

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-6, June 2014

 49 www.erpublication.org

 Abstract— Object oriented systems play an important role in

real world environment. Many coupling measures have been

introduced invarious surveys to identify and measure the

design complexity of object oriented systems. We analyze

different coupling metrics in this paper which also identifies

complexity between inheritance and interface programming.

This paper presents a wide discussion on measure coupling

between object (CBO), number of associations between classes

(NASSocC), number of dependencies in metric (NDepIN) and

number of dependencies out metric (NDepOut) in object

oriented programming. A measurement is done for UML class

diagrams and interface diagrams. The metric values of class

and inheritance diagrams have been compared to prove which

concept is good to use and beneficial for developers. A suite of

measures is presented that addresses two problem areas within

contemporary object-oriented software measurement theory

and practice, i.e. the lack of OOA measures and the lack of

measures for behavioral aspects of software. We also analyze a

different measure which is based on a formally defined model

of object-event interaction, called the object-event association

matrix.

Index Terms— OOP, OOA, CBO, Inheritance

I. INTRODUCTION

Today’s market much more emphasize on software quality.

This has led to an increasingly large body of work being

performed in the area of software measurement, particularly

for evaluating and predicting the quality of software. In turn,

this has led to a large number of new measures being

proposed for quality design principles such as coupling. High

quality software design, among many other principles,

should obey the principle of low coupling. Stevens et al., who

first introduced coupling in the context of structured

development techniques, define coupling as “the measure of

the strength of association established by a connection from

one module to another” [1]. Therefore, the stronger the

coupling between modules, i.e., the more inter-related they

are, the more difficult these modules are to understand,

change, and correct and thus the more complex the resulting

software system. Some empirical evidence exists to support

this theory for structured development techniques; [2], [3].
Test-driven development (TDD) is not, despite its name, a

testing technique but rather a development technique in

which the tests are written prior to the source code [4]. The

tests are added gradually during the implementation process

and when the tests are passed, the code is re factored to

improve its internal structure. This incremental cycle is

repeated until all the functionality is implemented. [5]. The

Manuscript received June 08, 2014.

 Mr. Siddharth Jain, M.Tech Scholar, SSSIST, Sehore

 Mr. Gajendra Singh, HOD, SSSIST

idea of TDD was popularized by Beck [6] in the Extreme

Programming (XP) method. Therefore, although TDD seems

to have just recently emerged, it has existed for decades; an

early reference to the use of TDD features in the NASA

Project Mercury in the 1960s [7].
Basically there are two different kinds of abstractions namely

classes and interfaces. The most important difference is that

a class can hold functional logic and an interface is used to

organize source code and it will also provide the boundary

between the levels of abstraction. According to object

oriented programming, the class provides encapsulation and

abstraction and the interface provides abstraction and cannot

inherit from one class but can implement multiple interfaces.

The above said differences are minor and they are very

similar in structure, complexity, readability and

maintainability of source code [8]. Here, the difference in

usage of class inheritance and interface concepts are

measured for class diagrams by coupling metrics proposed by

Chidamber and Kemrer and Brian.
Complexity of source code directly relates to cost and quality.

Many coupling models are presented in the literature to

measure the possible interactions between objects and to

measure design complexity. High coupling between objects

increases complexity and cost. Low coupling is good for

designing object oriented software. Inheritance introduces

more interactions among classes [9]. This will increase the

complexity. This paper presents a comparison between object

oriented interfaces and inheritance class diagrams.
The remaining of this paper is organized as follows. We

discuss class and object in Section 2. In Section 3 we discuss

about Inheritances. In section 4 we discuss about Evolution

and Recent Scenario. In section 5 we discuss about the

Challenges. The conclusions and future directions are given

in Section 6. Finally references are given.

II. CLASS AND OBJECT

A class is nothing but a blueprint or a template for creating

different objects which defines its properties and behaviors.

Java class objects exhibit the properties and behaviors

defined by its class. A class can contain fields and methods to

describe the behavior of an object. Methods are nothing but

members of a class that provide a service for an object or

perform some business logic. Java fields and member

functions names are case sensitive. Current states of a class’s

corresponding object are stored in the object’s instance

variables. Methods define the operations that can be

performed in java programming.

Syntax:
class classname
{Methods + variables;}

Analysis of Coupling between Class Inheritance and

Interfaces

Mr. Siddharth Jain, Mr. Gajendra Singh

Analysis of Coupling between Class Inheritance and Interfaces

 50 www.erpublication.org

An object is an instance of a class created using a new

operator. The new operator returns a reference to a new

instance of a class. This reference can be assigned to a

reference variable of the class. The process of creating objects

from a class is called instantiation. An object encapsulates

state and behavior.
An object reference provides a handle to an object that is

created and stored in memory. In Java, objects can only be

manipulated via references, which can be stored in variables.
Creating variables of your class type is similar to creating

variables of primitive data types, such as integer or float.

