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 Abstract— In this paper we described the  single machine 

Job scheduling without due date  as a Symmetric  Traveling 

Salesman Problem (STSP). After formulated the problem we 

used  two methods for solving our model to determined the 

minimum schedule length, which is our desired objective  . One  

belongs to the construction procedures called Farthest 

–insertion Algorithm. Another one is Tow-opt algorithm, which 

belongs to the improvement procedure heuristic. We simulate 

two C programs to solved our  model.  our simulation work can 

cover until 506 jobs. 

 

 Index Terms— Single Machine, Scheduling,  Traveling 

Salesman Problem, Farthest –insertion, Two- Opt algorithm. 

 

I. INTRODUCTION 

           

In this Section we shall introduce our  model, i.e. 

scheduling with a single machine without due date criteria. 

We begin with giving some remarks about the travelling 

salesman problem, which is related to our  model, followed 

by local search and insertion heuristic algorithm, which will 

be used to solve our  model. 

II. TRAVELLING SALESMAN PROBLEM 

 

The travelling salesman problem (TSP) is one of the oldest 

problems in combinatorial optimization problems, belonging 

to the NP-hard class (Garey&Johson, 1979). By an NP-hard 

class it is meant that the class of those problems for which no 

polynomial time algorithm has been found. The statement of 

the TSP problem is deceptively simple. A travelling salesman 

must visit every city in his territory exactly once and then 

return to his starting point (Flood, 1956).  

 

The study of this problem has attracted many researchers 

from different fields, e.g., Mathematics, Operations 

Research, Physics, Biology and Artificial Intelligence, and 

there is vast amount of literature on it (Gerhad, 1994). This is 

due to the fact that, although it is easily formulated, it 

exhibits all aspects of combinatorial optimization and has 

served and continues to serve as the benchmark problem for 

the development of new algorithms such as simulated 
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annealing, tabu search, genetic algorithms, and artificial 

neural networks  

 

Nevertheless, the TSP is interesting not only from a 

theoretical point of view but also in the practical aspects. 

Many practical applications can be modeled as travelling 

salesman problems. The most common practical 

interpretation of the TSP is that of a salesman seeking the 

shortest tour through n cities or clients. This basic problem 

underlines several routing applications, but in this case a 

number of side constraints usually come into play. Several 

interesting permutation problems not directly associated with 

routing can also be described as TSP. Examples of such 

problems are computer wiring, hole punching, 

crystallography and job scheduling (Laporte, 1992). 

 

 The travelling salesman problem can be categorized as 

symmetric and asymmetric. Let W =[wij] denotes the weight 

matrix of a graph. Then, the edge weights may not be 

symmetric which means not all wij = wji. In this paper we will 

consider our  model, i.e. the single machine scheduling 

without due date as a symmetric TSP. 

III. THE MODEL 

Suppose n independent jobs must be performed sequentially 

on a single machine. Let cij is the cost of travelling from city 

i to city j. We also assume that  

cij = cji which makes the problem symmetric. The matrix C = 

[cij] is therefore a symmetric cost matrix. This problem can be 

described as a symmetric travelling salesman problem (TSP). 

We will elaborate on the use of heuristics algorithm, farthest 

insertion and 2-opt algorithm to determine the minimum 

schedule length, which is our desired objective (Golden et al, 

1980). 

IV. APPROXIMATE ALGORITHM 

 

 As mentioned earlier, the traveling salesman problem is 

one of those combinatorial optimization problems for which 

no efficient algorithms (i.e., with computation time bounded 

by a polynomial in the number of nodes n) are known. When 

faced with such computationally hard (NP-hard) problems, 

one practical approach is to relax the requirement that an 

algorithm produces an optimal result, and  instead be 

satisfied with a sub-optimal solution reasonably close to the 

optimal solution. Such relaxation of the optimality constraint 

often reduces the computation time from an exponential to a 

polynomial function (of the size of the input). Such 

approximate algorithms are the only realistic methods of 

solving computationally hard problems of large size. 
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 For the travelling salesman problem, a number of such 

approximate algorithms have been proposed and studied. 

Here we will consider two of the most effective, each 

represents its class of approximate algorithms (Golden at el., 

1980).The first is the farthest insertion algorithm which 

represent the class of insertion algorithms, and the second 

one is the 2-opt algorithm which represent the local –search 

class of algorithms  

 

A. Insertion Algorithm 

           An insertion algorithm arbitrarily picks a city as the 

starting node, say s, of tour. From among the remaining (n-1) 

cities it selects another city (according to a criterion to be 

discussed shortly), say p. Now we have a subtour or cycle of 

two nodes (s, p, s). Then a third node, q, out of the (n-2) 

unvisited nodes is selected, and is inserted into the current 

cycle to produce cycle (s, p, q, s) or (s, q, p, s) whichever is 

cheaper. This enlargement is continued. At any stage let VT 

denotes the set of nodes included in the subtour, and let V be 

the entire nodes set for this problem. 

