

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 108 www.erpublication.org

Abstract— The software development method employed in

the development of a software system, play a critical role in the

overall software development process. Often time,

non-professional software developers jump into a software

development project without first choosing an appropriate

software development model that best suits the project and that

could aid the successful completion of such project. This

scenario has led to numerous crappy and abandoned software

projects. This research work is aimed at exploring and

comparing the two prominent and widely used software

development models—Agile and V-model; their impacts in the

software development world and general recommendations.

Index Terms— Software Development, Agile Model,

V-Model, Extreme Programming, Crystal and Scrum Method

I. INTRODUCTION

 Software is an integral of part of the modern

computing world and will continue to be. Likewise the

software development models. The software development

models are the foundation for software engineering. O

decades now, numerous software development models have

been introduced, of which only few have survived to be used

today. There is, however, an emerging philosophy producing

new processes known as ―Agile Software Development‖. This

new processes focus more on people’s interactions and early

development of code than on documentation and planning [3].

This paper introduces and discusses Agile Software

Processes and V-shaped model.The process of developing

and supporting software often requires many distinct tasks to

be performed by different people in some related sequences.

When software engineers are left to perform tasks based on

their own experience, background, and values, they do not

necessarily perceive and perform the tasks the same way or in

the same order. They sometimes do not even perform the

same tasks. This inconsistency causes projects to take longer

time with poor end products and, in worse situations, total

project failure.Watts Humphrey has written extensively on

software processes and process improvement in general and

has also introduced the personal software process at the

individual level in his book Introduction to the Personal

Software Process (1997).

The goal of a software process model is to provide

guidance for systematic coordinating and controlling o the

tasks that must be performed in order to achieve the end

product and the project objectives. For software development

Manuscript received November 07, 2014.

 Okeke Stephen, Department of Computer Science, College of Physical

and Applied Sciences, Michael Okpara University of Agriculture, Nigeria.,

+2348133626900.

Oriaku K. A, Directorate of Information Technology, Michael Okpara

University of Agriculture, Nigeria., , +2347066003.

process, a process model defines the following: a set of tasks

that need to be performed, input to and output from each task,

preconditions and postconditions for each task, and the

sequence and flow of these tasks. We might ask whether a

software development process is necessary if there is only one

person developing the software. The answer is that it depends.

If the software development process is viewed as only a

coordinating and controlling agent, then there is no need since

there is only one person. However, if the process is viewed as

a prescriptive roadmap for generating various intermediate

deliverables in addition to the executable code—for example,

a design document, a user guide, test cases—then even a

one-person software development project may need a

process[1].

These models are majorly plan driven because of their

solicitation and documentation of a set of requirements that is

as complete as possible. Based on these requirements, one can

then formulate a plan of development. Usually, the more

complete the requirements, the better the plan. Some

examples of plan-driven methods are various waterfall

approaches and others such as the Personal Software Process

[21] and the Rational Unified Process (RUP). An underlying

assumption in plan-driven processes is that the requirements

are relatively static. On the other hand, iterative methods,

such as spiral model based approaches [12], evolutionary

processes described in [19], and recently agile approaches

[45] count on change and recognize that the only constant is

change. The question is only of the degree and the impact of

the change. Beginning in the mid-1990’s, practitioners began

finding the rate of change in software requirements increasing

well beyond the capabilities of classical development

methodologies [10]. The software industry, software

technology, and customers expectations were moving very

quickly and the customers were becoming increasingly less

able to fully state their needs up front. As a result, agile

methodologies and practices emerged as an explicit attempt to

more formally embrace higher rates of requirements change.

II. CASE STUDY

Our Scenario is to discuss for the requirement given by

the client which software development model/method to be

employed in developing his project. Let us have a

comparative study between Agile Model & V-Model, which

model will be effective in the below project and the Pros &

Cons of choosing the model.

