

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-5, May 2014

 234 www.erpublication.org

 Abstract— In this paper we described the single machine

Job scheduling without due date as a Symmetric Traveling

Salesman Problem (STSP). After formulated the problem we

used two methods for solving our model to determined the

minimum schedule length, which is our desired objective . One

belongs to the construction procedures called Farthest

–insertion Algorithm. Another one is Tow-opt algorithm, which

belongs to the improvement procedure heuristic. We simulate

two C programs to solved our model. our simulation work can

cover until 506 jobs.

 Index Terms— Single Machine, Scheduling, Traveling

Salesman Problem, Farthest –insertion, Two- Opt algorithm.

I. INTRODUCTION

In this Section we shall introduce our model, i.e.

scheduling with a single machine without due date criteria.

We begin with giving some remarks about the travelling

salesman problem, which is related to our model, followed

by local search and insertion heuristic algorithm, which will

be used to solve our model.

II. TRAVELLING SALESMAN PROBLEM

The travelling salesman problem (TSP) is one of the oldest

problems in combinatorial optimization problems, belonging

to the NP-hard class (Garey&Johson, 1979). By an NP-hard

class it is meant that the class of those problems for which no

polynomial time algorithm has been found. The statement of

the TSP problem is deceptively simple. A travelling salesman

must visit every city in his territory exactly once and then

return to his starting point (Flood, 1956).

The study of this problem has attracted many researchers

from different fields, e.g., Mathematics, Operations

Research, Physics, Biology and Artificial Intelligence, and

there is vast amount of literature on it (Gerhad, 1994). This is

due to the fact that, although it is easily formulated, it

exhibits all aspects of combinatorial optimization and has

served and continues to serve as the benchmark problem for

the development of new algorithms such as simulated

Manuscript received May 19, 2014.

 Abdelaziz Hamad Elawad, Taif University, Kingdom of Saudi Arabia,

Raniah Branch, Faculty of Sciences and Arts, Department of Mathematics

 Mohammed Hassan Elzubair, Taif University, Kingdom of Saudi

Arabia, Raniah Branch, Faculty of Sciences and Arts, Department of

Mathematics

 Bahrom Sanugi, Universiti Sains Islam, Malaysia

annealing, tabu search, genetic algorithms, and artificial

neural networks

Nevertheless, the TSP is interesting not only from a

theoretical point of view but also in the practical aspects.

Many practical applications can be modeled as travelling

salesman problems. The most common practical

interpretation of the TSP is that of a salesman seeking the

shortest tour through n cities or clients. This basic problem

underlines several routing applications, but in this case a

number of side constraints usually come into play. Several

interesting permutation problems not directly associated with

routing can also be described as TSP. Examples of such

problems are computer wiring, hole punching,

crystallography and job scheduling (Laporte, 1992).

 The travelling salesman problem can be categorized as

symmetric and asymmetric. Let W =[wij] denotes the weight

matrix of a graph. Then, the edge weights may not be

symmetric which means not all wij = wji. In this paper we will

consider our model, i.e. the single machine scheduling

without due date as a symmetric TSP.

III. THE MODEL

Suppose n independent jobs must be performed sequentially

on a single machine. Let cij is the cost of travelling from city

i to city j. We also assume that

cij = cji which makes the problem symmetric. The matrix C =

[cij] is therefore a symmetric cost matrix. This problem can be

described as a symmetric travelling salesman problem (TSP).

We will elaborate on the use of heuristics algorithm, farthest

insertion and 2-opt algorithm to determine the minimum

schedule length, which is our desired objective (Golden et al,

1980).

IV. APPROXIMATE ALGORITHM

 As mentioned earlier, the traveling salesman problem is

one of those combinatorial optimization problems for which

no efficient algorithms (i.e., with computation time bounded

by a polynomial in the number of nodes n) are known. When

faced with such computationally hard (NP-hard) problems,

one practical approach is to relax the requirement that an

algorithm produces an optimal result, and instead be

satisfied with a sub-optimal solution reasonably close to the

optimal solution. Such relaxation of the optimality constraint

often reduces the computation time from an exponential to a

polynomial function (of the size of the input). Such

approximate algorithms are the only realistic methods of

solving computationally hard problems of large size.

