the main program. The host code is left almost

completely untouched; the only visible indication that a virus

is present is that the file grows larger, if that can indeed be

noticed.

Intrusive viruses Intrusive viruses operate by overwriting

some or all of the original host code with viral code. The

replacement might be selective, as in replacing a subroutine

with the virus, or inserting a new interrupt vector and routine.

The replacement may also be extensive, as when large

portions of the host program are completely replaced by the

viral code. In the latter case, the original program can no

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 263 www.erpublication.org

longer function properly. Few viruses are intrusive viruses.

A second form of classification used by some authors (e.g.,

[24]) is to divide viruses into file infectors and boot (system

startup) program infectors. This is not particularly clear,

however, as there are viruses that spread by altering

system-related code that is neither boot code nor programs.

Some viruses target files system directories, for example.

Other viruses infect both application files and boot sectors.

This second form of classification is also highly specific and

only makes sense for machines that have infect able (writable)

boot code. Yet a third form of classification is related to how

viruses are activated and select new targets for alteration. The

simplest viruses are those that run when their ―host‖ program

is run, select a target program to modify, and then transfer

control to the host. These viruses are transient or direct

viruses, known as such because they operate only for a short

time, and they go directly to disk to seek out programs to

infect. The most ―successful‖ PC viruses to date exploit a

variety of techniques to remain resident in memory once their

code has been executed and their host program has

terminated. This implies that, once a single infected program

has been run, the virus potentially can spread to any or all

programs in the system. This spreading occurs during the

entire work session (until the system is rebooted to clear the

virus from memory), rather than during a small period of time

when the infected program is executing viral code. These

viruses are resident or indirect viruses, known as such

because they stay resident in memory, and indirectly find files

to infect as they are referenced by the user. These viruses are

also known as TSR (Terminate and Stay Resident) viruses.

If a virus is present in memory after an application exits, how

does it remain active? That is, how does the virus continue to

infect other programs? The answer for personal computers

running software such as MS-DOS is that the virus alters the

standard interrupts used by DOS and the BIOS (Basic

Input/Output System). The change to the environment is such

that the virus code is invoked by other applications when they

make service requests.

The PC uses many interrupts (both hardware and software) to

deal with asynchronous events and to invoke system

functions. All services provided by the BIOS and DOS are

invoked by the user storing parameters in machine registers,

then causing a software interrupt. When an interrupt is raised,

the operating system calls the routine whose address it finds in

a special table known as the vector or interrupt table.

Normally, this table contains pointers to handler routines in

the ROM or in memory-resident portions of the DOS (see

figure 4). A virus can modify this table so that the interrupt

causes viral code (resident in memory) to be executed. By

trapping the keyboard interrupt, a virus can arrange to

intercept the CTRL-ALT-DEL soft reboot command, modify

user keystrokes, or be invoked on each keystroke. By trapping

the BIOS disk interrupt, a virus can intercept all BIOS disk

activity, including reads of boot sectors, or disguise disk

accesses to infect as part of a user‘s disk request. By trapping

the DOS service.

interrupt, a virus can intercept all DOS service requests

including program execution, DOS disk access, and memory

allocation requests. A typical virus might trap the DOS

service interrupt, causing its code to be executed before

calling the real DOS handler to process the request. (See

figure 5.)

Once a virus has infected a program or boot record, it seeks to

spread itself to other programs, and eventually to other

systems. Simple viruses do no more than this, but most viruses

are not simple viruses. Common viruses wait for a specific

triggering condition, and then perform some activity. The

activity can be as simple as printing a message to the user, or

as complex as seeking particular data items in a specific file

and changing their values. Often, viruses are destructive,

removing files or reformatting entire disks. Many viruses are

also faulty and may cause unintended damage. The conditions

that trigger viruses can be arbitrarily complex. If it is possible

to write a program to determine a set of conditions, then those

same conditions can be used to trigger a virus. This includes

waiting for a specific date or time, determining the presence

or absence of a specific set of files (or their contents),

examining user keystrokes for a sequence of input, examining

display memory for a specific pattern, or checking file

attributes for modification and permission information.