Each time you create an object, a new set of instance

variables comes into existence which defines the

characteristics of that object. If you want to create an object of

the class and have the reference variable associated with this

object, you must also allocate memory for the object by using

the new operator. This process is called instantiating an

object or creating an object instance.
The class diagram is the main building block in object

oriented modeling. It is used both for general conceptual

modeling of the systematic of the application, and for

detailed modeling translating the models into programming

code. The classes in a class diagram represent both the main

objects and or interactions in the application and the objects

to be programmed. In the class diagram these classes are

represented with boxes which contain three parts:

 The upper part holds the name of the class

 The middle part contains the attributes of the class

 The bottom part gives the methods or operations the

class can take or undertake.

The example of BankAccount class is shown in fig 1

.
Fig 1 Class Diagram

An object diagram in the Unified Modeling Language

(UML), is a diagram that shows a complete or partial view of

the structure of a modeled system at a specific time.An

Object diagram focuses on some particular set of object

instances and attributes, and the links between the instances.

A correlated set of object diagrams provides insight into how

an arbitrary view of a system is expected to evolve over time.

Object diagrams are more concrete than class diagrams, and

are often used to provide examples, or act as test cases for the

class diagrams. Only those aspects of a model that are of

current interest need be shown on an object diagram(fig2).

Fig 2 Object Diagram

III. INHERITANCE

In object-oriented programming (OOP), inheritance is a way

to compartmentalize and reuse code by creating collections

of attributes and behaviors called objects which can be based

on previously created objects. In classical inheritance where

objects are defined by classes, classes can inherit other

classes. The new classes, known as subclasses (or derived

classes), inherit attributes and behavior of the pre-existing

classes, which are referred to as super classes (or ancestor

classes). The inheritance relationships of classes gives rise to

a hierarchy. In prototype-based programming, objects can

be defined directly from other objects without the need to

define any classes. The inheritance concept was invented in

1967 for Simula. Sometimes inheritance-based design is

used instead of roles. A role, say Student role of a Person

describes a characteristic associated to the object that is

present because the object happens to participate in some

relationship with another object (say the person in student

role -has enrolled- to the classes). Some object-oriented

design methods do not distinguish this use of roles from more

stable aspects of objects. Thus there is a tendency to use

inheritance to model roles, say you would have a Student role

of a Person modelled as a subclass of a Person. However,

neither the inheritance hierarchy nor the types of the objects

can change with time. Therefore, modelling roles as

subclasses can cause the roles to be fixed on creation, say a

Person cannot then easily change his role from Student to

Employee when the circumstances change. From modelling

point of view, such restrictions are often not desirable,

because this causes artificial restrictions on future

extensibility of the object system, which will make future

changes harder to implement, because existing design needs

to be updated. Inheritance is often better used with a

generalization mindset, such that common aspects of

instantiable classes are factored to superclasses; say having a

common superclass 'LegalEntity' for both Person and

Company classes for all the common aspects of both. The

distinction between role based design and inheritance based

design can be made based on the stability of the aspect. Role

http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Object_oriented
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Conceptual_model
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/Programming_code
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Set_(computer_science)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Instance_(programming)
http://en.wikipedia.org/wiki/Instance_(programming)
http://en.wikipedia.org/wiki/Instance_(programming)
http://en.wikipedia.org/wiki/Attribute_(computing)
http://en.wikipedia.org/wiki/Correlation
http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Class_(object-oriented_programming)
http://en.wikipedia.org/wiki/Hierarchy
http://en.wikipedia.org/wiki/Prototype-based_programming
http://en.wikipedia.org/wiki/Simula

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-6, June 2014

 51 www.erpublication.org

based design should be used when it's conceivable that the

same object participates in different roles at different times,

and inheritance based design should be used when the

common aspects of multiple classes (not objects!) are

factored as superclasses, and do not change with time(fig3).

Fig 3 Inheritance

IV. EVOLUTION RECENT SCENARIO

Object-oriented software is based on the notions of class,

encapsulation, inheritance, and polymorphism. These

notions make it more challenging to design metrics for the

characterization of OO-based software vis-a-vis what it takes

to do the same for the purely procedural code [10], [11]. An

early work by Coppick and Cheatham [12] attempted to

extend the then popular program-complexity metrics,such as

the Halstead [13] and the McCabe and Watson complexity

measures [14], to OO software. Subsequently,other works on

OO software metrics focused mostly on the issue of how to

characterize a single class with regard to its own complexity

and its linkages with other classes.
In 2003, G. McGraw et al.[15] proposed about extract

sensitive classes i.e. classes having both data members and

methods attack prone. Hence these classes are suspected to be

attacked. Second step attempts to secure these sensitive

classes using security mechanisms. At the end, classes are

assumed to be secure merely just applying security

mechanisms. But, as a matter of fact, sensitive classes even

after shielded with security mechanisms may not be

completely secure. The simple reason is that no mechanism

can guarantee absolute security.
In 2006, S. Ardi et al. [16] describe about the loss due to Code