A Model for Single Machine Job Scheduling Without

Due Date

Abdelaziz Hamad Elawad, Mohammed Hassan Elzubair, Bahrom Sanugi

A Model for Single Machine Job Scheduling Without Due Date

 235 www.erpublication.org

 For the travelling salesman problem, a number of such

approximate algorithms have been proposed and studied.

Here we will consider two of the most effective, each

represents its class of approximate algorithms (Golden at el.,

1980).The first is the farthest insertion algorithm which

represent the class of insertion algorithms, and the second

one is the 2-opt algorithm which represent the local –search

class of algorithms

A. Insertion Algorithm

 An insertion algorithm arbitrarily picks a city as the

starting node, say s, of tour. From among the remaining (n-1)

cities it selects another city (according to a criterion to be

discussed shortly), say p. Now we have a subtour or cycle of

two nodes (s, p, s). Then a third node, q, out of the (n-2)

unvisited nodes is selected, and is inserted into the current

cycle to produce cycle (s, p, q, s) or (s, q, p, s) whichever is

cheaper. This enlargement is continued. At any stage let VT

denotes the set of nodes included in the subtour, and let V be

the entire nodes set for this problem.

 The kth iteration (1 k n-1) enlarges the cycle of size k to

one of size k+1 by means of the following two steps: (Golden

at el., 1980)

Step 1 (selection step). In the set V- VT of unvisited nodes,

determine which node is to be added to the cycle next.

Step 2 (insertion step). Determine where (i.e., between which

two nodes of the cycle) the newly selected nodes is to be

inserted to enlarge the current subtour.

A number of heuristics have been suggested and

experimented with for the selection step. Some of these are

(i) Pick any unvisited nodes at random (the algorithm is

called arbitrary insertion);

(ii) Pick that unvisited node which is nearest to the current

subtour (the algorithm is called nearest insertion);

(iii) Pick that unvisited node which is farthest from the

current subtour (the algorithm is called farthest

insertion).

Of the three heuristics mentioned, farthest insertion appears

to be the best overall strategy, according to a number of

extensive and independent empirical studies (Golden et al.,

1980). The underlying intuition behind this approach is that

if a rough outline of the tour can be constructed through the

widely –separated nodes, then the finer details of the tour

resulting from the inclusion of the nearer nodes can be filled

in without greatly increasing the total length of the tour.

Therefore, we will try to use the farthest insertion algorithm

as initial solution to solve our first model.

In order to find efficiently that unvisited node, which is

farthest from the nodes in the current cycle VT. Let us

maintain a distance array dist (of length n) such that for every

node v not in cycle, dist (v) is the distance to v from that node

in the current cycle from which v is closest. The farthest node

f is the one with the largest value in the dist array, and it is the

node to be inserted next. Each time a new node f is added to

the cycle, the dist array is updated such that its entries are the

minimum of the current entries in the dist array and the fth

row in W, where W=[wij] denote the weight matrix.

Having settled on the selection step, let us now look at the

insertion step. Assume that there are k nodes in the current

cycle, and the next (farthest) nodes to be inserted is f. We

examine every edge (i, j) in the current tour to determine the

insertion cost of f between nodes i and j, which is

.ijfjifij wwwc

Among all k edges in the cycle we select edge (t, h) with tail

t and head h for which thc has the smallest value (cij could be

negative). Then insert node f between t and h. The weight of

the cycle is updated. We also update the dist array. The

following FITSP (farthest insertion travelling salesman

procedure) algorithm describes this heuristic.

Algorithm Farthest- Insertion

W=[wij] denote the weight matrix,

VT denotes the set of nodes included in the subtour,

V denotes the entire nodes set of the problem.

