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 

Abstract— The aim of the paper is about system 

identification, modeling with validation and controller design of 

a magnetic levitation system. Magnetic levitation system is an 

electromagnetic device that suspends a ferromagnetic ball using 

electromagnetism. The Magnetic levitation system is a 

nonlinear, unstable system with fast dynamics. This report 

contains an overview in modeling of maglev system using least 

square estimation taking change in current as input and change 

in ball position as an output and state feedback controller design 

as well as implementation in real time Maglev system. The 

maglev system include an in build controller that levitated and 

stabilized a steel ball about an operating   region. The main 

objectives are to obtain good model for the maglev system and to 

implement a different controller to stabilize the ball. 

 
Index Terms— Magnetic Levitation system, Least Square 

Estimation, Linear Quadratic Regulator, Electromagnetic 

Levitation force. 

I. INTRODUCTION 

  Magnetic Levitation Systems (MLS) have gained 

considerable interest due to their great Practical importance in 

many engineering fields. 

 

The object of this project is to keep a metal ball suspended in 

mid-air by adjusting the field strength of an electromagnet. 

The electromagnet current may be increased until the 

Magnetic force produced is equal to or greater than, the 

gravitational force acting on the ball. Variations in the 

electromagnet current cause the ball to either fall (when 

current is decreasing) or be attached to the electromagnet 

(when current is increasing). The Feedback path control 

introduced aims to stabilize the ball when current disturbance 

occurs. 

 

From the control engineering point of view, an MLS (or 

Maglev as it is sometimes called) is a quite complex system 

since it presents non-linearity and it is naturally unstable. The 

easiest (but not the best) way to handle this system is to 

consider only small variations around a given operating point. 

This allows linear control principles to be applied. 

 

The Magnetic Levitation System allows the study of various 

control strategies. For Example : 

 

 Classical analogue lead controllers. 

 Classical discrete PID controllers. 

 State feedback control. 
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 Additionally, the MLS is a good illustrative process to 

perform system identification from    closed-loop 

experimental data. 

II. PROPOSED WORK 

 

The identification, modeling with validation and controller 

design of a magnetic levitation system has been described 

below. 

      

A. Maglev mechanical unit description 

 

The Maglev Mechanical unit consists of a base, with a 

connection interface. On that base the mechanical unit is 

placed with the coil being mounted on top of the construction. 

An IR sensor is placed on the two side of the construction. 

          

                
                   Fig.1. Maglev Mechanical Unit 

B. Maglev control system 
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Fig.2 

 

The computer with MATLAB and SIMULINK environment 

serve as the main control unit. The control signal which is 

voltage between [-5V to 5V] is transferred to the maglev unit, 

which causes current flow through the coil and thus magnetic 

field produce. The position of the ball is measured using IR 

sensor. The position information transferred to the PC via 

interface unit, where the entire control algorithm is placed in 

Simulink environment. 

 

 

C. System description: 

 

The control system consists of three inputs and one output. 

The inputs are: 

1. Set point − adjusts the vertical position of the ball. 

2. Reference input signal 

3. Disturbances − such as power supply fluctuations, coil 

temperature variations and external forces applied to the ball. 

The final output of the system is the actual ball position. 

 

The applied control is voltage, which is converted into the 

urrent via a driver embedded within the unit. The current 

passes hrough an electromagnet, which creates the 

corresponding magnetic field in its vicinity. The sphere is 

placed along the vertical axis of the electromagnet. The 

measured position is determined from an array of infrared 

transmitters and detectors, positioned in such a way that the 

infrared beam is intersected by the sphere. 

 

 
Fig.3. Control Architecture  

D. Coil characteristics: 

 

Description Value 

Core Iron 

Core Diameter 25mm 

Coil Diameter 80mm 

Number  of  Turns 2850 

Resistance 22Ω 

Inductance(L) 277 mH at 1Khz 

442 mH at 120Khz 

 

E. Linear Quadratic Regulator 

 

For the derivation of the linear quadratic regulator, we assume 

the plant to be written in state-space form       = Ax + Bu, and 

all the states are available for the controller. The feedback 

gain is a matrix K is implemented as u = −K (x-xdesired). The 

system dynamics are then written as 

 = (A- BK) x + BK xdesired 

xdesired represents the vector of desired states and serves as the 

external input to the closed loop system. The ‘A’ matrix of the 

closed loop system is ‘(A-BK)’ and the ‘B’ matrix of the 

closed loop system becomes BK. The column dimension of 

‘B’ equals the number of channels available in u, and must 

match the row dimension of K. 