Red Worm has been estimated to $2.6 billion and due to

Nachi Worm, operations at Air Canada and CSX railroad

were affected very badly.Efforts in this direction have been

started but the statistics shows that the problem is still

growing
In 2004 Rajib et al.[17] proposed a tool to improve software

products and process, measurements which are essential in

many fields. Software measurement plays an important role

in finding the software quality, performance, maintenance

and reliability of software products. The concept of

measurement requires appropriate measurement tools to

measure, to collect, to verify and validate relevant metric

data.
In 2005, Marcela Genero et al. [18] proposed about measure

coupling in class diagrams there are three types of metrics

used in this diagram. First CK metric is added to measure

coupling performance. A measure of coupling is more useful

to determine the complexity. The higher the inter object

coupling, the more rigorous the testing needs to be. In this

paper, four metrics are used to validate the proposed

approach.
Object oriented programming is more recent and more

important in quality software programming than that of the

old style procedural programming. In the last two decades

object oriented software engineering receives much attention

because object oriented technology is wide spread [19].
The class provides encapsulation and abstraction and the

interface provides abstraction and cannot inherit from one

class but can implement multiple interfaces. The above said

differences are minor and they are very similar in structure,

complexity, readability and maintainability of source code

[20].
In 2010, V. Krishnapriya, et al. [21] proposed about the

measurement to measure coupling between object (CBO),

number of associations between classes (NASSocC), number

of dependencies in metric (NDepIN) and number of

dependencies out metric (NDepOut) in object oriented

programming. A measurement is done for UML class

diagrams and interface diagrams. The metric values of class

and inheritance diagrams have been compared to prove

which concept is good to use and beneficial for developers.
In 2007 , Maria Siniaalto et al. [22] reports the results from a

comparative case study of three software development

projects where the effect of TDD on program design was

measured using objectoriented metrics. The results show that

the effect of TDD on program design was not as evident as

expected, but the test coverage was significantly superior to

iterative test-last development.
In 2010, Simon Allier et al.[23] express existing definitions

of coupling metrics using call graphs. We then compare the

results of four different call graph construction algorithms

with standard tool implementations of these metrics in an

empirical study. Our results show important variations in

coupling between standard and call graph-based calculations

due to the support of dynamic features.
In 2010, Hongyu Pei Breivold et al.[24] primary studies for

this review were identified based on a pre-defined search

strategy and a multi-step selection process. Based on their

research topics, we have identified four main categories of

themes: software trends and patterns, evolution process

support, evolvability characteristics addressed in OSS

evolution, and examining OSS at software architecture level.

A comprehensive overview and synthesis of these categories

and related studies is presented as well.
In 2009, Yuming Zhou et al.[25] describe about the OO

metrics that are investigated include cohesion, coupling, and

inheritance metrics. Our results, based on Eclipse, indicate

Analysis of Coupling between Class Inheritance and Interfaces

 52 www.erpublication.org

that: 1) The confounding effect of class size on the

associations between OO metrics and change-proneness, in

general, exists, regardless of whichever size metric is used;

2) the confounding effect of class size generally leads to an

overestimate of the associations between OO metrics and

change-proneness; and 3) for many OO metrics, the

confounding effect of class size completely accounts for their

associations with change-proneness or results in a change of

the direction of the associations. These results strongly

suggest that studies validating OO metrics on

change-proneness should also consider class size as a

confounding variable.
In 2009, Alka Agrawal et al. [26] suggest an approach to

identify vulnerable classes in object oriented design. The

method proposed also investigates whether transitive nature

of Inheritance contributes to propagation of vulnerabilities

from one class to another or not. An algorithm for computing

Vulnerability Propagation Factor (VPF) has been developed,

which measures number of vulnerable classes because of the

Vulnerability in some classes of an object oriented design.
In 2011, Narendra Pal Singh Rathore & Ravindra Gupta [27]

presented an approach to measure complexity between class

inheritance and interface on object oriented source code.

V. CHALLENGES

Effort of measuring vulnerability of an Inheritance hierarchy

and hence an object oriented design is at very young stage.

So, lacunas are obvious. One of the major limitations of the

work is its applicability to only object oriented software.