Viruses also may be triggered based on some random event.

One common trigger component is a counter used to

determine how many additional programs the virus has

succeeded.

An Advance Study on Computer Viruses as Computer architecture

 264 www.erpublication.org

in infecting—the virus does not trigger until it has propagated

itself a certain minimum number of times. Of course, the

trigger can be any combination of conditions, too.

Computer viruses can infect any form of writable storage,

including hard disk, floppy disk, tape, optical media, or

memory. Infections can spread when a computer is booted

from an infected disk, or when an infected program is run.

This can occur either as the direct result of a user invoking an

infected program, or indirectly through the system executing

the code as part of the system boot sequence or a background

administration task. It is important to realize that often the

chain of infection can be complex and convoluted. With the

presence of networks, viruses can also spread from machine

to machine as executable code containing viruses is shared

between machines.

Once activated, a virus may replicate into only one program at

a time, it may infect some randomly-chosen set of programs,

or it may infect every program on the system. Sometimes a

virus will replicate based on some random event or on the

current value of the clock. The different methods will not be

presented in detail because the result is the same: there are

additional copies of the virus on the system.

IV. EVOLUTIONS OF VIRUSES

Since the first viruses were written, we have seen what may be

classified as five ―generations‖ of viruses. Each new class of

viruses has incorporated new features that make the viruses

more difficult to detect and remove. Here, as with other

classification and naming issues related to viruses, different

researchers use different terms and definitions (cf. [9,

Appendix 10]). The following list presents one classification

derived from a number of these sources. Note that these

―generations‖ do not necessarily imply chronology. For

instance, several early viruses (e.g., the ―Brain‖ and

―Pentagon‖ viruses) had stealth and armored characteristics.

Rather, this list describes increasing levels of sophistication

and complexity represented by computer viruses in the

MS-DOS environment.

4.1 First generation: Simple

The first generations of viruses were the simple viruses. These

viruses did nothing very significant other than replicate. Many

new viruses being discovered today still fall into this

category. Damage from these simple viruses is usually caused

by bugs or incompatibilities in software that were not

anticipated by the virus author. First generation viruses do

nothing to hide their presence on a system, so they can usually

be found by means as simple as noting an increase in size of

files or the presence of a distinctive pattern in an infected file.

4.2 Second generation: Self-recognition

One problem encountered by viruses is that of repeated

infection of the host, leading to depleted memory and early

detection. In the case of boot sector viruses, this could

(depending on strategy) cause a long chain of linked sectors.

In the case of a program-infecting virus, repeated infection

may result in continual extension of the host program each

time it is reinfected. There are indeed some older viruses that

exhibit this behavior.

To prevent this unnecessary growth of infected files,

second-generation viruses usually implant a unique signature

that signals that the file or system is infected. The virus will

check for this signature before attempting infection, and will

place it when infection has taken place; if the signature is

present, the virus will not reinfect the host.

A virus signature can be a characteristic sequence of bytes at a

known offset on disk or in memory, a specific feature of the

directory entry (e.g., alteration time or file length), or a

special system call available only when the virus is active in

memory.

The signature presents a mixed blessing for the virus. The

virus no longer performs redundant infections that might

present a clue to its presence, but the signature does provide a

method of detection. Virus sweep programs can scan files on

disk for the signatures of known viruses, or even ―inoculate‖

the system by providing the viral signature in clean systems to

prevent the virus from attempting infection.

4.3 Third Generation: Stealth

Most viruses may be identified on a contaminated system by

means of scanning the secondary storage and searching for a

pattern of data unique to each virus. To counteract such scans,

some resident viruses employ stealth techniques. These

viruses subvert selected system service call interrupts when

they are active. Requests to perform these operations are

intercepted by the virus code. If the operation would expose

the presence of the virus, the operation is redirected to return

false information. For example, a common virus technique is

to intercept I/O requests that would read sectors from disk.