Initialization:

VT = {s}; / Initial cycle of one node s and cycle of zero

weight at s /

Et = {(s, s)};

wss = 0;

tweight = 0; / total weight of the subtour /

for every node u TVV do dist(u) = wsu;

Iteration:

while nVT do

 begin

 f = node in V-VT with largest value of dist(f);

 for every edge (i,j) ET do

 ijfjifij wwwc / Insertion

cost /

 (t, h) = edge in ET with smallest value of

cth;

)};,{()},(),,{(hthfftEE TT

};{ fVV TT

tweight = tweight + cth;

for all x (V-VT) do dist(x)=min{dist(x), wfx}

 end

B. Local Search Heuristics

The local search is one of the best known and most successful

heuristics for TSP to obtain a nearly optimal solution.

(i) Starting with an arbitrary Hamiltonian cycle (as

initial TSP tour) H, delete r edges from H, thus producing

r disconnected paths. Reconnect these r paths in such a

way as to produce another TSP tour H . Thus H and

H differ from each other by exactly r edges; the

remaining (n - r) edges are common.

(ii) Compute the total weight w (H) of tour H . If w

(H) < w (H), replace H with H and repeat the

process, otherwise, pick another set of r edges from H to

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-5, May 2014

 236 www.erpublication.org

exchange. Such exchanges of set of r edges continue until

exchanging make no additional improvement can be

made by exchanging r edges.

(iii) The final solution, which cannot be improved by

exchanging any of its r edges, is called an r-optimal or (r-opt

for short) solution.

Clearly, the edges-exchange procedure will terminate at a

local optimum, thus producing an approximate solution.

This approximate algorithm illustrates a general approach to

solving many combinatorial optimization problems, known

as local search or neighborhood search. For solving our

model we will consider the 2-opt (r = 2) exchange.

Two-opt Algorithm

The 2-opt move in general consists of eliminating two edges

and reconnecting the two resulting paths in a different way to

obtain a new tour. Let the initial cycle consists of the

following set of edges H = {x1, x2, x3,…, xn} in the order x1,

x2, x3,…, xn .Let X ={xi, xj} be a set of two edges in H which

we delete and replace with edges Y ={yp, yq}, if there is an

improvement. That is, H = (H - X) Y is a new and

improved tour.

The improvement is given by where

 .qpji ywywxxw

HwHw

We will examine all tours H ̀and retain the one for which is

maximum. If max is negative or zero, we have found a 2-opt

solution. If max > 0, we use the corresponding solution as the

initial tour and then repeat the entire procedure. We continue

this successive tour improvement until max is a non-positive

number. The following algorithm describes this method of

achieving a 2-opt approximation solution of the TSP.

Two-opt algorithm

begin

let H = (x1, x2,…, xn) be the current tour;

repeat

;0max

for i=1 to (n-2) do

 for j = (i+2) to n

if
max qpji ywywxwxw then

begin

max ;qpji ywywxwxw

save i and j

 end;

if max > o then
qpji yyxxHH ,,

 until max = o

end

V. COMPUTER SIMULATIONS

In this section we show the results of computer simulations

with inputs chosen to reflect various level of complexity.

A. Computer Simulation for Farthest Insertion Heuristic

We are using the farthest insertion heuristic to construct a

tour. For this purpose we simulate a symmetric cost matrix of

n nodes or stations as the input of our program. The program

code gives us the final tours constructed (see Example 1).

The costs of tours are also given as the result of this program.

Table.1 shows the output of this program for 200 nodes,

which will be used as the input for the 2-opt heuristic.

B. Computer simulation for 2-opt Heuristic

We are using the 2-opt algorithm to improve initial route

given. In our simulation we used the tour construct by

farthest insertion as initial tour for this heuristic which will

be improved later. The program code gives us the final

improvement tours and their weights as the result of this

program (see Example 2). Table 2. shows the result of this

program for 200 nodes.

