
International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-11, November 2014

80



Abstract— RC4 is also known as ARC4 or alleged RC4

algorithm. It is widely used in Transport layer security and

WEP because of its remarkable simplicity and speed of

implementation. The same algorithm is used for encryption

and decryption. In our new method to increase the security

the data will go through additional steps of adding

irrelevant characters which adds to the confusion which

complements the diffusion of the state vector in the

algorithm. By this implementation we observed that

weakness of RC4 can be overcome with the addition of

irrelevant characters to the cipher text, making it difficult

for a anybody to redesign the algorithm to get the plain text

back without the base key and proper cryptanalysis.

Index Terms— RC4,WPA,WEP,KSA,PRNG

I. INTRODUCTION

Encryption is the process of transforming plain text

into cipher text in order to conceal its meaning and to

prevent it from unauthorized person from retrieving the

original data[1]. Cryptography is a tool used to ensure its

integrity and authenticity and to keep information

confidential [1]. Cryptography algorithms are divided

into two classes: Symmetric key (private key) and

Asymmetric key (public key)[1]. RSA is the example of

asymmetric algorithm and DES, Triple DES, AES are

some other examples of symmetric algorithms. There are

different kinds of schemes which are also required for

digital signatures using both public and private key

algorithms [2]. Various Hash algorithms such as MD5

and SHA-1 are also used in different ways to achieve

security. The two ways in which the message block is

processed are block and stream cipher techniques. Block

Cipher technique is used in many of the Modern methods

[3].

II. RC4 AND CRYPTOANALYSIS

RC4 was designed by Ron Rivest for RSA security in

1987 [4]. Official name of RC4 is Rivest Cipher 4. RC4

is a stream cipher, symmetric key algorithm. The same

algorithm is used for encryption and decryption. In this

paper we will be focusing on stream cipher algorithm, in

this method of processing the text is processed either

byte by byte or bit-bit or character by character. In cipher

Manuscript received November 5, 2014.
Vishesh Raimugia, Computer Engineering, Dwarkadas J. Sanghvi

College of Engineering, Mumbai, India, 9819125945.

Rahul Shah, Computer Engineering, Dwarkadas J. Sanghvi
College of Engineering, Mumbai, India, 9769568468.

Kunal Sheth, Computer Engineering, Dwarkadas J. Sanghvi

College of Engineering, Mumbai, India, 9769515242.

stream, the state vector in our case which is also the key

stream in many cases is combined with the plain text. In

this to get each cipher text part we need to combine one

part of the key stream with the plain text one at a time.

Pseudo random key stream is typically generated serially

from a random seed value which serves as cryptographic

keys for decrypting the cipher text stream. RC4 is the

simplest method of encrypting data. It is also faster and

more suitable for streaming application. RC4 uses

stream cipher method. Some of the good points about

RC4 algorithm would be that it uses less amount of time

and lower amount of resources and it very easy to

implement as compared to the other block ciphers. Now

the key stream and the data is Ex-ORed, this process is

independent of the plain text.

III. IMPLEMENTATION OF RC4 ALGORITHM

The RC4 algorithm is very simply and quite easy to

explain. A variable-length key of from 1 to 256 bytes (8

to 2048 bits) is used to initialize a 256-byte state vector

S, with elements S [0], S [1],..., S [255]. At all times, the

state vector which is used will contain all of the

characters from 0 to 255 though not in the same order but

will be a permutation of the serial sequence. For

encryption and decryption, a byte k is generated from S

by selecting one of the 255 entries in a systematic

fashion. To achieve more amount of diffusion in the

algorithm after every selection of k from the state vector

it goes under another permutation operation before a new

k is to be selected [7]:

A. Initialization of S

To begin, the entries of S are set equal to the values from

0 through 255 in ascending order; that is; S[0] = 0, S[1] =

1,..., S[255] = 255. A temporary vector, T, is also

created. In order to maintain the size of the key stream to

be equal to the state vector which is 256 bytes, the

algorithm makes sure that if K is 256 bytes it is directly

copied to the vector T, but if it is not then key-len bytes

are copied to T and the same K is repeatedly copied into

T until it is completely filled out. These preliminary

operations can be summarized as follows:

Novel Method to Strengthen RC4 Algorithm

Vishesh Raimugia, Rahul Shah, Kunal Sheth

 81 www.erpublication.org

Fig. 1 Basic Implementation of algorithm

/* Initialization, */

for i = 0 to 255 do

S[i] = i;

T[i] = K [i mod keylen];

Fig. 2 Initialization Step

Next we will use T to produce the initial permutation which is

another way of ordering of S. This involves starting with S

[0] and going through to S [255], and, for each S[i], swapping

S[i] with another byte in S according to a scheme dictated by

T[i]

/* Initial Permutation of S */

int j=0;

for(int i=0;i<256;i++)

{

 j=(j+S[i]+T[i])%256;

 int temp=S[i];

 S[i]=S[j];

 S[j]=temp;

}

Fig. 3 Initial Permutation of S

Because the only operation on S is a swap, the only effect is a

permutation. We still have not changed the original

requirement as the sequence is just a swapping operation and

the vector contains a permutation of 0 to 255.

B. Stream Generation

Once the S vector is initialized, the input key is no longer

used. Stream generation involves cycling through all the

elements of S[i], and, for each S[i], swapping S[i] with

another byte in S according to a scheme dictated by the

current configuration of S. After S [255] is reached, the

process continues, starting over again at S [0],

/* Stream Generation */

int i=0,z=0;

j=0;

for(int l=0;l<mln;l++)

{

 i=(l+1)%256;

 j=(j+S[i])%256;

 int temp=S[i];

 S[i]=S[j];

 S[j]=temp;

 z=S[(S[i]+S[j])%256];

 //Ex-ORing

 cipher_text+=(char)(z^msgi[l]);

}

Fig 4. Stream Generation

To encrypt, XOR the value k with the next byte of plaintext.