The virus code monitors these requests. If a read operation is

detected that would return a block containing a copy of the

virus, the active code returns instead a copy of the data that

would be present in an uninfected system. In this way, virus

scanners are unable to locate the virus on disk when the virus

is active in memory. Similar techniques may be employed to

avoid detection by other operations.

4.4 Fourth Generation: Armored

As anti-virus researchers have developed tools to analyze new

viruses and craft defenses, virus authors have turned to

methods to obfuscate the code of their viruses. This

―armoring‖ includes adding confusing and unnecessary code

to make it more difficult to analyze the virus code. The

defenses may also take the form of directed attacks against

anti-virus software, if present on the affected system. These

viruses appeared starting in 1990. Viruses with these forms of

defenses tend to be significantly larger than simpler viruses

and thus more easily noticed. Furthermore, the complexity

required to significantly delay the efforts of trained anti-virus

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 265 www.erpublication.org

experts appears to be far beyond anything that has yet

appeared.

4.5 Fifth Generation: Polymorphic

The most recent class of viruses to appear on the scene are the

polymorphic or self-mutating viruses. These are viruses that

infect their targets with a modified or encrypted version of

themselves. By varying the code sequences written to the file

(but still functionally equivalent to the original), or by

generating a different, random encryption key, the virus in the

altered file will not be identifiable through the use of simple

byte matching. To detect the presence of these viruses

requires that a more complex algorithm be employed that, in

effect, reverses the masking to determine if the virus is

present.

Several of these viruses have become quite wide-spread.

Some virus authors have released virus ―toolkits‖ that can be

incorporated into a complete virus to give it polymorphic

capabilities. These toolkits have been circulated on various

bulletin boards around the world, and incorporated in several

viruses.

V. DEFENSES AND OUTLOOK

There are several methods of defense against viruses.

Unfortunately, no defense is perfect. It has been shown that

any sharing of writable memory or communications with any

other entity introduces the possibility of virus transmission.

Furthermore, Cohen, Adleman, and others have shown proofs

that the problem of writing a program to exactly detect all

viruses is formally undecidable: it is not possible to write a

program that will detect every virus without any error. Of

some help is the observation that it is trivial to write a program

that identifies all infected programs with 100% accuracy.

Unfortunately, this program must identify every (or nearly so)

program as infected, whether it is or not! This is not

particularly helpful to the user, and the challenge is to write a

detection mechanism that finds most viruses without

generating an excessive number of false positive reports.

Defense against viruses generally takes one of three forms:

Activity monitors Activity monitors are programs that are

resident on the system. They monitor activity, and either

raises a warning or take special action in the event of

suspicious activity. Thus, attempts to alter the interrupt tables

in memory or to rewrite the boot sector would be intercepted

by such monitors. This form of defense can be circumvented

(if implemented in software) by viruses which activate earlier

in the boot sequence than the monitor code. They are further

vulnerable to virus alteration if used on machines without

hardware memory protection—as is the case with all common

personal computers.

Another form of monitor is one that emulates or otherwise

traces execution of a suspect application. The monitor

evaluates the actions taken by the code, and determines if any

of the activity is similar to what a virus would undertake.

Appropriate warnings are issued if suspicious activity is

identified.

Scanners: scanners have been the most popular and

widespread form of virus defense. A scanner operates by

reading data from disk and applying pattern matching

operations against a list of known virus patterns. If a match is

found for a pattern, a virus instance is announced.

Scanners are fast and easy to use, but they suffer from many

disadvantages. Foremost among the disadvantages is that the

list of patterns must be kept up-to-date. In the MS-DOS

world, new viruses are appearing by as many as several dozen

each week. Keeping a pattern file up-to-date in this rapidly

changing environment is difficult.

A second disadvantage to scanners is one of false positive

reports. As more patterns are added to the list, it becomes

more likely that one of them will match some otherwise

legitimate code. A further disadvantage is that polymorphic

viruses cannot be detected with scanners. To the advantage of

scanners, however, is their speed. Scanning can be made to

work quite quickly. Scanning can also be done portably and

across platforms, [17], and pattern files are easy to distribute

and update. Furthermore, of the new viruses discovered each

week, few will ever become widespread. Thus, somewhat

out-of-date pattern files are still adequate for most

environments. Scanners equipped with algorithmic or

heuristic checking may also find most polymorphic viruses. It

is for these reasons that scanners are the most widely-used

form of anti-virus software.

