

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 332 www.erpublication.org



 Abstract — A large number of software reliability growth

models (SRGMs) have been proposed during the past thirty

years to estimate software reliability measures such as the

number of residual faults, software failure rate, and software

reliability. Selection of optimal SRGM for use in a particular

case has been an area of interest for researchers in the field of

software reliability. Tools and techniques for software

reliability model selection found in the literature cannot provide

high level of confidence as they use a limited number of model

selection criteria. There is therefore a need for evolving more

efficient techniques. An effort has been made in this paper to

review some of the well known techniques of this area and the

possibility of developing a more efficient technique. A number of

analytical models have been proposed during the past three

decades for assessing the reliability of the software system. In

this paper we will summarize some existing Software Reliability

Growth Models (SRGMs), provide a critical analysis of the

underlying assumptions, and assess the applicability of these

models during the software development cycle . There is

therefore a need for evolving more efficient techniques. An

effort has been made in this paper to review some of the well

known techniques of this area and the possibility of developing a

more efficient technique.

 Keywords — Software Reliability, Software Reliability

Growth Models (SRGMs), Fault, Failure, Imperfect Debugging,

S-Shaped Model.

I. INTRODUCTION

Towards moving 21’s century, software becomes a coercer

for everything from elementary education to genetic

engineering. Dependency and requirements on computer

increases the difficulties and failures. Due to increase in

addiction, the size & complexity of the system have grown.

To avoid the failures & faults, reliability of software needs to

be studied during the development of software so as to come

up with reliable software [1]. Testing is the major quality

control used during software development [2]. The quality of

the software system has many attributes such as

maintainability, portability, usability, security, reliability,

availability, etc. Software reliability is the most dynamic

attribute, which can measure and predict the operational

quality of the product. Software Reliability is defined as the

probability of failure-free software operation for a specified

period of time in a specified environment. The aim of

software reliability engineers is to increase the probability

Manuscript received April 20, 2014.

 JAHIR PASHA, Research scholar, Dept. Of CS, Jain University,

Bangalore, Karnataka, India.

 S.Ranjitha, BE(ECE), Bangalore Institute of Technology, vv puram

,Bangalore-04

 Dr .H. N. Suresh, Professor & Research coordinator, Bangalore Institute

of Technology, Dept. of IT, VV puram, Bangalore

that a designed program will work as intended in the hands of

the customers [2,8].

A commonly accepted metric for quantifying a product’s

reliability is the number of faults one can expect to find within

a certain time. Failures are the result of a fault in the software

code, and several failures can be the result of one fault. The

process of finding and removing faults to improve the

software reliability can be described by a mathematical

relationship called a Software Reliability Growth Model

(SRGM) [3]. SRGM is a mathematical model of how the

software reliability improves as faults are detected and

repaired. SRGM can be used to predict when a particular level

of reliability is likely to be attained. Thus, SRGM is used to

determine when to stop testing to attain a given reliability

level [4,9]. There are essentially two types of software

reliability models - those that attempt to predict software

reliability from design parameters and those that attempt to

predict software reliability from test data [5].

 Various SRGM have been developed during the last

three decades and they can provide very useful information

about how to improve the reliability. One can easily

determine some important metrics like time period, number of

remaining faults, Mean Time Between Failures (MTBF), and

Mean Time To Failure (MTTF) through SRGM. For the past

several decades, various statistical models have been

proposed to access the software reliability. The most common

approach for developing software reliability model is the

probabilistic approach. The probabilistic model represents

the failure occurrences and the fault removals as probabilistic

events. They are classified into various groups, including

error seeding models, failure rate models, curve fitting

models, reliability growth models, Markov structure models,

and Non Homogenous Poisson Process (NHPP) models [6,7].

A. Statement of Problem

Software reliability represents the probability of failure-free

software operation for a certain period of time in a particular

environment. Over the past 30 years, lots of SRGMs have

been developed and most SRGMs presuppose that detected

faults are corrected at once. In literature, many software

reliability growth models were utilized and the parameters

related to software reliability were estimated. Besides the

other, the most recently developed SRGM for distributed

environment incorporating two types of imperfect debugging

method estimates the software reliability in two types of

software sub systems. The software sub-systems are reused

system with simple faults, and newly developed system with

hard faults and complex faults, respectively. The Mean Value

Function (MVF) of all these systems were computed

separately and summed to estimate the software reliability.

However, this technique has drawbacks in fault consideration

process. The software systems basically have independent

and dependent faults in the debugging process. The existing

SRGM has focused only on the fault severity. It will not find

Certain Reliability Growth Models for Debugging in

Software Systems

JAHIR PASHA, S.Ranjitha, Dr. H. N. Suresh

Certain Reliability Growth Models for Debugging in Software Systems

 333 www.erpublication.org

whether the faults are independent or dependent to the system.

The lack of such fault consideration in imperfect debugging

process does not produce accurate estimation results. If the

aforesaid drawbacks in the literary works are solved, then the

SRGM imperfect debugging process will be improved with

high accurate results. Hence, the lack of solution for such

drawbacks has motivated to do the research work in this area.

II. LITERATURE SURVEY

Sharma et al. [10] have developed a deterministic quantitative

model based on a Distance Based Approach (DBA) method,

then applied it for evaluation, optimal selection, and ranking

of SRGMs. DBA recognizes the need for relative importance

of criteria for a given application, without which

inter-criterion comparison could not be accomplished. It

requires a set of model selection criteria, along with a set of

SRGMs, and their level of criteria for optimal selection; and it

successfully presents the results in terms of a merit value,

which has been used to rank the SRGMs. They have used two

distinct, real data sets for demonstration of the DBA method.