To decrypt, XOR the value k with the next byte of cipher text.

Novel Method to Strengthen RC4 Algorithm

 82 www.erpublication.org

IV. WEAKNESS IN RC4

All RC4 is mainly used to secure internet traffic,

E-Commerce transactions and information over the network.

It is also adopted by WEP and WPA to secure wireless

network. Many applications like WEP (Wired Equivalent

Privacy), WPA (Wi-Fi Protected Access), SSL (Secured

Socket Layer) uses RC4 with improved features such as

additional initialization vector to form RC4 traffic key,

increase key length and size of initialization vector. RC4 has

much weakness on key size. It is advised to keep the key

length to be as high as possible because shorter keys are very

much susceptible to attack from hackers.

V. MODIFICATION OF RC4

In order to strengthen the RC4 algorithm, the algorithm was

modified so that the plain text is put through the same steps

with one change in the final cipher text. In the initial plain

text irrelevant characters are added after each vowel in order

to add confusion to the algorithm. Each vowel encountered in

the cipher text is followed by a random irrelevant character

with no dependency on the key or the plain text. Following

are the steps of the algorithm after the changes

Initially, irrelevant characters are added to the plaintext.

1. Take the Base Key provided by the user and divide it

into N equal parts.

2. If length of Key, k, is not perfectly divisible by N, then

pad the key with zeros to make it perfectly divisible by N.

3. Create N equal sub keys from K.

4. Then ciphering the plain text using PRNG, this is not

the final Cipher text.

5. Add irrelevant random character after each vowel in the

Cipher text.

6. This is the final Cipher text.

7. While Deciphering, follow the same steps as Ciphering

for generating the key stream.

8. Before EX-ORing remove the irrelevant character after

the vowels.

 The size of the message increases by the number of vowels

in the message and this amount is not fixed and will be really

difficult for a hacker to figure out the real cipher text. Even if

the hacker is able to find the key, the real message will not be

recovered easily.

VI. SOFTWARE IMPLEMENTATION

All The code is implemented in C++ to demonstrate the

changes in the state vector and the original message with

respect to our algorithmic changes. Step by step result of the

state vector and the plain text as well as the intermediate

cipher text is given below:

string encrypt(string msg)

{

 string cipher_text="";

 int ln=msg.length();

 srand(ln*time(NULL));

 for(int i=0;i<ln;i++)

 {

 cipher_text+=msg[i];

 if(msg[i]=='a'||msg[i]=='e'||msg[i]=='i'||msg[i]=='o'||msg[i]

=='u'||msg[i]=='A'||msg[i]=='E'||msg[i]=='I'||msg[i]==

'O'||msg[i]== 'U')

 {

 cipher_text+=(char)(rand()%256);

//%256 means we are restricting the

random character in the range of 256 which

is added to the //cipher text.

 }

 }

 return cipher_text;

}

This method is applied twice in our approach; initially it is

applied to the plain text as it is to add confusion into the

message and the next when the plain text is Ex-ORed with the

state vector which adds diffusion as well as confusion into the

algorithm and thereby making it more robust.

VII. RESULTS

This algorithm was implemented in C++ and was tested to

calculate the running time of the methods for encryption and

decryption for various file sizes. We used file input output to

supply key stream and the message to be decoded.

Table 1. Result of above algorithm

File

Size(1Kb)

Encryption Time Decryption Time

1 0.00110s 0.00010s

10 0.00230s 0.00100s

20 0.00360s 0.00300s

50 0.00820s 0.00700s

100 0.01700s 0.01300s

VIII. CONCLUSION

We can observe that as file size increases encryption,

decryption time also increases however due to more number

of characters present the hackers may not get the exact trace

of the data and it will be more time consuming as well as

tedious for hackers to get the original message. The basic idea

of increasing the confusion and diffusion is achieved using

this method and also the simplicity of the algorithm also is an

advantage.

 83 www.erpublication.org

IX. FUTURE WORK

There will be increase in the running time of this algorithm,

the encryption and decryption a block of data will increase

the security at the cost of increase in its run time. This

algorithm is still widely used in WEP and other transport

layer security protocols so there is still need for more

optimization to improve its security and make it more robust.

ACKNOWLEDGEMENT

Special thanks to Mrs. Lakshmi Kurup for guiding us

through the implementation of the algorithm and enriching

the quality of the research.

REFERENCES

[1] A.Mousa, “ Data Encryption Performance Based on Blowfish,” 47th

International symposium ELMAR 2005 focused on multimedia systems

and applications,pp.131-134, Zadar, Croatia 08-10, June 2005

[2] A.Mousa, “Evaluation of RC4 Algorithm for Data

Encryption,”International Journal of Computer Science and Application,
Vol.3, No.2, June 2006.

[3] R.L.Rivest, “The RC4 Encryption Algorithm,” RSA Data Security, Inc.

March 1992.
[4] N.Chandra, “Enhancing RC4 Algorithm for WEP Protocol using FAKE

character Insertions and compression Techniques,” 2005.

[5] C.Pu , W.Y.Chung, “ Group key update method for improving RC4
cipher stream in Wireless Sensor Network,”, International Conference

on convergence Information Technology, 2007.

[6]

Vishesh Raimugia, B.E. in Computer Engineering, Dwarkadas J.

Sanghvi College of Engineering, Mumbai, India.

Rahul Shah, B.E. in Computer Engineering, Dwarkadas J Sanghvi
College of Engineering, Mumbai, India.

Kunal Sheth, B.E. in Computer Engineering, Dwarkadas J Sanghvi

College of Engineering, Mumbai, India.