The client Requirement is to develop a web based

application, online booking of ticket for Hotels, Train, bus

and flight in a single site. In the site, users can be able to book

for hotels, train, bus and flight tickets in advance for up to six

months. The existing company’s website does not allow for

Software Development Methodologies: Agile Model

Vs V-Model

Stephen O., Oriaku K.A

Software Development Methodologies: Agile Model Vs V-Model

 109 www.erpublication.org

booking in advance for six months. In Proposed System user

can able to login to the site with valid authentication. If a

client wants to book for a train ticket for three months, he can

do so by filling all his details in the site, payment and it will be

saved in the database. Ticket will be automatically booked

when booking open for that particular date and month. So this

requirement will help lot of User to access this site. In Our

comparative study, we are going to discuss about which

model to choose for the project.

 Deciding Factors

 Before deciding the model to be used, we should get answer

for some questions.

1. How stable are the requirements?

2. Who are the end users for the system?

3. What is the size of the project?

4. Where are the project teams located?

III. COMPARATIVE STUDY OF AGILE MODEL VS

V-MODEL PROS AND CONS

Agile Model Software Development Model

Agile software development model is a subset of iterative

and evolutionary software development methods [17] and is

based on iterative enhancement [8] and opportunistic

development processes. In all iterative products, each

iteration is a self-contained, mini-project with activities that

span requirements analysis, design, implementation, and test

[17]. Each iteration leads to an iteration release (which may

be only an internal release) that integrates all software across

the team and is a growing and evolving subset of the final

system. The purpose of having short iterations is to enable

feedback from iterations N and earlier, and any other new

information, can lead to refinement and requirements

adaptation for iteration N + 1.

Fig1. Generic Agile Software development Model

In this model, the customer adaptively specifies their

requirements for the next release based on observation of the

evolving product, rather than speculation at the start of the

project [11]. There is quantitative evidence that frequent

deadlines reduce the variance of a software process and, thus,

may increase its predictability and efficiency.[21] The

pre-determined iteration length serves as a timebox for the

team. Scope is chosen for each iteration to fill the iteration

length. Rather than increase the iteration length to fit the

chosen scope, the scope is reduced to fit the iteration length. A

key difference between agile methods and past iterative

methods is the length of each iteration. In the past, iterations

might have been three or six months long. With agile

methods, iteration lengths vary between one to four weeks,

and intentionally do not exceed 30 days. Research has shown

that shorter iterations have lower complexity and risk, better

feedback, and higher productivity and success rates [17]. A

point of commonality for all agile methods is the recognition

of software development as an empirical process.

Fig2. Generic Agile Software development Method Cont.

Software development often has too much changes

during the time that the team is developing the product to be

considered a defined process. A set of predefined steps may

not lead to a desirable, predictable outcome because software

development is a decidedly human activity: requirements

change, technology changes, people are added and taken off

the team, and so on. In other words, the process variance is

high. Another area of commonality among all agile

methodologies is the importance of the people performing the

roles and the recognition that, more so than any process or

tool, these people are the most influential factoring in any

project. Brooks acknowledges the same in The Mythical Man

Month [9], ―The quality of the people on a project, and their

organization and management, are more important factors in

success than are the tools they use or the technical approaches

they take.‖ Unfortunately, there are commonalities among

some agile methods that may be less than positive. One is that,

unlike more classical iterative methods, explicit quantitative

quality measurements and process modeling and metrics are

often subdued and sometimes completely avoided.

However, possible justifications for this lack of

modeling and metrics range from lack of time, to lack of

skills, to intrusiveness, to social reasons. Another potential

problem area for agile methods is the ability to cope with

corrections or deficiencies introduced into the product.

Ideally, even in ―classical‖ development environments, the

reaction to change information need be quick; the corrections

are applied within the same life-cycle phase in which the

information is collected. However, introduction of feedback

loops into the software process will depend on the software

engineering capabilities of the organization, and the reaction

latency will depend on the accuracy of the feedback models.

For example, it is unlikely that organizations below the third

maturity level on the Software Engineering Institute (SEI)

Capability Maturity Model (CMM) scale [18] would have

processes that could react to the feedback information in less

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 110 www.erpublication.org

than one software release cycle. This needs to be taken into

account when considering the level and the economics of the

―agile‖ methods. For instance, only relatively small teams can

self-organize (one of the agile principles) into something

resembling a CMM Level 4 or 5 performance. Also, since

personnel resources are not unlimited, there is also some part

of the software that may go untested, or may be verified to a

lesser degree. The basic, and most difficult aspect of system

verification is to decide what must be tested, and what can be

left untested, or partially tested [23].