 

 
Fig.4 

 

A system can be expressed in state variable form as:               

  = Ax + Bu and Y= Cx+Du  

 

With x (t) ∈ , u (t) ∈  . The initial condition is x (0). We 

assume here that all the states are measurable and seek to find 

a state-variable feedback (SVFB) control u = −Kx that gives 

desirable closed-loop properties.  

 

The closed-loop system using this control becomes:  

 = (A-BK) x; (A-BK) = Ac = the closed-loop plant matrix.  

The design procedure for finding the LQR feedback K is: 

• Select design parameter matrices Q and R.  

• Solve the algebraic Riccati equation for P.  

• Find the SVFB using K = P.  

The Riccati equation= P+ PA – P B   P +Q = 0  

 

The system is full controllable, as [B AB] = rank (2)  

So LQR method stands . 

a) Steps behind designing the controller: 
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Considering the system,                       =  

The steady state form of the Transfer Function is:  

   

We have chosen the value of LQR parameters like R as unity 

and Q as identity matrix to calculate the state feedback gain.   

Q =     and   R = 1 

 State feedback gain as:    

The two states of the 2
nd

 order system are displacement of the 

ball (first row element of gain matrix) and velocity of the ball 

(second row element of gain matrix). 

The closed loop Transfer functions as: 

 
 

III. MATHEMATICAL MODELING & VALIDATION 

 

 
Fig.5 

 

From the diagram and using basic equations we can write that: 

 = mg- Fem …..(1) 

And, V = Rci + Lc  ….(2) 

Where, i= electric current[A] 

x= ball position[m] 

m= Mass of ball[kg] 

g= gravity[m/s
2
] 

Rc= coil resistance[Ω] 

Lc= coil inductance [H] 

[  we know Magnetic energy of a coil is m=  Li
2.
 

 

The electromagnetic levitation force can be determined using 

the theorems of the generalized forces: 

    Fem = -[ ] ; 

The relation between coil inductivity and position of the 

ferromagnetic ball is: 

L(x)= L1+  ;                  

where, L=inductivity[H],  

                                                      

x= position of the ball[m],  

                                                    

 L1= inductivity when the ball is present(x=0) 

                                                    

 k- Coil constant [N-m
2
/A

2
]   

                

Fem= k ] 

 

At equilibrium point(x=x0 and i=i0), constant current will flow 

to the maglev system. So we can write that    = 0. 

V = Rci + Lc    in this equation we put the value of   = 0 

and we get : V=Ri0. 

So, i0=  ….(3) 

At equilibrium point, we assume acceleration is zero, so  

=0. 

Now, the equation no (2) becomes: mg= k  

 x0
2
 = k   x0 = i0  ……(4) 

Now, linearize the system about the point (x0 and i0) 

Using Taylor’s series expansion to the equation no (1) we get: 

 = -( ) ,x0)   - ( ) ,x0)   ; (higher order 

terms are neglected) 

 

Now, applying Laplace Transformation we get: 

S
2
 x = - (ki + kx ) 

     (S
2
+kx) = - ki  

     =  ; 

 

Where, ki=  =  =  (from equation (4)) 

And,     kx=  =  =  (from equation (4)) 

 So the Transfer function of the system becomes  =  

A.  Calculation: 

 

Rc= 21.5 Ω [From practical measurement] 

k = 1.477×  N-m
2
/ A

2  
[Given] 

m =  mass of the ball = 0.021 kg [Given] 

L =   ;   = 4  × 10
-7 

, N= number of turns on coil =2850, 

A=  (0.038)
2
 = 4.53× 10

-3
,  

l= 0.065m. 