Integrity checkers/monitors Integrity checkers are

programs that generate check codes (e.g., checksums, cyclic

redundancy codes (CRCs), secure hashes, message digests, or

cryptographic checksums) for monitored files. [20]

Periodically, these check codes are recomputed and compared

against the saved versions. If the comparison fails, a change is

known to have occurred to the file, and it is flagged for further

investigation. Integrity monitors run continuously and check

the integrity of files on a regular basis. Integrity shells recheck

the check code prior to every execution. [3] Integrity checking

is an almost certain way to discover alterations to files,

including data files. As viruses must alter files to implant

themselves, integrity checking will find those changes,

Furthermore, it does not matter if the virus is known or not —

the integrity check

will discover the change no matter what causes it. Integrity

checking also may find other changes caused by buggy

software, problems in hardware, and operator error. Integrity

checking also has drawbacks. On some systems, executable

files change whenever the user runs the file, or when a new set

of preferences is recorded. Repeated false positive reports

may lead the user to ignore future reports, or disable the

utility. It is also the case that a change may not be noticed until

after an altered file has been run and a virus spread. More

importantly, the initial calculation of the check code must be

performed on a known-unaltered version of each file.

Otherwise, them on it or will never report the presence of a

virus, probably leading the user to believe the system is

uninfected.

Several vendors have begun to build self-checking into their

products. This is a form of integrity check that is performed

by the program at various times as it runs. If the self-check

reveals some unexpected change in memory or on disk, the

program will terminate or warn the user. This helps to signal

the presence of a new virus quickly so that further action may

be taken.

If no more computer viruses were written from now on, there

would still be a computer virus problem for many years to

come. Of the thousands of reported computer viruses, several

hundred are well-established on various types of computers

around the world. The population of machines and archived

An Advance Study on Computer Viruses as Computer architecture

 266 www.erpublication.org

media is such that these viruses would continue to propagate

from a rather large population of contaminated machines.

Unfortunately, there appears to be no lessening of computer

virus activity, at least within the MS-DOS community.

Several new viruses are appearing every day. Some of these

are undoubtedly being written out of curiosity and without

thought for the potential damage. Others are being written

with great purpose, and with particular goals in mind — both

political and criminal. Although it would seem of little interest

to add to the swelling number of viruses in existence, many

individuals seem to be doing exactly that.

VI. VIRUSES AS COMPUTER ARCHITECTURE

Now that we know what computer viruses are, and how they

spread, we can examine the question of whether they

represent a form of computer architecture. The first, and

obvious, question is ―What is life?‖ Without an answer to this

question, we will be unable to say if a computer virus is

―alive.‖ One very reasonable list of properties associated with

life was presented in [8]. That list included:

 Life is a pattern in space-time rather than a specific

material object.

 Self-reproduction, in itself or in a related organism.

 Information storage of a self-representation.

 A metabolism that converts matter/energy.

 Functional interactions with the environment.

 Interdependence of parts.

 Stability under perturbations of the environment.

 The ability to evolve.

 Growth or expansion

Let us examine each of these characteristics in relation to

computer viruses.

6.1 Viruses as patterns in space-time

There is a near match to this characteristic. Viruses are

represented by patterns of computer instructions that exist

over time on many computer systems. Viruses are not

associated with the physical hardware, but with the

instructions executed (sometimes) by that hardware.

Computer viruses, like all functional computer code, are

simply manifestations of algorithms. The algorithms

themselves also represent an underlying pattern.