 Brief History of Agile Model

The birth of agile software development model could be

traced to February 2001, where several software engineering

consultants joined forces and began to classify a number of

similar change-sensitive methodologies as agile (a term with a

decade of use in flexible manufacturing practices which began

to be used for software development in the late 1990’s [13]).

The term promoted the professed ability for rapid and flexible

response to change of the methodologies. The consultants

formed the Agile Alliance and wrote The Manifesto for Agile

Software Development and the Principles Behind the Agile

Manifesto [9]. The methodologies originally embraced by the

Agile Alliance were Adaptive Software Development (ASD),

Crystal [17], Dynamic Systems Development Method

(DSDM), Extreme Programming (XP), Feature Driven

Development (FDD) and Scrum.

 The Principles Of Agile Model

Customer involvement: Customers should be closely

involved throughout the development process. Their role is

provide and prioritize new system requirements and to

evaluate the iterations of the system.

Incremental delivery: The software is developed in

increments with the customer specifying the requirements to

be included in each increment. People not process: The skills

of the development team should be recognized and exploited.

Team members should be left to develop their own ways of

working without prescriptive processes.

Embrace change: Expect the system requirements to change

and so design the system to accommodate these changes.

Maintain simplicity: Focus on simplicity in both the

software being developed and in the development process.

Wherever possible, actively work to eliminate complexity

from the system.

Pros of Agile model

 Customer satisfaction by rapid, continuous delivery of

useful software.

 People and interactions are emphasized rather than

process and tools. Customers, developers and testers

constantly interact with each other.

 Working software is delivered frequently (weeks

rather than months).

 Face-to-face conversation is the best form of

communication.

 Close, daily cooperation between business people and

developers.

 Continuous attention to technical excellence and good

design.

 Regular adaptation to changing circumstances.

 Even late changes in requirements are welcomed

Cons of Agile model

 In case of some software deliverables, especially the

large ones, it is difficult to assess the effort required

at the beginning of the software development life

cycle.

 There is lack of emphasis on necessary designing and

documentation.

 The project can easily get taken off track if the

customer representative is not clear what final

outcome that they want.

 Only senior programmers are capable of taking the

kind of decisions required during the development

process. Hence it has no place for newbie

programmers, unless combined with experienced

resources.

When to use Agile model

 When new changes are needed to be implemented.

The freedom agile gives to change is very important.

New changes can be implemented at very little cost

because of the frequency of new increments that are

produced.

 To implement a new feature the developers need to

lose only the work of a few days, or even only hours,

to roll back and implement it.

 Unlike the waterfall model in agile model very limited

planning is required to get started with the project.

Agile assumes that the end users’ needs are ever

changing in a dynamic business and IT world.

Changes can be discussed and features can be newly

effected or removed based on feedback. This

effectively gives the customer the finished system

they want or need.

 Both system developers and stakeholders alike, find

they also get more freedom of time and options than

if the software was developed in a more rigid

sequential way. Having options gives them the

ability to leave important decisions until more or

better data or even entire hosting programs are

available; meaning the project can continue to move

forward without fear of reaching a sudden standstill.

Agile Methodologies

Extreme Programming (XP)

The creators of Extreme Programming (XP) aimed

at developing a methodology suitable for ―object-oriented

projects using teams of a dozen or fewer programmers in one

location‖ [29]. Extreme Programming has defined practices

and guidelines that implementers should follow. It is an

approach to development based on the development and

delivery of very small increments of functionality. It relies on

constant code improvement, user involvement in the

development team and pair wise programming . It can be

difficult to keep the interest of customers who are involved in

the process. Team members may be unsuited to the intense

involvement that characterizes agile methods. Prioritizing

changes can be difficult where there are multiple

stakeholders. Maintaining simplicity requires extra work.

Contracts may be a problem as with other approaches to

iterative development.Once completed, the set is tested and

put into production. ―The goal of each iteration is to put into

production some new stories that are tested and ready to go‖.