L = 0.711 H 

i0 =  V = 0.23 [A] 

x0 = i0  = 0.15  10
-2

 [m] 

 k1 =  = 0.5145 

 kx =  = 0.274 

 

 So the incremental Transfer function of the system becomes 

 =  

 

B. Validation of Maglev model using least square 

estimation technique: 
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(t) + + d (t)+ ey(t) = a (t) + bu(t) …….(1) 

 

Let, t=kT 

So now we can write: 

u(t) = u(kT) 

(t) =  

 = (t) =  

 =  =  

 = (t) =  

Now after putting the values in equation no (1) we get: 

 +c  + d 

 +e y(kT) = a  + b u(kT) 

 y[(k+3)T] = (3-cT) y[(k+2)T] + (2cT-dT
2
-3) y[(k+1)T] + 

(1-cT+dT
2
-eT

3
) y(kT) + aT

2
  ] + (bT

3
 – aT

2
) u(kT) 

 y[(k+3)T] =  

 X 

 

 

 

a) Least square estimation: 

 

Consider the case where fβ is a linear function of β, that is,       

fβ (x) = x1β1 +.......+xp βp.  

Here (x1.....xp) stand for the observed variables. 

To write down the least squares estimator for the linear 

regression model, it will be convenient to use 

Matrix  notation. Let y = (y1,..., yn)
T 

and let x be the n × p data matrix of the n observations on the 

p variables 

x =  

where, xj  is the column vector containing the n observations 

on variable j , j = 1, . . . , n.  

Which is the squared distance between the vector y and the 

linear combination b of the columns of the Matrix x. The 

distance is minimized by taking the projection of y on the 

space spanned by the columns of x .Suppose now that x has 

full column rank, that is, no column in x can be written as a 

linear Combination of the other columns. Then, the least 

squares estimator β is given by: 

β = (x
T
x)

-1
 x

T
y 

IV. WAVEFORMS, RESULTS & DISCUSSIONS 

 

Characteristics Curve of Output Ball Position as sensed by 

Infra red Sensor and Sinusoidal Disturbance Signal applied 

at the input side- 

 
Fig.6 Characteristics Curve 

 

The first waveform is the Output Ball Position with X-axis as 

Voltage and Y-axis as time. Second one is the Sinusoidal 

Disturbance Signal with same axis as first one. 

Set point voltage applied:  -1 V 

Sampling time chosen    :    100 millisecond. 

 

A. Data points for closed loop ball position and 

disturbance Signal 

 

Time 

(milli 

second): 

Measured 

Ball 

Position 

(V): 

Disturbance 

signal (V): 

Input Signal 

Applied 

(V): 

0100 1.2 0.4 -0.6 

0200 1.6 0.0 -1.0 

0300 2.1 -0.2 -1.2 

0400 2.8 -0.6 -1.6 

0500 3.6 -0.8 -1.8 

0600 3.0 -0.8 -1.8 

0700 3.0 -0.6 -1.6 

0800 2.8 -0.6 -1.6 

0900 2.2 -0.2 -1.2 

1000 2.8 -0.1 -1.1 

1100 1.2 0.2 -0.8 

1200 0.8 0.6 -0.4 

1300 0.6 0.0 -1.0 

1400 0.6 1.2 0.2 

1500 0.6 1.0 0.0 

1600 0.8 1.0 0.0 

1700 1.0 0.8 -0.2 

1800 1.4 0.2 -0.8 

1900 2.0 0.0 -1.0 

2000 2.5 -0.3 -1.3 

2100 2.4 -0.8 -1.8 

2200 3.6 -0.6 -1.6 

2300 3.0 -0.8 -1.8 

2400 3.0 -0.6 -1.6 

2500 2.8 -0.4 -1.4 

2600 2.0 0.0 -1.0 

2700 1.6 0.2 -1.2 

2800 1.2 0.6 -1.6 

2900 0.8 1.0 0.0 

3000 0.6 1.1 0.1 

3100 0.6 1.2 0.2 
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3200 0.6 1.2 0.2 