 The kth iteration (1  k  n-1) enlarges the cycle of size k to 

one of size k+1 by means of the following two steps: (Golden 

at el., 1980) 

Step 1 (selection step). In the set V- VT of unvisited nodes, 

determine which node is to be added to the cycle next. 

 

Step 2 (insertion step). Determine where (i.e., between which 

two nodes of the cycle) the newly selected nodes is to be 

inserted to enlarge the current subtour. 

A number of heuristics have been suggested and 

experimented with for the selection step. Some of these are 

(i) Pick any unvisited nodes at random (the algorithm is 

called arbitrary insertion); 

(ii) Pick that unvisited node which is nearest to the current 

subtour (the algorithm is called nearest insertion); 

(iii) Pick that unvisited node which is farthest from the 

current subtour (the algorithm is called farthest 

insertion). 

 

Of the three heuristics mentioned, farthest insertion appears 

to be the best overall strategy, according to a number of 

extensive and independent empirical studies (Golden et al., 

1980). The underlying intuition behind this approach is that 

if a rough outline of the tour can be constructed through the 

widely –separated nodes, then the finer details of the tour 

resulting from the inclusion of the nearer nodes can be filled 

in without greatly increasing the total length of the tour. 

Therefore, we will try to use the farthest insertion algorithm 

as initial solution to solve our first model. 

 

In order to find efficiently that unvisited node, which is 

farthest from the nodes in the current cycle VT. Let us 

maintain a distance array dist (of length n) such that for every 

node v not in cycle, dist (v) is the distance to v from that node 

in the current cycle from which v is closest. The farthest node 

f is the one with the largest value in the dist array, and it is the 

node to be inserted next. Each time a new node f is added to 

the cycle, the dist array is updated such that its entries are the 

minimum of the current entries in the dist array and the fth 

row in W, where W=[wij] denote the weight matrix. 

 

Having settled on the selection step, let us now look at the 

insertion step. Assume that there are k nodes in the current 

cycle, and the next (farthest) nodes to be inserted is f. We 

examine every edge (i, j) in the current tour to determine the 

insertion cost of f between nodes i and j, which is 

 

.ijfjifij wwwc   

 

Among all k edges in the cycle we select edge (t, h) with tail 

t and head h for which thc has the smallest value (cij could be 

negative). Then insert node f between t and h. The weight of 

the cycle is updated. We also update the dist array. The 

following FITSP (farthest insertion travelling salesman 

procedure) algorithm describes this heuristic. 

 

Algorithm Farthest- Insertion 

W=[wij] denote the weight matrix, 

VT denotes the set of nodes included in the subtour,  

V denotes the entire nodes set of the problem. 

Initialization: 

VT   =  {s}; / Initial cycle of one node s and cycle of zero 

weight at s / 

Et = {(s, s)}; 

wss  = 0; 

tweight = 0;     / total weight of the subtour / 

for every node u  TVV  do dist(u) = wsu; 

Iteration: 

while nVT  do 

 begin 

  f = node in V-VT with largest value of dist(f); 

   for every edge (i,j) ET do 

     ijfjifij wwwc    / Insertion 

cost / 

     (t, h) = edge in ET with smallest value of 

cth; 

)};,{()},(),,{( hthfftEE TT    

};{ fVV TT   

tweight = tweight + cth; 

for all x (V-VT) do dist(x)=min{dist(x), wfx} 

 end 

 

 

B. Local Search Heuristics 

 

The local search is one of the best known and most successful 

heuristics for TSP to obtain a nearly optimal solution. 

(i) Starting with an arbitrary Hamiltonian cycle (as 

initial TSP tour) H, delete r edges from H, thus producing 

r disconnected paths. Reconnect these r paths in such a 

way as to produce another TSP tour H  . Thus H and 

H  differ from each other by exactly r edges; the 

remaining (n - r) edges are common. 

(ii) Compute the total weight w ( H  ) of tour H  . If w 

( H  ) < w (H), replace H with H   and repeat the 

process, otherwise, pick another set of r edges from H to 
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exchange. Such exchanges of set of r edges continue until 

exchanging make no additional improvement can be 

made by exchanging r edges. 

(iii) The final solution, which cannot be improved by 

exchanging any of its r edges, is called an r-optimal or (r-opt 

for short) solution. 