It is questionable if these patterns exist in space, however,

unless one extends the definition of space to ―cyberspace,‖ as

represented by a computer system. The patterns of the viruses

are a temporary set of electrical and magnetic field changes in

the memory or storage of computer systems. The existence of

the virus is only within these patterns of energy. Arguably, the

code for each virus could be printed in ink on paper, resulting

in a more substantiative existence. That, however, is merely a

representation of the true virus, and should not be viewed as

existence any more than a picture of a person is itself the

person.

6.2 Self-reproduction of viruses

One of the primary characteristics of computer viruses is their

ability to reproduce themselves (or an altered version of

themselves). Thus, this characteristic seems to be met. One of

the key characteristics is their ability to reproduce.

However, it is perhaps more interesting to examine this aspect

in light of the agent of reproduction.

The virus code is not itself the agent — the computer is. It is

questionable if this can be considered sufficient for purposes

of classification as computer architecture. To do so would

imply that (for instance) the blueprints for a Xerox machine

are capable of self-reproduction: when outside agents follow

the instructions therein, it is possible to produce a new

machine that can then be used to make a copy of them. It is not

the blueprint (algorithm; virus) that is the agent of change, but

the entity that interprets it.

6.3 Information storage of a self-representation

This is the most obvious match for computer viruses. The

code that defines the virus is a template that is used by the

virus to replicate itself. This is similar to the DNA molecules

of what we recognize as organic life.

6.4 Virus metabolism

This property involves the organism taking in energy or

matter from the environment and using it for its own activity.

Computer viruses use the energy of computation expended by

the system to execute. They do not convert matter, but make

use of the electrical energy present in the computer to traverse

their patterns of instructions and infect other programs. In this

sense, they have a metabolism. Again, however, we are forced

to change this view if we examine the case more closely. The

expenditure of energy is not by the virus, but by the

underlying computer system. If the viruses were not active,

and interactive games were being run instead, the same

amount of energy would be used. In most systems, even if no

program is being run, the energy use remains constant. Thus,

we must conclude that viruses do not actually have a

metabolism.

6.5 Functional interactions with the virus’s environment

Viruses perform examinations of their host environments as

part of their activities. They alter interrupts, examine memory

and disk architectures, and alter addresses to hide themselves

and spread to other hosts. They very obviously alter their

environment to support their existence. Many viruses

accidentally alter their environment because of bugs or

unforeseen interactions. The major portion of damage from

all computer viruses is a result of these interactions.

6.6 Interdependence of virus parts

Living organisms cannot be arbitrarily divided without

destroying them. The same is true of computer viruses.

Should a computer virus have a portion of its ―anatomy‖

excised, the virus would probably cease to function normally,

if at all. Few viruses are written with superfluous code, and

even so, the working code cannot be divided without

disabling the virus.

However, it is interesting to note that the virus can be

reassembled later and regain its functional status. If a living

organism (as we know them) were to be divided into its

component parts for a period of time, then reassembled, it

would not become ―alive‖ again. In this sense, computer

viruses are more like simple machines or chemical reactions

rather than instances of living things.

6.7 Virus stability under perturbations

Computer viruses run on a variety of machines under different

operating systems. Many of them are able to compromise (and

defeat) anti-virus and copy protection mechanisms. They may

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 267 www.erpublication.org

adjust on-the-fly to conditions of insufficient storage, disk

errors, and other exceptional events. Some are capable of

running on most variants of popular personal computers under

almost any software configuration—a stability and robustness

seen in few commercial applications.

6.8 Virus evolution

Here, too, viruses display a difference from systems we

traditionally view as ―alive.‖ No computer viruses evolve as

we commonly use the term, although it is conceivable that a

very complex virus could be programmed to evolve and

change. However, such a virus would be so large and complex

as to be many orders of magnitude larger than most host

programs, and probably bigger than the host operating

systems. Thus, there is some doubt that such a virus could run

on enough hosts to allow it to evolve. (Note that ―evolve‖

implies a change in function or attributes; polymorphic

viruses represent cases of random changes in structure but not

functionality.)