3300 0.9 1.0 0.0 

3400 1.2 0.6 -0.4 

3500 1.6 0.3 -0.7 

3600 1.2 0.0 -1.0 

3700 0.6 1.1 0.1 

3800 2.6 -0.6 -1.6 

3900 3.0 -0.6 -1.6 

4000 3.0 -0.6 -1.6 

4100 2.8 -0.6 -1.6 

4200 2.4 -0.4 -1.4 

4300 2.0 -0.2 -1.2 

4400 2.4 0.6 -1.6 

4500 1.0 0.6 -1.6 

 

Parameters of the closed loop transfer function using least 

square estimation: 

 

a=142.75 

b=-120050 

c=148.22 

d=7293.75 

e=64812.75  

 

Closed loop transfer function for estimated plant with 

controller: 

 

Controller transfer function is:  =  

Closed loop transfer function becomes: 

Transfer Function =    =  

Where;  = Change in ball position (in terms of voltage). 

              = Change in applied voltage signal. 

              DC Gain of the estimated system =1.852 

               Z= Zero of the system = 840.9807 

 

 P = Poles of the system are:            

-68.4742 +32.5793i 

-68.4742 -32.5793i 

-11.2715 

 

Open loop Estimated Transfer function   : 

 

   =  

 

a)  Discussions: 

 

1. The incremental input is actually the increase in applied 

Sinusoidal disturbance Signal with respect to the DC voltage 

applied as a reference signal (-1 V). 

2. The operating point chosen for output ball position as 2 V. 

The incremental output ball position is taken as the change in 

ball position with respect to operating point. 

 3. Poles of estimated closed loop transfer function are all on 

the left half of the transfer functions, indicates the system is 

stable which can only be due to the lead compensator in 

forward path which is a good sign for validation.  

 

B. Frequency response of the Estimated Open Loop Plant 

and Given Modeled Plant in same Reference: 

 
Fig.7. Frequency Response 

a) Discussion : 

1. For both plots the magnitude are exactly matched in low 

frequency region i.e. up to 0.1 Hz and after that  although they 

are not exactly matched i.e. at high frequency region, but their 

negative  decaying pole nature remains almost same, parallel 

with each other.  

2. For low frequency range the Phase Plots is almost zero for 

original CL whereas for estimated CL it is phase shifted by 

180 degrees, but at high frequency range, plots do not match 

at all. 

3. Overall, we can say our model has validated in terms of : 

 DC gain with 10% Error.  

 Both model magnitude plots matches in low freq 

region and decays same in high freq zone ,i.e. 

same magnitude difference. 

 Phase plot of both model matches in low frequency 

zone with 180
o
 phase shift. 

4.  A notch signal has been found in both the magnitude and 

phase plot at about 0.8 Hz of original modeled closed loop 

which can be estimated just by a noise signal. 

 
The Closed loop simulation result:  

 
Fig.8 

From closed loop Response: 

1. The ball position finally reaches steady state of 

amplitude 0.5 with settling time of 7 seconds without 

any overshoot.  
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2. Although the settling time is 7 seconds but we can use 

this feedback gain in real time simulation and can 

check the stability of the ball position.  

b) Real time simulation results:   

 
Fig.9 

 

 
Fig. 10 

 

V. CONCLUSION 

System identification, mathematical modeling with validation 

and controller design has been done in this paper successfully. 

Designed controller has some big limitation in terms of 

frequency; it will only work on low frequency zone. It is a 

better controller with comparison to the existing PID 

controller in terms of stability performance, more robust. As it 

is a linearised model at a certain equilibrium point, we are not 

considering many aspects otherwise it may work for all 

frequency zones. 

Robustness can be improved by incorporating h-infinity 

control which we have not considered here. The plant can be 

linearized at other equilibrium points, so that stability 

performance in terms of frequency can more aptly studied. 

The choice of equilibrium points is an important 

consideration; otherwise ir can give erroneous results. The 

plant is assumed to be fully state controllable so that the linear 

state feedback controller can be designed. A notch signal has 

been found out which can be estimated by a noise signal. 

There is a scope of improvement in the design of the 

controller in terms of frequency response so that the controller 

can work for all frequency range. 
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