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-the-purpose-and-importance-of-test-plans/

Software Development Methodologies: Agile Model Vs V-Model

 111 www.erpublication.org

Testing plays a major role in XP. Each iteration is subjected to

unit testing. Writing all unit tests prior to writing any code is

mandatory. A particular iteration must pass its unit testing

prior to going into production. Customers determine system

wide tests. Considering their needs and referencing the

stories, customers think about what it would take to satisfy

them that the iteration is successful. These needs are

translated into system wide tests. Testing regularly and often

at the unit level and system level provides feedback and

confidence that the project is moving ahead and the system is

functioning according to the customer’s requirements. This

process of selecting a set of stories, doing short iterations,

working in pairs to code, test, and integrate is repeated until

the project is complete. Working in short iterations with

constant feedback gives the project the chance to adapt to

changing needs. The focus is always on the current iteration.

No design work is done in anticipation of future requirements.

XP is a highly disciplined process. To be successful, the

organization implementing XP must embrace the XP values

and principles.

Fig3. Extreme Programming (XP)

The methodology is based upon five underlying values:

communication, simplicity, feedback, courage, and respect.

 Communication. XP has a culture of oral

communication and its practices are designed to

encourage interaction. The communication value is

based on the observation that most project

difficulties occur because someone should have

spoken with someone else to clarify a question,

collaborate, or obtain help. ―Problems with projects

can invariably be traced back to somebody not

talking to somebody else about something

important.‖

 Simplicity. Design the simplest product that meets the

customer’s needs. An important aspect of the value

is to only design and code what is in the current

requirements rather than to anticipate and plan for

unstated requirements.

 Feedback. The development team obtains feedback

from the customers at the end of each iteration and

external release. This feedback drives the next

iteration. Additionally, there are very short design

and implementation feedback loops built into the

methodology via pair programming and test-driven

development.

 Courage. The other three values allow the team to

have courage in its actions and decision making. For

example, the development team might have the

courage to resist pressure to make unrealistic

commitments.

 Respect. Team members need to care about each

other and about the project.

Crystal Method

Crystal is a family of processes each applied to

different kinds of projects. The idea of having multiple

processes stems from the thinking that some projects require

fewer rigors than others do. Small and non-critical projects

can be developed using less rigorous Crystal methods. Larger

and more critical projects, however, demand more attention

and therefore, a more rigorous Crystal process is used.

Selecting a Crystal process requires that a project be matched

to one of four criticality levels.

 Comfort

 Discretionary money

 Essential money

 Life

 A system failure for the first level may cause a loss of comfort

whereas a system failure for the fourth level may cause a loss

of life. Using this as an example a less rigorous process is

applied to the former while the latter would demand a highly

rigorous process. Each of the processes shares common

policy standards:

 Incremental delivery

 Progress tracking by milestones based on software

deliveries and major decisions rather than written

documents

 Direct user involvement

 Automated regression testing of functionality

 Two user viewings per release

 Workshops for product and methodology-tuning at

the beginning and in the middle of each increment.

Fig4. Crystal Method of Agile Software Development Model

Scrum Method

The Scrum process puts a project management ―wrapper‖

around a software development methodology. The

methodology is flexible on how much/how little ceremony but

the Scrum philosophy would guide a team towards as little

ceremony as possible. Usually a Scrum team work is

co-located. However, there have been Scrum teams that work

geographically distributed whereby team members participate

in daily meeting via speaker phone. Scrum teams are

self-directed and self-organizing teams. The team commits to

a defined goal for an iteration and is given the authority,

autonomy, and responsibility to decide how best to meet it.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

 112 www.erpublication.org

Fig5.The Scrum Process

Problems of Implementing Agile Processes

The most difficult task involved in using agile processes is

the ability to integrate them into an organization (i.e.

overcoming resistance to existing organizational structures).

―Part of the culture is the creation of fiefdoms within the

program organization. Adopting agile processes will radically

change the functions of the organization within the program

and consequently change the staff and funding profiles of the

organizations.‖ [13]. The traditional roles played by

management, Quality and Assurance, test, financials, and

Software Engineers (SWE) will all change creating resistance

to the introduction of agile processes. Reading [14] much

knowledge is gained concerning the problems experienced by

organizations wanting to transition to agile processes.

