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Abstract- In this investigation, the problem of 

elasto-thermo-diffusion interaction insider a spherical shell is 

concerned in the context of the mechanism of two temperature 

generalized thermoelasticity theory. The inner and outer 

boundaries of the spherical shell are traction free and 

subjected to heating. The chemical potential is also assumed to 

be a function of time on the boundary of the shell. The problem 

is based on the theory of two temperature generalized 

thermoelastic diffusion with one relaxation time (i.e. two 

temperature Lord-Shulman (2TLS) model). To obtain the 

general solution the integral transform technique is used. The 

solution obtained in the Laplace transform domain by using a 

direct approach. The inversion of the transformed solution is 

carried out by applying the method of Bellman. The numerical 

estimates for the thermophysical medium are obtained for 

copper material and have been shown graphically. The 

influence of diffusion on thermoelastic stresses, conductive 

temperature, thermodynamic temperature, displacement, 

concentration, chemical potential inside the shell are observed 

for Lord-Shulman model. The results in the absence of 

diffusion are also found as a particular case. 

 

Index terms- elasto-thermo-diffusion interactions, generalized 

thermoelasticity, thermoelastic diffusion, two temperature 

 

I.    INTRODUCTION 

 

Diffusion can be defined as the migration of the particles 

from region of high concentration to region of lower 

concentration. The recent interest in the study of this 

phenomenon is due to its extensive applications in 

geophysics and many industrial applications. In most of 

these applications, the concentration is calculated using 

what is known as Fick’s law. This is a simple law that does 

not take into consideration the mutual interaction between 

the introduced substance and the medium into which it is 

introduced or the effect of the temperature on this 

interaction. 

Biot [1] develop the coupled theory of thermo-elasticity to 

deal with defeat of the uncoupled theory that mechanical 

cause has no effect on the temperature field. In this theory, 
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the heat equation has a parabolic form which predicts an 

infinite speed for the propagation of mechanical wave. 

The theory of generalized thermoelasticity with one 

relaxation time was introduced by Lord and Shulman [2]. 

This theory was extended by Dhaliwal and Sherief [3]. In the 

theory, the Maxwell-Cattaneo law of heat conduction 

replaces the conventional Fourier’s law. For this theory, 

Ignaczak [4] studied the uniqueness of solution; Sherief [5] 

proved uniqueness and stability. The fundamental solution 

was developed by Sherief for spherical regions and by 

Sherief and Anwar [6] for cylindrical region.  

Nowcaki [7] - [10] developed the theory of thermoelastic 

diffusion. In this theory, classical coupled thermoelastic 

model is used. Later on, Gawinecki et al [11] proved a theory 

on uniqueness and regularity of the solution for a nonlinear 

parabolic thermoelastic diffusion problem. For the same 

problem a theorem about the global existence of the solution 

was established by Gawinecki and Szymaniec [12]. Sherief 

et al. [22] and, later on, Kumar and Kansal [23] introduced 

the generalized theories of thermoelastic diffusion in the 

frame of LS and GL theories by introducing thermal 

relaxation time parameters and diffusion relaxation time 

parameters into the governing equations, which allow the 

finite speeds of propagation of waves inside the medium. 

Sherief and Salah investigated the problem of a 

thermoelastic half space in the context of the theory of 

generalized thermoelastic diffusion with one relaxation time. 

Singh [26], [27] studied the reflection phenomena of waves 

from the free surface of an elastic solid under theory of 

generalized thermodiffusion. Aouadi [28]-[33] also gave 

some attention on thermoelastic diffusion and generalized 

thermoelastic diffusion. Othman et al. [33] reported some 

studied on the effects of diffusion on a two-dimensional 

problem of generalized thermoelasticity in the context of the 

mechanism of Green-Naghdi theory. The theory introduced 

by Sherief et al. [22], Kothari and Mukhopadhyay [38], 

presented the Galerkin-type representation of solutions for 

thermoelastic diffusion. In the context of the same theory, 

variational and reciprocity theorems have been established 

by Kumar et al. [38]. 