Higher-level mutations of viruses do exist, however. There

are variants of many known viruses, with over a dozen known

for some IBM PC viruses. The variations involved can be

very small, on the order of two or three instructions

difference, to major changes involving differences in

messages, activation, and replication. The source of these

variations appears to be programmers (the original virus

authors or otherwise) who alter the viruses to avoid anti-viral

mechanisms, or to cause different kinds of damage.

Polymorphic viruses alter their copies to avoid detection, but

the pattern of alteration is ultimately a human product. These

changes do not constitute evolution, however.

Interestingly, there is also one case where two different strains

of a Macintosh virus are known to interact to form infections

unlike the ―parents,‖ although these interactions usually

produce ―sterile‖ offspring that are unable to reproduce

further. This likewise does not appear to be evolution as we

know it. [19]

6.9 Growth

Viruses certainly do exhibit a form of growth, in the sense that

there are more of them in a given environment over time.

Some transient viruses will infect every file on a system after

only a few activations. The spread of viruses through

commercial software and public bulletin boards is another

indication of their wide-spread replication. Although accurate

numbers are difficult to derive, reports over the last few years

indicate an approximate yearly doubling in the number of

systems infected by computer viruses. Clearly, computer

viruses are exhibiting significant growth.

6.10 Other behavior

As already noted, computers viruses exhibit ―species‖ with

well-defined ecological niches based on host machine type,

and variations within these species. These species are adapted

to specific environments and will not survive if moved to a

different environment.

Some viruses also exhibit predatory behavior. For instance,

the DenZuk virus will seek out and overwrite instances of the

Brain virus if both are present on the same system. Other

viruses exhibit territorial behavior—marking their infected

domain so that others of the same type will not enter and

compete with the original infection. Some viruses also exhibit

self-protective behavior, including camouflage techniques.

It is important to note, however, that none of these

characteristics came from the viruses themselves. Rather,

each change and addition to virus behavior has been wrought

by an outside agency: the programmer. These changes have

been in reaction to a perceived need to ―enhance‖ the

virus—usually to make it more difficult to find.

It might well be argued that more traditional living organisms

may also undergo change from without. As an example,

background radiation may cause occasional random

mutations. However, programmers are the only source of

change to computer viruses, and this distinction is worth

noting; other living systems undergo changes to themselves

and their progeny without obvious outside agencies.

VII. CONCLUSIONS

Our study of computer viruses at first suggests they are close

to what we might define as ―computer architecture.‖

However, upon closer examination, a number of significant

deficiencies can be found. These lead us to conclude that

computer viruses are not ―alive,‖ nor is it possible to refine

them so as to make them ―alive‖ without drastically altering

our definition of ―life.‖

To suggest that computer viruses are alive also implies that

some part of their environment— the computers, programs, or

operating systems—also represents computer architecture.

Can life exist in an otherwise barren and empty ecosystem? A

definition of ―life‖ should probably include something about

the environment in which that life exists.

Undoubtedly, we could adjust our definitions and

characteristics to encompass computer viruses or to better

exclude them. This illustrates one of the fundamental

difficulties with the entire field of computer architecture: how

to define essential characteristics in such a way as to

unambiguously define living systems. Computer viruses

provide one interesting example against which such

definitions may be tested.

From this, we can observe that computer viruses (and their

kin) provide an interesting means of modeling life. For at least

this reason, research into computer viruses (using the term in a

broader sense, ala Cohen) may be of some scientific interest.

By modeling behavior using computer viruses, we may be

able to gain some insight into systems with more complex

interactions. Research into competition among computer

viruses and other software, including anti-viral techniques, is

of practical interest as well as scientific interest. Modified

versions of viruses such as Thimbleby‘s Liveware may also

prove to be of ultimate value. Research into issues on virus

defense methods, epidemeology, and on mutations and

combinations also could provide valuable insight into

computing.

The problem with research on computer viruses is their threat.

True viruses are inherently unethical and dangerous. They

operate without consent or knowledge, experience has shown

that they cannot be recalled or controlled, and they may cause

extensive losses over many years. Even viruses written to be

benign cause significant damage because of unexpected

interactions and bugs. To experiment with computer viruses is

akin to experimenting with smallpox or anthrax microbes —

there may be scientific knowledge to be gained, but the

potential for disastrous consequences looms large.