Software Engineers (SWE) are either over zealous or highly

skeptical. Over zealous engineers may misinterpret the

meaning of agile, taking it to mean ―moving quickly‖ leading

toward minimal discipline and turning the project into a

hacking free for all. It is important to understand that users of

agile processes are making decisions with forethought and

reason. On the other hand, there are SWE resisting agile

processes because they are strong proponents of design

artifacts created using BDUF processes and are most familiar

working to a structured plan having a defined time schedule.

They do not believe using agile processes produces quality

products.

Quality and Assurance (Q and A) and the testing staff

often resist agile processes because in the BDUF environment

they do not get much attention from management. In the agile

process environment, however, this changes because Q and A

and testing is a high profile activity occurring after each

iteration. Viewing this attention as micromanagement may

cause them to resist any change. Management, too, is often

skeptical of agile processes. They are uncomfortable with not

having Gantt charts and other documents used to manage

projects. It is common for management to judge the progress

of a project by looking to see if a particular document exists or

not. Recall, these are artifacts associated with BDUF

processes and do not exist in similar form for agile processes.

Another area that causes distress for management is not

having a final commitment date of delivery, a bottom line

cost, and all features documented.

The V-Shaped Software Development Model

The V- model means Verification and Validation model.

Just like the waterfall model, the V-Shaped life cycle is a

sequential path of execution of processes. Each phase must be

completed before the next phase begins. Testing of the

product is planned in parallel with a corresponding phase of

development.The V-model was originally developed from the

waterfall software process model. It comprises of four main

process phases – requirements, specification, design and

Implementation and has a corresponding verification and

validation testing phase. Implementation of modules is tested

by unit testing, system design is tested by Integration testing,

system specifications are tested by system testing and finally,

acceptance testing verifies the requirements. The V-model got

its name from the timing of the phases. Starting from the

requirements, the system is developed one phase at a time

until the lowest phase, the implementation phase, is finished.

At this stage testing begins, starting from unit testing and

moving up one test level at a time until the acceptance testing

phase is completed. During development stage the program

will be tested at all levels simultaneously.

Fig6. The V-Shaped Software Development Model

The different levels of the V-Model are: unit tests,

integration tests, system tests and acceptance test. The unit

tests and integration tests ensure that the system design is

followed in the code. The system and acceptance tests ensure

that the system does what the customer wants it to do. The test

levels are planned so that each level tests different aspects of

the program and so that the testing levels are independent of

each other. The traditional V-model states that testing at a

higher level is started only when the previous test level is

completed.

Pros of V-model

 Simple and easy to use.

 Testing activities like planning, test designing

happens well before coding. This saves a lot of time.

Hence higher chance of success over the waterfall

model.

 Proactive defect tracking – that is defects are found

at early stage.

 Avoids the downward flow of the defects.

 Works well for small projects where requirements

are easily understood.

Cons of V-model

 Very rigid and least flexible.

http://istqbexamcertification.com/what-is-waterfall-model-advantages-disadvantages-and-when-to-use-it/
http://istqbexamcertification.com/what-is-test-design-or-how-to-specify-test-cases/

Software Development Methodologies: Agile Model Vs V-Model

 113 www.erpublication.org

 Software is developed during the implementation

phase, so no early prototypes of the software are

produced.

 If any changes happen in midway, then the test

documents along with requirement documents has to

be updated.

When to use the V-model

 The V-shaped model should be used for small to

medium sized projects where requirements are

clearly defined and fixed.

 The V-Shaped model should be chosen when ample

technical resources are available with needed

technical expertise.

IV. CONCLUSION

In this work, we presented an overview of the Agile and

V-shape software development models and the characteristics

of the projects that they maybe suited to. Additionally, we

provided overviews of three sub representative

methodologies of agile model, XP, Crystal, and Scrum. As we

discussed on Agile model & V-Model; their Pros and Cons,

it depends solely upon the organization to choose the model

that best fit them. If requirement changes frequently and

smaller projects, deliver product in short period of time with

skilled resources then we can choose ―Agile model ―. If

requirement changes, larger project, proper validation to take

place in each phase, tester to be involved in early stages of

development, then we can choose ―V-Model‖ but If

requirement is clear, larger project then we choose the oldest

method ―Waterfall Model‖.