The linearized version of the two-temperature theory (2TT) 

has been studied by many authors. Chan and Gurtin [13] and 

Chen et al. [14], [15] have formulated a theory of heat 

conduction in deformable bodies, which depends on two 

distinct temperatures (a) the conductive temperature ϕ and (b) 

the thermodynamic temperature θ. Lesan [17] has 

established uniqueness and reciprocity theorems for 2TT. 

The existence, structural stability and spatial behavior of the 

solution in 2TT have been discussed by Quintanilla [18]. 
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The key element that sets the two-temperature 

thermoelasticity (2TT) apart from the classical theory of 

thermoelasticity (CTE) is the material parameter χ (≥0), 

called the temperature discrepancy [15].  Specifically, if χ=0, 

then ϕ=θ and the field equations of the 2TT reduce to those 

of CTE. It should be pointed out that 2TT suffer from 

so-called paradox of heat conduction, i.e., the prediction that 

a thermal disturbance at some point in a body is felt instantly, 

but unequally, through-out the body. 

The present paper is concerned with the investigation of 

disturbances in a homogenous, isotropic temperature 

dependent elastic medium with two temperature generalized 

thermodiffusion. The analytical expressions for the 

displacement components, thermoelastic stresses, 

conductive temperature, thermoelastic temperature, 

concentration and chemical potential are obtained in the 

physical domain whose boundaries are traction free and 

subjected to a time dependent temperature and chemical 

potential in the context of 2TLS model. The Laplace 

transform technique is used to obtain the general solution. 

To get the solution in the physical domain, the inversion of 

the transformed solution is carried out by applying the 

method of Bellman. The influences inside the shell is 

analyzed for a copper like material and depicted graphically. 

The effect of two temperature parameter in the presence and 

absence of diffusion are analyzed theoretically and 

numerically. The most significant points arising out from 

our analysis are highlighted. 

 

II.  MATHEMATICAL FORMULATION OF THE 

PROBLEM: 

 

We consider an isotropic homogenous thermoelastic 

spherical shell with inner radius a and outer radius b in a 

uniform temperature
0T . Let the body be referred to 

spherical polar coordinate ( , , )r    with the origin at the 

center O of the cavity. Since we consider thermoelastic 

interactions which are spherically symmetric, so all the 

functions considered will be function of the radial distance r 

and the time t only. It follows that the displacement vector 

u


thermodynamic temperature θ and Conductive 

temperature   have the following forms: 

 ( , ),0,0 ,u u r t


 
( , )r t  ,   ( , )r t  .  (1.1)                                                        

In the context of two temperature generalized thermoelastic 

diffusion based on LS theory, the equation of motion, the 

equation of heat conduction and the equation of mass 

diffusion in absence of body forces for a linearly isotropic 

generalized thermoelastic solid are, respectively, 
2
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
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2 2 0 2

2 ,D e Dc C C Dd C         
             (1.4)  

where θ is the thermodynamic temperature,   is the 

conductive temperature,  and  are Lame's constants, 

 is the density, C is the mass concentration, 
1 , 

2 are 

the material constants given by 

2 (3 2 ) ,c     1 (3 2 ) t     ,   

in which 
t  and 

c are, respectively, the coefficient of 

linear thermal expansion and linear diffusion expansion, K 

is the thermal conductivity; D is the diffusion coefficient and 

Ec  is the specific heat at constant strain, 
0  is the thermal 

relaxation time and
0   is the diffusion relaxation time, c 

and d are the measures of the thermo-diffusion effect and 

diffusive effect, respectively. 
2  is the Laplacian, given by 

2 2

2

1
.r

r r r

  
   

  
 

The strain components are given by 

,
rr

u
e

r





, ,
u

e e
r

                                                   (1.5)  

and thus the cubical dilation will be 

2

2

1
2 ( )

u u
e r u

r r r r

 
  
 

.                                (1.6) 

The constitutive equations are given by 

1 22rr

e
e C

r
     


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
  (1.7) 

                         

1 22
u

e C
r

           
(1.8)  

                   

2 ,P e dC c        (1.9)                                              Where 

P is the chemical potential per unit mass of the diffusive 

material in the elastic body, 
ij  is the stress tensor. 

The relation between the conductive temperature   and the 

thermodynamic temperature   is given by, 
2 .        (1.10)                                                               

Where  (>0) is the two temperature parameter. 

