

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-9, September 2014

 130 www.erpublication.org

Abstract— In order to reduce the complexity of designing

and building computers, nearly all of these are made to execute

relatively simple commands (but do so very quickly). A program

for a computer must be built by combining these very simple

commands into a program in what is called as the machine

language. Since this is a tedious and error-prone process, most

programming is done using a high-level programming language.

A compiler translates or compiles a program written in a

high-level language that is suitable for human programmers into

the lower-level machine language that is required by the

computers. During this process, the compiler will also spot and

report the obvious programmer mistakes. This paper presents a

compiler system for adaptive computing. This approach

increases flexibility and usability in a way that allows porting

the system to different targets with a minimal effort. Built on an

existing design flow, we try to reach a new level of functioning

by analyzing and partitioning C programs at highest possible

description level. We show that analysis at this level is more

efficient than on lower ones due to the exploitability of more

expressive programming constructs. The improved analysis

results can be combined with new SSA based algorithm for data

path creation can lead to a higher solution quality of the final

system configuration.

Index Terms— adaptive compilation, compiler design,

compilation sequences, searching good compilation sequence.

I. INTRODUCTION

Traditionally, arithmetic performance of computing system is

increased by faster or more processors. The term „adaption‟ in

computer science refers to a process, in which an interactive

system or adaptive system adapts its behaviour to individual

users based on information acquired about its user(s) and its

environment. Adaptive systems accelerate programs by

executing parts of the algorithm on adaptive hardware.

Processors have grown more complex, with multiple

functional units, exposed pipelines and myriad latencies that

must be managed. In most cases, these computers execute

code produced by compilers – a translator that consumes

source code and produces equivalent for some target machine.

These elements can be dynamically reconfigured during the

program run. Some research projects in adaptive systems

have already demonstrated the advantages. At the same time,

the application of computing to new problems has created

demand for compilers that optimize programs for new

criteria, or new objective functions. For most modern

processors, we can build optimizing compilers that produce

efficient code for a single uniprocessor target. Compilers that

Manuscript received September 14, 2014.

 Sadhana Gopal, CSE, MDU/DCE/, Gurgaon, INDIA, 9560086374

Trishant Malik, CSE, MDU/DCE/, Gurgaon, INDIA, 9811904225

Seema Devi, CSE, MDU/DCE/, Gurgaon, INDIA, 9560086374

are easier to retarget but produce less optimized code have

been built so far. Such “retargetable” compilers are used in

many situations where the economics cannot justify a large

standalone compiler effort. What is yet to be developed is an

economical way to produce high-quality compilers for a wide

variety of target machines. Unfortunately, building such

compilers is expensive, primarily because it requires years of

effort by experts.

This paper provides a framework for implementing

optimizing compilers that will easily and automatically adapt

their behaviour to the circumstances under which they

operate, i.e., to different applications, to different

target-machine performance parameters, to different sets of

transformations and to different objective functions for

optimization. The aim is to change the economics of

producing high-quality compilers in a fundamental way and

make it possible to build retargetable compilers that produce

excellent code.

II. A NEW STRUCTURE FOR COMPILERS

One of the key challenges of future multi-core architectures is

programmability and scalability. As compilers link the code

written by programmers to the underlying parallel hardware,

this cluster has a pivotal role to play. It will focus on

versatility by adapting the user code to the ever changing

underlying hardware. It will pursue a system wide perspective

on adapting programs, and more generally workloads, to both

short-term architecture variation, such as cache miss, and

longer-term changes, such as the increasing number of

processors available.

The choice of specific transformations and an order for their

application play a major role in determining the effectiveness

of an optimizing compiler. We call an ordered list of

transformations a compilation sequence. Since the 1960s,

complier writers have chosen compilation sequences in an ad

hoc fashion, guided by experience and limited benchmarking.

Efforts to find the best sequence have foundered due to the

complexity of the problem. Transformations both create and

suppress opportunities for other transformations. Different

techniques for the same problem catch different subsets of the

Compiler Design: Adaptive Compiler construction

for Computing

Sadhana Gopal, Trishant Malik, Seema Devi

Fig.1 Classic Compiler Structure

 Compiler Design: Adaptive Compiler construction for Computing

 131 www.erpublication.org

available opportunities. Finally, combinations of techniques

can achieve the same result as some single techniques.

Instead of translating directly into machine code, modern

compilers translate to a machine independent intermediate

code in order to enhance portability of the compiler and

minimize design efforts. The intermediate language defines a

virtual machine that can execute all programs written in the

intermediate language. The intermediate code instructions are

translated into equivalent machine code sequences by a code

generator to create executable code. It is also possible to skip

the generation of machine code by actually implementing the

virtual machine in machine code. This virtual machine

implementation is called an interpreter, because it reads in the

intermediate code instructions one by one and after each read

executes the equivalent machine code sequences of the read

intermediate instruction directly. The use of intermediate

code enhances portability of the compiler, because only the

machine dependent code of the compiler itself needs to be

ported to the target machine. The remainder of the compiler

can be imported as intermediate code and then further

processed by the ported code generator, thus producing the

compiler software or directly executing the intermediate code

on the code generator. The machine independent part can be

developed and tested on another machine. This greatly

reduces design efforts, because the, machine independent part

needs to developed only once to create portable intermediate

code.

Unfortunately, the best compilation sequences depends on

many factors, including: 1) the specific details of the code

being compiled, 2) the pool of available transformations, 3)

the target machine performance and its performance

parameters, 4) the particular aspect of the code that the user

desires to improve(speed, page faults, power, space). Classic

compilers try to address the second and third factors through

design-time decisions, but ignore the first and last. This makes

it difficult to predict the impact that changes in the

compilation sequence will have on the compiled code. Today,

we lack the knowledge to analytically predict the results of a

particular sequence in a particular set of circumstances;

this prevents a purely analytical process from deriving good

code sequences.

