

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-9, September 2014

 86 www.erpublication.org

Abstract— Software development and maintenance is major

concern to adopting modularization. Measuring the design

quality early during software development has been regarded as

a prominent way to assure the quality of software products.

Several models has been proposed to estimate the quality of

software systems.

This system proposed an approach for determining the

design quality of an Object Oriented software using software

metrics. The metrics for object oriented design focus on

measurements that are applied to the class and design

characteristics. To validate the proposed methodology, we have

chosen Open source software project. We extracted a set of

chosen software metrics that play a definite role in software

design quality. Our metrics characterize the quality of

modularization with respect to the APIs of the modules. The

percentile average values calculated by these metrics formulate

a straight forward approach to assign a design quality for any

software systems.

For this work simulation, an application is developed in java.

This system examines the modularization quality of OO

software by measuring the extent in which a class in a module

uses another class in some other module and the extent of

inter-module call traffic created by inheritance Experiments are

carried out by means of different software version and the result

show that it works properly. The outcomes of the experimental

study provide a strong base for the

effectiveness of our system for metric based design quality

measurement of object-oriented software.

Index Terms— modularization, metric based design, OO

software.

I. INTRODUCTION

The fundamental issue faced by the developers in today’s

environment is how to measure the quality of software. Over

the past couple of decades, the speed of computer hardware

development has far exceeded software productivity

development. As computers are used in al1 sorts of everyday

activities, the demand for sophisticated and flexible software

also increases

The software development process is a difficult and

modularization can makes it more complicated. This is the

challenge to measure the quality of objects oriented software

modularization. Modularization of object oriented code is

distribution of the software in to modules and these modules

should communicate with each other through some

application programming interface (API). More properly

Manuscript received September 10, 2014.

Ruchi Kulkarni, M-TECH ,Department of Information Technology,

NRI Institutions, University of RGPV, Bhopal (MP), India

Samidha Diwedi Sharma, Prof, Department of Information

Technology, NRI Institutions, University of RGPV, Bhopal (MP),India

modularized software is also easy for maintenance work and it

can help the developer. In our work we are considering the

object oriented java language code for defining metrics and

modularization as modules.

Now days lot of software’s are developed by the

developers. Many of the software’s are very big in code size.

So generally to maintain the quality of the code,

developers need to distribute the code in small pieces or parts.

But how to divide the software is also an important task as it

can lead to various problem of inter module communication

therefore this modularized code should also be checked for

the quality. There are problems in removing the errors of non

modularized code. Particularly in object oriented software

development developer needs to use a lots of object oriented

concepts which may introduced the inter dependency of the

various units of the software e.g. Inheritance. Software metric

is a measure of some property of a piece of software or its

specifications. Therefore software metrics suite is needed .

We are concentrating on the same issue and providing the

software metrics for this modularized object oriented code.

II. PREVIOUS WORKS

In this previous works, we studied the metrics which

are developed only for the non-objective oriented software

systems. Time constraint was also a major issue as different

metrics were calculated individually and results was also

based on that metrics so it was difficult in respect to

complexity also.

III. PROPOSED APPROACH

The work reported here is an experiment to check the

modularization quality of the object oriented java code using

the following four metrics. These metrics are the base for this

experiment which is referred from Sarkar et al. Details of the

metrics or formulas are given in their work. The list of

referred metrics and their relationship with the assumptions is

provided. The referred metrics are as follows:

 Module Interaction index

 API function usage index

 Non API function usage index

 Implicit Dependency index

In this system MOOD metrics are discussed in the context of

encapsulation, inheritance. The MOOD metrics, defined by

Fernando Brito e Abreu[2], are designed to provide a

summary of the overall quality of an object-oriented project.

The MOOD metrics referred here as

 Method Inherited Factor

 Method Hiding Factor

After applying this selection of metrics we will then identify

OMI by the values of this metrics.OMI will tell the modularity

of any software with reference to this metrics. By OMI the

modularization achieved would be functionally correct.

A Metric Base Calaculation for Object Oriented

Software Modularization Quality Measurement

Ruchi Kulkarni, Samidha Diwedi Sharma

A Metric Base Calaculation for Object Oriented Software Modularization Quality Measurement

 87 www.erpublication.org

IV. PROPOSED METRICS

The following metrics are proposed based on object

oriented programming concepts which are largely used for the

software development. The non-object oriented metrics given

by Sarkar et. al. [1] is a base for our work. Application

programming interface (API) is the important term which we

are going to use. API functions are the functions only which

can be get called outside the module and non API functions

are not called outside the module. In our implementation we

are going to check if a function calling is found in another

module or class then it will be API function and if not found

then such functions will be considered as isolated and non

API functions. The measurement technique is applying the

metrics . The proposed metrics for object oriented code are as

follows:

A. Module Interaction Index(MII)

This metric calculates the index factor for module

communication and how well API functions of modules are

used by the other modules in the system for communication.

Assume that a module has n functions from 1 to n, of which

the n1 API functions are given by the subset

{f1api.....fn1api}. Cext is used to denote the total number of

external calls coming from the other modules. It is a java file

as module. Also assume that system has m1 to mi modules.

Total number of modules is M.