For convenience, the following dimensionless quantities are 

used: 

1 ,u c u   1 ,r c r   
1 ,

( 2 )
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 
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0 2 0
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Where  
2
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( 2 )
c

 




  and .Ec

K


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Then, the governing equations are given by equations (1.2) - 

(1.4) and equations (1.7)-(1.10) can be expressed in the 

following forms (dropping the primes for convenience): 

2

2
,

u e C

t r r r
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    (1.11)                                           
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2        (1.13)                                                         

2 2 0 2

1 2 3( ) ,e C C C           
(1.14)
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3 1 .P e C    
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III. BOUNDARY CONDITIONS: 

 

From the physical phenomena for the problem, we will take 

the boundary conditions as: 

(1) The boundaries of the shell are assumed to be traction 

free, i.e.: 

( , ) 0rr r t     On ,r a b for 0.t                         (1.18) 

(2) Boundaries of the shell are subjected to a thermal shock 

in the form 

            1 ( )H t 
  

on ,r a  0t  , 

                2 ( )H t  on ,r b 0t  .                         (1.19) 

(3) The chemical potential is also assumed to be a known 

function of time at the boundaries of the shell, that is: 

            1 ( )P PH t   on r a ,  0,t   

                2 ( )P H t
  

on ,r b 0.t                     (1.20) 

 

IV.    SOLUTIONS IN LAPLACE TRANSFORM 

DOMAIN:  

Applying the Laplace transform defined by the 

relation,

0

( , ) ( , ) stf r s f r t e dt



      Re( ) 0,s   

to equation (1.11) and using homogeneous initial conditions, 

we get 

2 .
e C

s u
r r r

  
  
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                                              (1.21) 

Now applying the Laplace transform on equation (1.12) and 

using (1.13), we get  

1 3 3

3 3 3

1
,

1 1 1

a a
C e

a a a

  
 

  
  

  
                

(1.22) 

where 3 0(1 ).a s s 
 

Applying divergence operator on (1.21), we get
 

2 2 2 2( ) .s e C                                            (1.23) 

Using the equation (1.22), equations (1.12)-(1.14) and 

(1.23) becomes 

2

1 2 3 ,L L C L e       (1.24)                                            
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Now, using Equations (1.24)-(1.26), we obtain 
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  Equation (1.29) can be factorized as 
2 2 2 2 2 2

1 2 3( )( )( )( , , ) 0,k k k e C                  (1.34)                                                              

  where 1k , 2k , 3k  are the roots with positive real part of the 

characteristic equation 
6 4 2

1 2 3 0,k b k b k b       

and are given by [24] 
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k p q b     (1.35)                                            
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Therefore, the solution of equation (1.30), which is bounded 

at infinity, is given by 
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where ,iA iA , ,iA ,iB ,iB iB     (for i =1, 2, 3) are 

parameters depending only on s.
1 2I  is the modified Bessel 

function of the first kind of order 1 2 and
1 2K  is the 

modified Bessel function of second kind of order 1 2 . Now, 

from Equations (1.24)-(1.26) and (1.39)-(1.40), we obtain 
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Thus we have 
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 Using the relation between u and e from (1.5) and (1.43), we 

get the solution for the dimensionless form of displacement 

as follows: 
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Therefore, from Equations (1.27)-(1.29), (1.39) and 

(1.43)-(1.45), we get 
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To evaluate the unknown parameters, we shall use the 

Laplace transformation of the boundary condition 

(1.18)-(1.20), together with equations (1.39), (1.46) and 

(1.48); we have the following set of six linear equations in 

six 

unknowns:
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We can obtain 
1( ),A s  

2 ( ),A s  
3( ),A s 1( ),B s 2 ( ),B s  

3( )B s  by solving the above linear system of equations 

(1.49)-(1.54). This completes the solution of the present 

problem in the Laplace transform domain. 