 

Clearly, the edges-exchange procedure will terminate at a 

local optimum, thus producing an approximate solution. 

This approximate algorithm illustrates a general approach to 

solving many combinatorial optimization problems, known 

as local search or neighborhood search. For solving our 

model we will consider the 2-opt (r = 2) exchange.  

 

Two-opt Algorithm 

 

The 2-opt move in general consists of eliminating two edges 

and reconnecting the two resulting paths in a different way to 

obtain a new tour. Let the initial cycle consists of the 

following set of edges H = {x1, x2, x3,…, xn} in the order x1, 

x2, x3,…, xn .Let X ={xi, xj} be a set of two edges in H which 

we delete and replace with edges Y ={yp, yq}, if there is an 

improvement. That is, H   = (H - X)  Y is a new and 

improved tour.  

The improvement is given by  where  

   

       .qpji ywywxxw

HwHw




 

 

We will examine all tours H  ̀and retain the one for which  is 

maximum. If max is negative or zero, we have found a 2-opt 

solution. If max > 0, we use the corresponding solution as the 

initial tour and then repeat the entire procedure. We continue 

this successive tour improvement until max is a non-positive 

number. The following algorithm describes this method of 

achieving a 2-opt approximation solution of the TSP. 

 

 

Two-opt algorithm 

begin 

let H = ( x1, x2,…, xn) be the current tour; 

repeat 

;0max   

for i=1 to (n-2) do 

  for j = (i+2) to n  

if          
max qpji ywywxwxw then 

begin 

max          ;qpji ywywxwxw   

save i and j 

     end; 

if max > o then    
qpji yyxxHH ,,   

 until max = o 

end 

 

 

V. COMPUTER SIMULATIONS 

 

In this section we show the results of computer simulations 

with inputs chosen to reflect various level of complexity. 

 

 

A. Computer Simulation for Farthest Insertion Heuristic 

 

We are using the farthest insertion heuristic to construct a 

tour. For this purpose we simulate a symmetric cost matrix of 

n nodes or stations as the input of our program. The program 

code gives us the final tours constructed (see  Example 1). 

The costs of tours are also given as the result of this program. 

Table.1 shows the output of this program for 200 nodes, 

which will be used as the input for the 2-opt heuristic.  

 

B. Computer simulation for 2-opt Heuristic 

 

We are using the 2-opt algorithm to improve initial route 

given. In our simulation we used the tour construct by 

farthest insertion as initial tour for this heuristic which will 

be improved later. The program code gives us the final 

improvement tours and their weights as the result of this 

program (see Example 2). Table 2. shows the result of this 

program for 200 nodes. 

 

Example  1 

 

 The nn matrix is generated by the simulation rule given 

in the following for general n. By putting n = 200 the initial 

set of data as follows. 

 

 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#undef abs 

#define n  200 

#define s  0 

#define inf   20000 

void main() 

{ 

int end1, end2, farthest, i, j,index,inscost; 

int maxdist, newcost, nextindex, cycle[n+1], dist[n+1]; 

int n1,w[n+1][n+1],route[n+1],tweight ; 

n1 =n-1; 

for (i=0;i<=n1;++i) 

{ 

for (j=0;j<=n1;++j) 

{ 

if (i != j) 

w[i][j]= abs((i*i)+(j*j)-i*j); 

else 

w[i][j]=0; 

w[i][j] =fmod(w[i][j],200); 

if(i != j && w[i][j]< 20) 

w[i][j]= w[i][j]+20; 

} 

  

} 
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Final constructed route: 

0,199,195,155,151,98,69,185,104,119,198,159,101,125,134

,23,49,27,166,25,189,164,39,88,29,144,136,95,99,41,105,1

37,80,100,20,121,56,64,66,177,52,127,46,191, 

55,188,158,57,85,181,43,62,42,112,170,154,48,70,162,192

,15,71,147,94,171,187,107,172,190,118,90,18,78,110,132,

32,122,153,163,182,10,178,197,140,109,65,156,91,102,50,

37,19,60,40,22,82,28,143,117,6,4,5,129,34,186,84,115,31,

54,33,139,106,67,193,53,128,8,76,174,51,176,108,138,87,

150,63,47,175,72,97,157,183,194,83,35,131,93,142,21,1,1

80,38,7,58,77,146,169,11,16,114,149,24,26,167,152,86,17,

13,126,73,74,173,148,123,14,81,116,12,45,160,179,124,79

,135,3,44,9,165,120,111,75,36,161,61,141,2,96,184,89,113

,133,145,196,130,92,30,59,103,68,168. 