1 1{ ... } ()

()
()

a a a a

n ext

ext

f f f K f

MII m
K m

In ideal case when all the module calls are routed through the

function calls only, value of MII should be 1.

B. Application Programming Usage Index(APUI)

 This index determines what fraction of the API functions

exposed by a module is being used by the other module. Some

times in one java file (module) may consists of various classes

and API functions with different functionalities. If any other

single module is calling the API but need only small part of it

then it is unnecessarily calling the big API. Hence to avoid the

formation of such module this index factor is used. The

maximum value of this metric should be 1.

1

()
*

k

j jn

APIU m
n k

C. Non API Function Closedness Index(NC)

 Ideally,the non-API functions of a module should not expose

themselves to the external world. If the big software system is

not modularized fully then there can be the use of non API

functions. This is not preferable. As there should not be a use

of non API function outside the module or a java file. For a

well designed module value of NC will be 1. otherwise the

value will be between 0 and 1.

()

na

m

a

m m

F
NC m

F F

D. Implied Dependency Index(IDI)

When function in one module is writing to a global variable

that is in use by another module then there is indirect

dependency. There can be many events where this kind of

dependency occurs in program. The number of dependencies

must be few and far between.This is based on principle of

module encapsualtion P2.The ideal value should be 1.

()

()

(,)
()

((,) (,)

j

j

m C m f i j

g i j f i jm C m

D m m
IDI m

D m m D m m

E. Method Inherited Factor(MIF)

MIF is defined as the ratio of the sum of the inherited methods

in all classes of the system under consideration to the total

number of available methods(locally defined plus inherited)

for all classes.MIF measure directly the number of inherited

methods as a proportion of the total number of methods.

Method hiding factor measure how variables and methods are

encapsulated in a class. Visibility is counted in respect to

other classes. MHF represent the average amount of hiding

among all classes in the system. A private method is fully

hidden. In JAVA, hiding is as following: Protected,

Public,Private.

MHF = 1 –Methods Visible

Methods Visible = sum(MV) / (C-1) / Number of methods

MV = number of other classes where method is visible

C = number of classes

F. Method Hiding Factor(MHF)

MHF is defined as the ratio of the sum of the invisibilities of

all methods defined in all classes to the total number of

methods defined in the system under-consideration. The

invisibility of a method is the percentage of the total classes

from which this method is not visible. In other words, MHF is

the ratio of hidden methods –protected or private methods. If

all methods are private, MHF=100% .If all methods are

public, MHF=0%

MIF = inherited methods/total methods available in classes

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-9, September 2014

 88 www.erpublication.org

G. Implementation Method

 Read stored meta-data from the database and

calculate various metrics values

 Apply following formula

 OMI = [Ʃ
n
1 (mi * wi)] / n, where

 m: metrics value

 w: Weight Value

 n: total metrics

V. CONCLUSION

The proposed system is capable to estimate the software

quality of the modules of the software. The referred metrics

are implemented for object oriented code modularization and

it is also proposed that use of metrics with few assumptions

can be done for Object-Oriented Software System. The

implemented metrics are based on the concept of API. The

output values lies in the range 0 to 1 after applying metrics on

code. This dissertation also deals with the role of code

analyzer. This will help the developer to provide a quality

modularized code.

REFERENCES

[1] Sarkar S., Kak A. C. and Rama G. M, “API-Based and

Information-Theoretic Metrics for measuring the Quality of Software

Modularization” IEEE Trans. Software Eng., vol. 33, no. 1, pp.14-30.

[2] Santonu Sarkar, Member, IEEE, Avinash C. Kak, and Girish Maskeri

Rama,“Metrics for Measuring the Quality of Modularization of

Large-Scale Object-Oriented Software” , IEEE Trans. Software

Eng.VOL. 34, NO. 5, SEPTEMBER/OCTOBER 2008

[3] Abreu, Fernando B: "The MOOD Metrics Set," Proc. ECOOP'95

Workshop on Metrics, 1995IEEE Trans. Software Eng,

[4] R. Harrison, S. Counsell and R Nithi. An evaluation of the MOOD Set

of Object-Oriented Software Metrics. IEEE Transaction on Software

Engineering, Vol. 24, No. 6,June 1998

[5] Chidamber S. R. and Kemerer C. F.,“A Metrics Suite for Object

Oriented Design,” IEEE Trans. Software Eng., vol. 20, no. 6, pp.

476-493, June 1994.

[6] Fenton, N., and Pfleeger, S. L. "Software Metrics - A Rigorous and

Practical Approach", 2ed. International Thomson Computer Press,

London, 1996.

[7] L. A. Laranjeira, “Software Size Estimation of Object-Oriented

Systems”, IEEE Transaction on SoftwareEngineering, Vol. 16, No. 5,

May 1990, pp. 510-522.

[8] W. Li and S. Henry, “Object-oriented Metrics whichPredict

Maintainability”, The Journal of Systems andSoftware, Vol. 23, Issue

2, November 1993, pp. 111-122.

[9] V. L. Basili, L. Briand and W. L. Melo, “A validationof

object-oriented Metrics as Quality Indicators”,IEEE Transaction

Software Engineering. Vol. 22, No. 10, 1996, pp. 751-761.