 

 

 

IV. SPECIAL CASE: (WITHOUT DIFFUSION) 

 

By putting 0C  and 0  into equation (1.2), (1.3), 

(1.7) and (1.8) and neglect the diffusion effect by eliminating 

Equations (1.4) and (1.9), we get the equations for 

conductive temperature, displacement and the stresses 

without the effect of diffusion.In this case, after some simple 

computations, equation (1.30) reduces to, 
4 2

1 2( )( , ) 0.a a e                                      (1.55) 

Where
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Equation (1.55) can be factorized 

as
2 2 2 2

1 2( )( )( , ) 0,k k e                                     (1.56) 

where 1k , 2k  are the roots with positive real part of the 

characteristic equation
4 2

1 2 0k a k a   . 

Using the solution of equation (1.55), given by 
2
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where ,iA iA , ,iB iB    (for i =1, 2) are parameters 

depending only on s, we get 
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In view of the boundary conditions (1.18) and (1.19) ( )iA s  

and ( )iB s  involved in Equations (1.57), (1.59)-(1.60) can 

be determined by the solution of following 

equations:
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This completes the solution of the present problem in the 

Laplace transform domain. 

                                                     

 

V.  NUMERICAL RESULTS AND DISCUSSION: 

 

In order to illustrate theoretical results in the preceding 

sections, we now present some numerical results. To get the 

solutions for the displacement, radial stress, shear stress, 

conductive temperature, thermodynamic temperature, 

chemical potential and mass concentration in the physical 

domain, we have to apply Laplace inversion formula to the 

equations (1.49)-(1.54) respectively. Here we adopt the 

method of Bellman et al. [45] for inversion and choose a time 

span given by seven values of time ,it  i =1 to 7 at which ,ru  

,rr  ,  P  and C are evaluated from the negative of 

logarithms of the roots of the shifted Legendre polynomial of 

degree 7. For the illustration we consider copper material 

with material constants. The physical data in SI units for 

which given as follows [24]: 
10 27.76 10 . ,N m   10 23.86 10 . ,N m    

38954 . ,kg m   

1 1386 . ,K W m    Ec  1 1383.1 . . ,J kg   0 293 ,    

41.98 10c
   

3 1,m kg
 

5 11.78 10 ,t
     

0.0168,   
4 2 1 21.2 10 s ,c m      

6 5 1 10.9 10 s ,d m kg   1 5.43,   2 0.533,   3 36.24.   

Also we have taken 0 1,   0 0.01,   
0 0.1    and 1R   

for computational purposes. 

Figures 1-6 representing the variation of displacement, 

radial stress, shear stress, conductive temperature, chemical 

potential and mass concentration along the radius of the 

sphere for both the one-temperature Lord-Shulman (1TLS) 

(for 0   )and the two-temperature Lord-Shulman (2TLS) 

(for 0.1  )  theories. The computation were carried out for 

both large time ( t =0.35) and small time ( t =0.026). The 
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variation of the field is observed when the step input of 

conductive temperatures with 
1 1  and 

2 1  applied on 

the inner boundary a=1 and outer boundary b=2 respectively. 

The step input of chemical potential with 
1 1P  and

2 1P   

are also applied on the boundaries of the shell. Our 

computations were also carried out in absence of diffusion, 

by using Equations (1.57), (1.59)-(1.61). In figure 1-6 

dashed lines represent the case in the thermoelastic diffusive 

medium in the context of 1TLS theory ( 0  ) (1TLS WD). 

Doted lines represent the distribution in thermoelastic 

diffusive medium in the context of 2TLS ( 0.1  ) (2TLS 

WD) theory. The solid lines and thin lines correspond to the 

thermoelastic distributions (that is, in the absence of 

diffusion) under the 1TLS theory ( 0  ) (1TLS WOD) and 

the 2TLS theory ( 0.1  ) (2TLS WOD) respectively. 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 1: Distribution of ru  at t=0.026 (a) and t=0.35 (b). 

Figures 1(a) and 1(b), depicts the variation of the 

displacement component (u) against radial distance (r) 

inside the spherical shell for both small time ( t  =0.026) and 

large time ( t =0.35), respectively. From figure 1(a) it is 

observed that, a mild effect of diffusion is in the 

interval1 1.2r  . Moreover, the displacement component is 

compressive in nature near both the boundaries at lower 

time. The graphs of displacement under with diffusion and 

without diffusion for 1TLS ( 0  ) and 2TLS ( 0.1  ) 

theories are almost merged. As may seen from the figure 

1(b), it is observed that the radial displacement (u) takes 

negative values near the inner boundary (1 1.7r  ) of the 

sphere for both the cases with diffusion (WD) and without 

diffusion (WOD) for both 1TLS model and 2TLS model. The 

absolute value of this field also increases with the increase of 

time in both the media. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2: Distribution of rr at t= 0.026 (a) and t=0.35 

(b). 