REFERENCES

[1] W. S. Humphrey, Managing the Software Process (Reading, MA:

Addison- Wesley, 1989).

[2] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software

Development Process (Reading, MA: Addison Wesley Longman,

1999).

[3] P. Kruchten, The Rational Unified Process, 3rd ed. (Reading, MA:

Addison-Wesley, 2003).

[4] Software Engineering a Practitioner’s Approach; Pressman, Roger S.

McGraw Hill; 2001; p 20.

[5] Mass hysteria and the delusion of crowds; Kenny, Michael; itopia

Technoparkstr 1 8005 Zurich Switzerland; 2001; page 7.

[6] The Manifesto for Agile Software Development;

http://agilemanifesto.org/; last referenced Nov 1, 2002.

[7] M. Aoyama, "Agile Software Process and its Experience," International

Conference on Software Engineering, Kyoto, Japan, 1998, pp. 3-12.

 [8] V. R. Basili and A. J. Turner, "Iterative Enhancement: A Practical

Technique for Software Development," IEEE Transactions on

Software Engineering, vol. 1, no. 4, pp. 266 - 270, 1975.

[9] F. P. Brooks, The Mythical Man-Month, Anniversary Edition:

Addison-Wesley Publishing Company, 1995.

 [10] B. Boehm, "Get Ready for Agile Methods, with Care," IEEE Computer,

vol. 35, no. 1, pp. 64-69, 2002.

[11] B. Boehm, "A Spiral Model for Software Development and

Enhancement," Computer, vol. 21, no. 5, pp. 61-72, May 1988.

 [12] B. W. Boehm, Software Engineering Economics. Englewood Cliffs,

NJ: Prentice-Hall, Inc., 1981.

[13] M. Fowler and J. Highsmith, "The Agile Manifesto," in Software

Development, August 2001, pp. 28-32.

[14] K. Schwaber and M. Beedle, Agile Software Development with

SCRUM. Upper Saddle River, NJ: Prentice Hall, 2002.

 [15] R. Fairley, Software Engineering Concepts. New York: McGraw-Hill,

1985.

 [16] P. Kruchten, The Rational Unified Process: An Introduction, Third ed.

Boston: Addison Wesley, 2004.

[17] C. Larman, Agile and Iterative Development: A Manager's Guide.

Boston: Addison Wesley, 2004.

 [18] M. C. Paulk, B. Curtis, and M. B. Chrisis, "Capability Maturity Model

for Software Version 1.1," Software Engineering Institute

CMU/SEI-93-TR, February 24, 1993, 1993.

[19] C. Larman and V. Basili, "A History of Iterative and Incremental

Development," IEEE Computer, vol. 36, no. 6, pp. 47-56, June 2003.

[20] L. Williams and A. Cockburn, "Special Issue on Agile Methods," IEEE

Computer, vol. 36, no. 3, June 2003.

[21] L. Williams and R. Kessler, Pair Programming Illuminated. Reading,

Massachusetts: Addson Wesley, 2003.

[22] R. Jeffries, A. Anderson, and C. Hendrickson, Extreme Programming

Installed. Upper Saddle River, NJ: Addison Wesley, 2001.

[23] M. Vouk and A. T. Rivers, "Construction of Reliable Software in

Resource-Constrained Environments," in Case Studies in Reliability

and Maintenance,

[24]W. R. Blischke and D. N. P. Murthy, Eds. Hoboken, NJ:

Wiley-Interscience, John Wiley and Sons, 2003, pp. 205 231.

AUTHORS

Okeke Stephen, Department of Computer Science, College of Physical and

Applied Sciences, Michael Okpara University of Agriculture,

Nigeria., +2348133626900.

Oriaku K. A, Directorate of Information Technology, Michael Okpara

University of Agriculture, Nigeria., , +2347066003