Example 1

 The nn matrix is generated by the simulation rule given

in the following for general n. By putting n = 200 the initial

set of data as follows.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#undef abs

#define n 200

#define s 0

#define inf 20000

void main()

{

int end1, end2, farthest, i, j,index,inscost;

int maxdist, newcost, nextindex, cycle[n+1], dist[n+1];

int n1,w[n+1][n+1],route[n+1],tweight ;

n1 =n-1;

for (i=0;i<=n1;++i)

{

for (j=0;j<=n1;++j)

{

if (i != j)

w[i][j]= abs((i*i)+(j*j)-i*j);

else

w[i][j]=0;

w[i][j] =fmod(w[i][j],200);

if(i != j && w[i][j]< 20)

w[i][j]= w[i][j]+20;

}

}

A Model for Single Machine Job Scheduling Without Due Date

 237 www.erpublication.org

Final constructed route:

0,199,195,155,151,98,69,185,104,119,198,159,101,125,134

,23,49,27,166,25,189,164,39,88,29,144,136,95,99,41,105,1

37,80,100,20,121,56,64,66,177,52,127,46,191,

55,188,158,57,85,181,43,62,42,112,170,154,48,70,162,192

,15,71,147,94,171,187,107,172,190,118,90,18,78,110,132,

32,122,153,163,182,10,178,197,140,109,65,156,91,102,50,

37,19,60,40,22,82,28,143,117,6,4,5,129,34,186,84,115,31,

54,33,139,106,67,193,53,128,8,76,174,51,176,108,138,87,

150,63,47,175,72,97,157,183,194,83,35,131,93,142,21,1,1

80,38,7,58,77,146,169,11,16,114,149,24,26,167,152,86,17,

13,126,73,74,173,148,123,14,81,116,12,45,160,179,124,79

,135,3,44,9,165,120,111,75,36,161,61,141,2,96,184,89,113

,133,145,196,130,92,30,59,103,68,168.

Total weight = 5160, Number of nodes = 200

1)

2)

3) Example 2

4)

 We use the 2-opt heuristic to improve the results obtained

from the farthest insertion heuristic. The following is the

initial set of for this example data.

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#undef abs

#define n 200

void main()

{

int i, i1, i2, j, j1, j2, s1, s2,t1,t2;

int n1,n2;

int next,last,index,limit,ahead;

int max, max1,tweight = 5160;

int w[n+1][n+1];

int ptr[n+1],route[n+1]=

{0,199,195,155,151,98,69,185,104,119,198,159,101,125,13

4,23,49,27,166,25,189,164,39,88,29,144,136,95,99,41,105,

137,80,100,20,121,56,64,66,177,52,127,46,191,55,188,158

,57,85,181,43,62,42,112,170,154,48,70,162,192,15,71,147,

94,171,187,107,172,190,118,90,18,78,110,132,32,122,153,

163,182,10,178,197,140,109,65,156,91,102,50,37,19,60,40

,22,82,28,143,117,6,4,5,129,34,186,84,115,31,54,33,139,1

06,67,193,53,128,8,76,174,51,176,108,138,87,150,63,47,1

75,72,97,157,183,194,83,35,131,93,142,21,1,180,38,7,58,7

7,146,169,11,16,

114,149,24,26,167,152,86,17,13,126,73,74,173,148,123,14

,81,116,12,45,160,179,124,79,135,3,44,9,165,120,111,75,3

6,161,61,141,2,96,184,89,113,133,145,196,130,92,30,59,1

03,68,168};

n1 = n - 1;

n2 = n1 - 1;

for (i=0;i<=n1;++i)

{

for (j=0;j<=n1;++j)

{

if (i != j)

w[i][j]= abs((i*i)+(j*j)-i*j);

else

w[i][j]=0;

w[i][j] = fmod(w[i][j],200);

if(i != j && w[i][j]< 20)

w[i][j]= w[i][j]+20;

}

}

Final route:

0,160,120,111,75,36,161,61,141,167,26,23,134,1,21,76,10

5,16,155,4,5,129,169,

146,77,103,68,168,63,37,43,62,113,145,196,195,11,175,17

6,125,101,159,73,126,

13,107,187,49,24,25,189,164,39,55,191,136,95,99,58,188,

48,154,183,194,83,114,41,85,44,3,197,178,10,182,163,6,1

17,143,28,93,142,12,116,35,131,17,86,152,2,50,102,91,15

6,65,84,115,31,54,33,139,106,67,193,53,128,8,170,112,42,

51,71,15,59,64,9,165,81,14,123,29,144,46,127,52,177,66,8

9,184,96,181,140,109,186,19,60,40,22,82,172,190,118,90,

18,78,110,132,32,122,153,27,166,149,47,98,69,185,104,11

9,198,

150,148,88,130,92,30,192,162,70,158,38,7,87,74,173,34,1

51,171,94,147,72,97,157,45,121,56,135,79,124,179,199,13

3,174,137,57,138,108,180,80,100,20,

a) Total weight of the final route = 4722, Total

number of nodes = 200

Table : Total weight of farthest and two-opt

heuristics

No of

Jobs

Farthest 2-opt Improvement Percentage

10 375 375 0 0.00

20 1036 827 209 0.25

50 1574 1298 276 0.21

80 2411 2030 381 0.19

100 2787 2456 331 0.13

125 3447 3030 417 0.14

150 3908 3597 311 0.09

200 5160 4722 438 0.09

300 7658 7046 612 0.09

350 8786 8181 605 0.07

400 10074 9396 678 0.07

450 11308 10508 800 0.08

500 12608 11649 959 0.08

VI. CONCLUSIONS

In this paper we considered two methods for solving our

model for single machine scheduling without due date

criteria. One belongs to the construction procedures called

farthest -insertion. Another one is 2-opt algorithm, which

belongs to the improvement procedure heuristic. We

simulate two C programs to solving our model. Our program

can schedule over 1000 nodes (jobs). But our simulation

work can cover until 506 nodes (jobs) due to the computer

storage requirements. The Table shows the result of our

simulation using several values of n. Example.1 shows the

total cost (5160) and the constructed route of 200 jobs by

farthest heuristic. While Example.2 shows the total cost

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-5, May 2014

 238 www.erpublication.org

(4722) which is the improved route of the same 200 jobs by

using 2-opt heuristics.

ACKNOWLEDGMENT:

 The authors would like to thanks the Head Department of

Mathematics Rianah Branch , Taif University Kingdom of

Saudi Arabia for their facilities

REFERENCES:

[1] Abdelaziz Hamad PhD Thesis (2002) "Application of neural network for

solving job scheduling problems, UTM, Malaysia

[2] Abdelaziz Hamad and Bahrom Sanugi (2011) . Neural Network and

Scheduling. Germany : Lap Lambert Academic Publishing.

[3] Baker, K.R., (1974). Introduction to Sequencing and Scheduling. New

York: John Wiley.

[4] Flood, M. M. (1956). “The Traveling Salesman Problem”. Operations

Research. 4; 61-75.

[5] Graham, R., E. Lawler, J. Lenstra, and A. Rinnooy Kan (1979).”

Optimization and Approximation in Deterministic Sequencing and

Scheduling Theory: A Survey Annals of Discrete Mathematics. 5;

287-326.

[6] Garey, M. and Johson, D.S. (1979). Computers and Intractability: A Guide

to the Theory of NP-Completeness. San Francisco: W.H. Freeman.

[7] Golden B., Bodin, L. and Stewart, W. (1980).“Approximate Traveling

Salesman Algorithm.” Journal of Operation Research. 28; 694-711.

[8] Laporte, G. (1992), “The Traveling Salesman Problem: An Overview of

Exact and Approximate Algorithm.” European Journal of Oper. Res.59,

231-247.

[9] Panwalkar, S.S., Rajagopalan, R.(1992). “Single Machine Sequencing with

Controllable Processing Times.” European Journal of Operation Research.

59, 298-302.