Figures 2(a) and 2(b) are plotted to show the variation of 

radial stress (
rr ) against radial distance (r) inside the 

spherical shell. At both boundaries the radial stress is noted 

to be zero, which also agrees with the theoretical boundary 

conditions. At time t =0.026, the radial stress rr  is 

compressive in nature throughout the medium (1 2r  ), 

whereas with the advancement of time it becomes fully 

compressive at the middle zone for both theories. For both t  

=0.026 and t =0.35, the influence of diffusion is significant 

towards the middle of the shell under the 1TLS ( 0  ) and 

the 2TLS ( 0.1  ) theories. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3: Distribution of  at t=0.026 (a) and t= 0.35 (b). 

Figures 3(a) and 3(b), the variation of shear stress (
 ) 

against radial distance (r) inside the spherical shell are 

observed. At both small and large times, it may seen from the 

figure, the hoop stress is fully compressive in nature in all 

cases. At small time the effect of diffusion is very prominent 

inside the shell, whereas,   with the increase of the time it 

decreases under both 1TLS ( 0  ) and 2TLS ( 0.1  ) 

theories. 
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(b) 

Figure 4: Distribution of  at t=0.026 (a) and t= 0.35 (b). 

Figures 4(a) and 4(b) display the variation of temperature   

against radial distance (r) inside the spherical shell. We can 

see that the magnitude of temperature field shows the 

maximum value at both the boundaries. At small time, with 

the increase of radial distance towards the middle it 

decreases and becomes minimum at the middle of the shell. 

For both larger and small time the difference of numerical 

value for both with diffusion and without diffusion under 

1TLS ( 0  ) and 2TLS ( 0.1  ) theories are also noted. 
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(b) 

Figure 5: Distribution of P at t=0.026 (a) and t= 0.35 (b). 

 

Figures 5(a) and 5(b) represent the variation of chemical 

potential ( P ) against radial distance (r) inside the spherical 

shell for the thermoelastic diffusive medium. At both 

boundaries the chemical potential is noted to be in 

agreement with the boundary conditions. The difference 

between the chemical potential are more prominent under 

the 1TLS ( 0  ) theory as compared to the 2TLS ( 0.1  ) 

theory. 
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure 6: Distribution of C at t=0.026 (a) and t= 0.35 (b). 

Figures 6(a) and 6(b) shows the variation of concentration 

(C) against radial distance (r) inside the spherical shell for 

the thermoelastic diffusive medium. Like temperature field 

the mass concentration shows the maximum value at both 

the boundaries and becoming minimum towards the middle. 

The 1TLS ( 0  ) theory predicts a significantly different 

trend as compared to 2TLS ( 0.1  ) theory. 

 

VI. CONCLUSIONS: 

 

The problem of investigating the thermoelastic 

displacements, stresses, conductive temperature, 

thermoelastic temperature produced in a homogenous 

isotropic spherical shell of the thermoelastic diffusive 

medium is stated in the context of 1TLS and 2TLS theories. 

We also compare our results with the corresponding results 

in thermoelastic medium (without diffusion). According the 

analysis above and the numerical results presented in 

figs.1-6, we can conclude the following important points: 

(i) The presence of diffusion plays an important role in all 

the quantities. The influence of diffusion is more significant 

on displacement, radial stress and shearing stress, as 

compared to conductive temperature and thermoelastic 

temperature fields. At small time, the influence of diffusion 

on stresses near the boundary is more significant. With the 

increase of time the region of influence shifts towards the 

middle. 

(ii) The significant difference is also noted in the physical 

quantities for one temperature and two temperature LS 

models. Two temperature theory is more realistic then the 

one temperature theory in the case of both generalized 

thermoelasticity with diffusion and without diffusion. This 

study is very important for microscale problems, because in 

these cases the material parameters are temperature 
dependent. 
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