In one sense, we use ―computer viruses‖ every day. Editors,

compilers, backup utilities, and other common software meet

An Advance Study on Computer Viruses as Computer architecture

 268 www.erpublication.org

some definitions of viruses. However, their general nature is

known to their users, and they do not operate without at least

the implied permission of those users.

Furthermore, their replication is generally under the close

control or observation of their users. It is these differences

from the colloquial computer virus that makes the latter so

interesting, however. These differences are also precisely

what suggest that computer viruses approach a form of

computer architecture.

If we are to continue to research computer viruses, we need to

find fail-safe ways of doing so. This is a major research topic

in itself. The danger of creating and accidentally releasing

more sophisticated viruses is too great to risk, especially with

our increasing reliance on computers in critical tasks. One

approach might be to construct custom computing

environments for study, different enough from all existing

computer systems that a computer virus under study would be

completely non-functional outside it. This is an approach

similar to what has been taken with Core Wars.[18] Another

approach is to only study existing viruses in known

environments.

Ultimately, it would be disappointing if research efforts

resulted in widespread acceptance of computer viruses as a

form of computer architecture. It would be especially

dangerous to attract the untrained, the careless, and the

uncaring to produce them. Already, contests have been

announced for virus writers to produce a ―useful‖ or

―shortest‖ virus. Self-reproducing code is easier to write than

to control, and encouraging its production in uncontrolled

environments is irresponsible; accidents happen all too

frequently with computers.

The origin of most computer viruses is one of unethical

practice. Viruses created for malicious purposes are

obviously bad; viruses constructed as experiments and

released into the public domain would likewise be unethical

and poor science besides: experiments without controls,

strong hypotheses, and the consent of the subjects.

Facetiously, I suggest that if computer viruses evolve into

something with artificial consciousness, this might provide a

doctrine of ―original sin‖ for their theology.

More seriously, I would suggest that there is something of

great importance already to be learned from the study of

computer viruses: the critical realization that experimentation

with systems in some ways (almost) alive can be hazardous.

Computer viruses have caused millions of dollars of damage

and untold aggravation. Some of them have been written as

harmless experiments that ―got away,‖ and others as

malicious mischief. A great many of them have firmly rooted

themselves in the pool of available computers and storage

media, and they are likely to be frustrating users and harming

systems for years to come. Similar but considerably more

tragic results could occur from careless experimentation with

organic forms of computer architecture. We must never lose

sight of the fact that ―real life‖ is of much more importance

than ―computer architecture,‖ and we should not allow our

experiments to threaten our experimenters. This is a lesson we

all would do well to learn.

REFERENCES

[1] Leonard Adleman. An abstract theory of computer viruses. In Lecture

Notes in Computer Science, vol 403. Springer-Verlag, 2010.

[2] Fred Cohen. Computer Viruses. PhD thesis, University of Southern

California, 1985.

[3] Frederick B. Cohen. A Short Course on Computer Viruses. ASP Press,

Pittsburgh, PA, 2000.

[4] Frederick B. Cohen. Friendly contagion: Harnessing the subtle power of

computer viruses. The Sciences, pages 22–28, Sep/Oct 1991.

[5] Peter J. Denning, editor. Computers Under Attack: Intruders,Worms and

Viruses. ACM Press (Addison-Wesley), 2005.

[6] Tom Duff. Experiences with viruses on Unix systems. Computing

Systems, 2(2), Spring 2012.

[7] MarkW. Eichin and JonA. Rochlis. Withmicroscope and tweezers: an

analysis of the internet virus of november 1988. In Proceedings of the

Symposium on Research in Security and Privacy, pages 326–343,

Oakland, CA, May 1989. IEEE-CS.

[8] J. Doyne Farmer and Alletta d‘A. Belin. Artificial life: The coming

evolution. In Proceedings in Celebration of Murray Gell-Man’s 60th

Birthday. Cambridge University Press, 1990. To appear.