Total weight  = 5160, Number of nodes = 200 

1)  

2)  

3) Example  2 

4)  

 We use the 2-opt heuristic to improve the results obtained 

from the farthest insertion heuristic. The following is the 

initial set of for this example data. 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#undef abs 

#define  n  200 

void main() 

{ 

int  i, i1, i2, j, j1, j2, s1, s2,t1,t2; 

int  n1,n2; 

int next,last,index,limit,ahead; 

int max, max1,tweight = 5160; 

int w[n+1][n+1]; 

int  ptr[n+1],route[n+1]= 

{0,199,195,155,151,98,69,185,104,119,198,159,101,125,13

4,23,49,27,166,25,189,164,39,88,29,144,136,95,99,41,105,

137,80,100,20,121,56,64,66,177,52,127,46,191,55,188,158

,57,85,181,43,62,42,112,170,154,48,70,162,192,15,71,147,

94,171,187,107,172,190,118,90,18,78,110,132,32,122,153,

163,182,10,178,197,140,109,65,156,91,102,50,37,19,60,40

,22,82,28,143,117,6,4,5,129,34,186,84,115,31,54,33,139,1

06,67,193,53,128,8,76,174,51,176,108,138,87,150,63,47,1

75,72,97,157,183,194,83,35,131,93,142,21,1,180,38,7,58,7

7,146,169,11,16, 

114,149,24,26,167,152,86,17,13,126,73,74,173,148,123,14

,81,116,12,45,160,179,124,79,135,3,44,9,165,120,111,75,3

6,161,61,141,2,96,184,89,113,133,145,196,130,92,30,59,1

03,68,168}; 

n1 = n - 1; 

n2 = n1 - 1; 

for (i=0;i<=n1;++i) 

{ 

for (j=0;j<=n1;++j) 

{ 

if (i != j) 

w[i][j]= abs((i*i)+(j*j)-i*j); 

else 

w[i][j]=0; 

w[i][j] = fmod(w[i][j],200); 

if(i != j && w[i][j]< 20) 

w[i][j]= w[i][j]+20; 

} 

} 

Final route: 

0,160,120,111,75,36,161,61,141,167,26,23,134,1,21,76,10

5,16,155,4,5,129,169, 

146,77,103,68,168,63,37,43,62,113,145,196,195,11,175,17

6,125,101,159,73,126, 

13,107,187,49,24,25,189,164,39,55,191,136,95,99,58,188,

48,154,183,194,83,114,41,85,44,3,197,178,10,182,163,6,1

17,143,28,93,142,12,116,35,131,17,86,152,2,50,102,91,15

6,65,84,115,31,54,33,139,106,67,193,53,128,8,170,112,42,

51,71,15,59,64,9,165,81,14,123,29,144,46,127,52,177,66,8

9,184,96,181,140,109,186,19,60,40,22,82,172,190,118,90,

18,78,110,132,32,122,153,27,166,149,47,98,69,185,104,11

9,198, 

150,148,88,130,92,30,192,162,70,158,38,7,87,74,173,34,1

51,171,94,147,72,97,157,45,121,56,135,79,124,179,199,13

3,174,137,57,138,108,180,80,100,20,  

a) Total weight of the final route = 4722, Total 

number of nodes = 200 

 

Table : Total weight of farthest and two-opt 

heuristics 

 
No of 

Jobs 

Farthest   2-opt  Improvement Percentage 

10 375 375 0 0.00 

20 1036   827 209 0.25 

50  1574 1298 276 0.21 

80 2411 2030 381 0.19 

100 2787 2456 331 0.13 

125  3447 3030 417 0.14 

150 3908  3597 311 0.09 

200 5160 4722 438 0.09 

300 7658 7046 612 0.09 

350 8786 8181 605 0.07 

400 10074 9396 678 0.07 

450 11308 10508 800 0.08 

500 12608 11649 959 0.08 

 

VI. CONCLUSIONS  

 

In this paper we considered two methods for solving our 

model for single machine scheduling without due date 

criteria. One belongs to the construction procedures called 

farthest -insertion. Another one is 2-opt algorithm, which 

belongs to the improvement procedure heuristic. We 

simulate two C programs to solving our model. Our program 

can schedule over 1000 nodes (jobs). But our simulation 

work can cover until 506 nodes (jobs) due to the computer 

storage requirements. The Table shows the result of our 

simulation using several values of n. Example.1 shows the 

total cost (5160) and the constructed route of 200 jobs by 

farthest heuristic. While Example.2 shows the total cost  
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(4722) which is the improved route of the same 200 jobs by 

using 2-opt heuristics.  
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