In this paper, we describe a new approach to structuring

compilation that promises to simplify the construction of

high-quality optimizing compilers across a wide variation in

all four of these factors. The system proposed in this paper, as

shown in the figure, replaces the fixed-order optimizer with a

pool of transformations, a steering algorithm, and an explicit,

external objective function. The steering mechanism selects a

compilation sequence and compiles the program with that

sequence. The compiler evaluates the objective function on

the resulting target-machine program. The measured results

serve as input to the steering algorithm, allowing it to refine its

choices and to explore the space of possible compilation

sequences. Through repeated experiments, the steering

algorithm discovers a compilation sequence that minimizes

the objective function.

This approach addresses one of the fundamental challenges in

the design and implementation of an optimizing

compiler-choosing a specific set of transformations and an

order of application for them- by computing the solutions. It

relies on the speed of modern computers to replace the

fixed-order compiler of the 1960s with a structure that adapts

to new performance parameters, new input programs, new

transformations, and new objective functions. It applies

inexpensive cycles to solve a problem in compiler design that

has defied both theory and practice for 40 years. It makes the

compiler‟s objective function explicit, changeable, and

multi-dimensional rather than implicit, fixed, and

one-dimensional. The resulting compilers can optimize for a

variety of objectives and for combinations of those objectives.

We have done preliminary experiments using a particular

search technique to find program-specific compilation

sequences. To date, we have experimented with objective

functions that optimize for code size, that optimize for speed,

and that optimize for a property related to power

consumption.

III. SEARCHING FOR COMPILATION SEQUENCES:

Most effective compilers include ten to twenty

transformations currently, drawn from the hundreds that have

been proposed in the literature. Picking the best compilation

sequence for a specific program and a given objective

function is hard: 1) there is little theoretical understanding of

the effect of particular compilation sequences on the external

objective function, and 2) the space of compilation is too

large for approaches relying on exhaustive search. Most

compilers offer a small number of compilation sequences

(-01,-02,-03,…) discovered manually by designers. If none of

these sequences is good fit to the application or the user‟s real

performance goals, the user has no recourse.

Picking compilation sequences is an instance of a family of

combinatorial problem called sequential decision-making

problems. These problems have the following properties:

 Solving a problem requires making a sequence of

decisions.

 The effect or outcome of each decision is a function of

decisions made in the past as well as the other

random factors not entirely within the

decision-maker‟s control.

 A decision made at a given point in time alters the set

of choices for the future. At each step, the future

impact of a decision must be considered.

 The objective function depends in a complex way on

the interactions between the individual decisions and

their stochastic outcomes.

The problem of finding compilation sequences for specific

circumstances is such a problem. The travelling salesman

Fig.2 Structure of new compiler

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-9, September 2014

 132 www.erpublication.org

problem (TSP) and other discrete combinatorial optimization

problems are also members of this problem class. The

standard approach to solving these problems a=uses

deterministic or stochastic dynamic programming. Since

traditional dynamic programming implementations need

excessive amounts of space, complete search algorithms, for

example branch and bound algorithms for TSP, are used.

Complete search algorithms guarantee a globally optimal

solution. However, they are only practical for problems where

effective pruning techniques are known. Unfortunately, too

little is known about picking compilation sequences to enable

early pruning.

Searching a good optimization sequence for a program in the

optimization sequence space is like searching for a needle in a

haystack. Instead of solving this problem on a per program

basis, compiler writes construct good optimization sequences

through experience and experimentation on benchmark

programs. The constructed sequences are associated with

default optimization options like –o1, -o2 and –o32. These

sequences may be globally optimal with respect to the

program spaces, but are sub-optimal for the individual

programs. The simple reason being, what a good sequence for

one program is may not be good for another. So looking for a

universal good sequence is a futile exercise. An alternate

viable approach is to build a set of few good sequences, so

that for every class of programs there is a good optimization

sequence in the sequence set catering to that class. Then given

a new program we can choose the best sequence by trying out

all the sequence from the good sequences set. This approach

completely bypasses the program classification problem.

Using the LLVM compiler framework [Lattner and Adve

2004] we construct a good sequence set.

IV. CONCLUSION

The adaptive compilers that result from this work will allow

researchers and complier writers to explore the space of

compilation sequences and the impact of those on code

quality. To make these ideas useful in practice, we must

design mechanisms that use the results of full-fledged

adaptive compilations in limited time compiles. To build

efficient production compilers from this configurable base

will require additional research and implementation.

REFERENCES

[1] John Bakus. The history of Fortran I, II and III.

[2] Keith D. Cooper and Tim Harvey. A study estimated name transitions in

Fortran codes. Technical report in preparation, available on web at

http://softlib.rice.edu/MSCP/Publications.html, April 2001.

[3] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian.

Optimizing for reduced code space using genetic algorithms. In

proceedings of the 1999 workshop of languages, compilers and tools

for embedded systems, May 1999.

[4] Nicolas G. Fournier. Enhancement of an evolutionary optimizing

compiler. Master‟s thesis, Department of computer science,

University of Manchester, September 1999.

[5] Bacon, D. F. Graham, S.L., Sharp O.J., Compiler Transformations for

High-performance Computing, ACM Computing Surveys, 194.

[6] LLVM. 2012. http://llvm.org/docs/Passes.html

http://softlib.rice.edu/MSCP/Publications.html