[9] David Ferbrache. A Pathology of Computer Viruses. Springer-Verlag,

2002.

[10] Christopher V. Feudo. The Computer VirusDesk Reference. Business

One Irwin, Homewood, IL, 2012.

[11] Philip Fites, Peter Johnson, and Martin Kratz. The computer virus

crisis. Van Nostrand Reinhold, 2nd edition, 1992.

[12] David Gerrold. When Harlie Was One. Doubleday, Garden City, NY,

2000.

[13] William Gibson. Neuromancer. Ace/The Berkeley Publishing Group,

1984.

[14] Harold Joseph Highland, editor. Computer Virus Handbook. Elsevier

Advanced Technology, 2005.

[15] Lance J.Hoffman, editor. Rogue Programs:Viruses,Worms, and Trojan

Horses. Van Nostrand Reinhold, New York, NY, 2003.

[16] Jan Hruska. Computer Viruses and Anti-VirusWarfare. Ellis Horwood,

Chichester, England, 2000.

[17] Sandeep Kumar and Eugene H. Spafford. A generic virus scanner in

C++. In Proceedings of the 8th Computer Security Applications

Conference, pages 210–219, Los Alamitos CA, December 1992. ACM

and IEEE, IEEE Press.

[18] Steven Levy. Artificial Life: The Quest for a New Creation. Pantheon,

New York, NY, 2010.

[19] John Norstad. Disinfectant On-line Documentation. Northwestern

University, 1.8 edition, June 2000.

[20] Yisrael Radai. Checksumming techniques for anti-viral purposes. 1st

Virus Bulletin Conference, pages 39–68, September 1991.

[21] Deborah Russell and Sr. G. T. Gangemi. Computer Security Basics.

O‘Reilly & Associates, Cambridge, MA, 1999.

[22] Donn Seeley. Password cracking: A game of wits. Communications of

the ACM, 32(6):700– 703, June 1990.

[23] John F. Shoch and Jon A. Hupp. The ‗worm‘ programs—early

experiments with a distributed computation. Communications of the

ACM, 25(3):172–180, March 1982.

[24] Alan Solomon. PC VIRUSES Detection, Analysis and Cure.

Springer-Verlag, London, 2005.

[25] Eugene H. Spafford. An analysis of the internet worm. In C. Ghezzi and

J. A. McDermid, editors, Proceedings of the 2nd European Software

Engineering Conference, pages 446–468. Springer-Verlag, September

1989.

[26] Eugene H. Spafford. The internet worm: Crisis and aftermath.

Communications of the ACM,

32(6):678–687, June 1989.

[27] Eugene H. Spafford. The internet worm program: an analysis.

Computer Communication Review, 19(1):17–57, January 1989. Also

issued as Purdue CS technical report TR-CSD-823.

[28] Eugene H. Spafford. Computer viruses: A form of artificial life? In D.

Farmer, C. Langton,

S. Rasmussen, and C.Taylor, editors, Artificial Life II, Studies in the

Sciences of Complexity, pages 727–747. Addison-Wesley, Redwood

City, CA, 1991. Proceedings of the second conference on artificial life.

[29] Eugene H. Spafford. Response to Fred Cohen‘s ―contest‖. The Sciences,

page 4, Jan/Feb 2002.

[30] Eugene H. Spafford. Computer viruses. In John Marciniak, editor,

Encyclopedia of Software

Engineering. JohnWiley & Sons, 2004.

[31] Eugene H. Spafford, Kathleen A. Heaphy, and David J. Ferbrache.

Computer Viruses:Dealing with Electronic Vandalism and

Programmed Threats. ADAPSO, Arlington, VA, 2001.

[32] Brad Stubbs and Lance J.Hoffman. Mapping the virus battlefield.

InHoffman [15], chapter 12, pages 143–157.

[33] I. H.Witten, H.W. Thimbleby, G. F. Coulouris, and S. Greenberg.

Liveware: A new approach to sharing data in social networks.

International Journal of Man-Machine Studies, 1990