Also, only one aspect of object oriented design has been

considered when Calculating. Inheritance, while other

aspects including Encapsulation, Polymorphism, and

Coupling etc. should also be taken into account.
Moreover, it is important to pay attention that the approach

reached almost the half error rate than the regression for the

sample, proving the advantage of to use several beniciary

approaches against statistics multivariate regression.
Such studies require effort be collected on a per-class basis in

a consistent and reliable manner. This is more difficult than

accounting only for the total project cost. From a practical

perspective, such a fine granularity may not be needed, as the

typical application of a cost model is to estimate, at an early

stage, the cost and risk associated with entire projects.
Chidamber, Darcy, and Kemerer have investigated the six of

the design measures proposed in . Their aim was not to build

accurate prediction models, but rather to test the ability of the

measures to identify high effort and low productivity classes.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper presents discuss several concepts and on how to

reduce coupling in object oriented programming. Due to the

reduction in coupling, developers can produce quality

rograms. When CBO is reduced reusability will be increased.

High coupling will support low encapsulation and produce

more faults. Due to the reduction in values of coupling

metrics the stability of the structure will be good. When the

coupling measures are reduced, the classes can function more

independently.
Classes in object-oriented systems, written in different

programming languages, contain identifiers and comments

which reflect concepts from the domain of the software

system. This information can be used to measure the

cohesion of software. To extract this information for

cohesion measurement, Latent Semantic Indexing can be

used in a manner similar to measuring the coherence of

natural language texts.

REFERENCES

[1] W. Stevens, G. Myers, and L. Constantine, “Structured Design,”IBM

Systems J., vol. 13, no. 2, pp. 115-139, 1974.

[2] R.W. Selby and V.R. Basili, “Analyzing Error-Prone SystemsStructure,”

IEEE Trans. Software Eng., 1991.

[3] P.A. Troy and S.H. Zweben, “Measuring the Quality of Structured

Designs,” J. Systems and Software, 1981.

[4] Beck, K., Test-Driven Development By Example, Addison-Wesley, Boston,

MA, USA, 2003.

[5] Astels, D., Test-Driven Development: A Practical Guide,Prentice Hall,

Upper Saddle River, USA, 2003.

[6] Beck, K., Extreme Programming Explained, Second Edition:Embrace

Change, Addison-Wesley, USA, 2004.

[7] G. Larman and V.R. Basili, "Iterative and Incremental Development: A

Brief History", 2003, IEEE.

[8] Mathew Cochran,”Coding Better: Using Classes Vs Interfaces”,January

18th, 2009.

[9] Mohsen D. Ghassemi and Ronald R. Mourant,”Evaluation of Coupling in

the Context of Java Interfaces”, Proceedings OOPSLA, ACM 2000.

[10] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for Object Oriented

Design,” IEEE Trans., 1994.

[11] N. Churcher and M. Shepperd, “Towards a Conceptual Framework for

Object-Oriented Software Metrics,” 1995.

[12] C.J. Coppick and T.J. Cheatham, “Software Metrics for Object-Oriented

Systems,” , 1992.

[13] M.H. Halstead, Elements of Software Science. Elsevier, 1977.

[14] T.J. McCabe and A.H. Watson, “Software Complexity,” Crosstalk,J.

Defense Software Eng. 1994.

[15] G. McGraw, “From the ground up: The DIMACS software security

workshop,” IEEE Security & Privacy, vol. 1, 2003.

[16] S. Ardi, D. Byres and N. Shahmehri, “Towards a structured unified

process for software security,”, ACM, 2006.

[17] Rajib Mall,”Fundamentals of Software Engineering”, Chapter 1,

Pg.No:1-18,2nd Edition, April 2004.

[18] Marcela Genero, Mario Piattini and Coral Calero,“ A Survey of Metrics for

UML Class Diagrams”, 2005.

[19] Pradeep Kumar Bhatia, Rajbeer Mann, “ COIT-2008,RIMT-IET,Mandi

Gobindgarh.

[20] Mathew Cochran,”Coding Better: Using Classes Vs Interfaces”,January

18th, 2009

[21] V. Krishnapriya and Dr. K. Ramar, 2010 International Conference on

Advances in Computer Engineering,IEEE.

[22] Maria Siniaalto and Pekka Abrahamsson, First International Symposium

on Empirical Software Engineering and Measurement,IEEE 2007.

[23] Simon Allier, St´ephane Vaucher, Bruno Dufour, and Houari Sahraoui,

2010 Working Conference on Source Code Analysis and

Manipulation,IEEE.

[24] Hongyu Pei Breivold, Muhammad Aufeef Chauhan and Muhammad Ali

Babar, 2010 Asia Pacific Software Engineering Conference,IEEE.

[25] Yuming Zhou, Hareton Leung and Baowen Xu, IEEE TRANSACTIONS

, SEPTEMBER/OCTOBER 2009.

[26] Alka Agrawal, Shalini Chandra and Raees Ahmad Khan, 2009

International Conference on Availability, Reliability and Security,IEEE.

[27] Narendra Pal, Ravindra Gupta 2011, WICT, ISBN no. 978-1-4673-0127-

5.