The results were the ranking of SRGMs based on the

Euclidean composite distance of each alternative to the

designated optimal SRGM.

 P. Bubnov et al. [11] have proposed a generalized

software reliability model on the basis of non-stationary

Markovian service system. Approximation by Coxian

distribution allows investigating software reliability growth

for any kinds of distribution (for example, Weibull, Gamma)

of time between the moments of program errors detection and

fixing. The model enables to forecast important software

reliability characteristics, such as number of corrected errors,

number of errors to be fixed, required debugging time, etc.

The diagram of transitions between states of the generalized

model and differential equations system has been presented.

The example of calculation with use of the offered model has

been considered, research of influence of Coxian distributions

variation coefficients of duration of intervals between the

error detection moments and error correction time

distributions on values of look-ahead characteristics has been

executed.

 Kapur et al. [12] have proposed two general

frameworks for deriving several software reliability growth

models based on a Non-Homogeneous Poisson Process

(NHPP) in the presence of imperfect debugging and error

generation. The proposed models were initially formulated:

for the case when there was no differentiation between failure

observation and fault removal testing processes, and then

extended for the case when there was a clear differentiation

between failure observation and fault removal testing

processes. During the last three decades, many SRGMs have

been developed to describe software failures as a random

process, and can be used to evaluate development status

during testing. With SRGM, software engineers can easily

measure (or forecast) the software reliability (or quality), and

plot software reliability growth charts. It is not easy to select

the best model from a plethora of models available. In real

software development environments, the number of failures

observed need not to be same as the number of faults

removed. Due to the complexity of software systems and an

incomplete understanding of software, the testing team may

not be able to remove the fault perfectly on observation of a

failure, and the original fault may remain, resulting in a

phenomenon known as imperfect debugging, or get replaced

by another fault causing error generation. In the case of

imperfect debugging, the fault content of the software remains

the same; while in the case of error generation, the fault

content increases as the testing progresses. Removal of

observed faults may result in the introduction of new faults.

 Software Reliability is defined as the probability of

free-failure operation for a specified period of time in a

specified environment. Software Reliability Growth models

(SRGM) have been developed to estimate software reliability

measures such as number of remaining faults, software failure

rate and software reliability. Imperfect debugging models

have been considered in these models. However, most SRGM

assume that faults will eventually be removed. Purnaiah et al.

[13] have aimed to incorporate the fault removal efficiency in

software reliability growth modeling. Here, imperfect

debugging has been considered in the sense that new faults

can be introduced into the software during debugging and the

detected faults may not be removed completely.

 Khatri et al. [14] have discussed a discrete

software reliability growth model for distributed system

considering imperfect debugging that faults are not always

corrected/removed when they are detected and fault

generation. Their proposed model assumes that the software

system consists of a finite number of reused and newly

developed sub-systems. The reused sub-systems do not

involve the effect of severity of the faults on the software

reliability growth phenomenon because they stabilize over a

period of time i.e. the growth is uniform whereas, the newly

developed subsystem does involve. For newly developed

component, it has been assumed that removal process follows

logistic growth curve due to the fact that learning of removal

team grows as testing progresses. The fault removal

phenomena for reused and newly developed sub-systems have

been modeled separately and were summed to obtain the total

fault removal phenomenon of the software system. The model

has been validated on two software data sets and it has been

shown that the proposed model fairs comparatively better

than the existing one.

III. SOFTWARERELIABILTY GROWTH MODELS

 A Software Reliability Growth Model is one of the

fundamental techniques to assess software reliability

quantitatively [26], [38]. The Software Reliability Growth

Model required having a good performance in terms of

goodness-of-fit, predictability, and so forth. In order to

estimate as well as to predict the reliability of software

systems, failure data need to be properly measured by various

means during software development and operational phases.

Any software required to operate reliably must still undergo

extensive testing and debugging. This can be a costly and time

consuming process, and managers require accurate

information about how software reliability grows as a result of

this process in order to effectively manage their budgets and

projects. The effects of this process, by which it is hoped

software is made more reliable, can be modeled through the

use of Software Reliability Growth Models, hereafter referred

to as SRGMs. Research efforts in software reliability

engineering have been conducted over the past three decades

and many software reliability growth models (SRGMs) have

been proposed. SRGMs can estimate the number of initial

faults, the software reliability, the failure intensity, the mean

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 334 www.erpublication.org

time-interval between failures, etc. Ideally, these models

provide a means of characterizing the development process

and enable software reliability practitioners to make

predictions about the expected future reliability of software

under development. Such techniques allow managers to

accurately allocate time, money, and human resources to a

project, and assess when a piece of software has reached a

point where it can be released with some level of confidence

in its reliability. Unfortunately, these models are often

inaccurate. A comparative study of Software Reliability

Growth Models allows to determine with models is suited

well and under what conditions. A number of analytical

models have been proposed to address the problem of

software reliability measurement. These approaches are based

mainly on the failure history of software and can be classified

according to the nature of the failure process studied as

indicated below.

A. Times between Failures Models

 In this class of models, the process under study is the time

between failures. The most common approach is to assume

that the time between, say, the (i 1 st −) and the ith failures,

follows a distribution whose parameters depend on the

number of faults remaining in the program during this

interval. Estimates of the parameters are obtained from the

observed values of times between failures and estimates of

software reliability, mean time to next failure, etc., are then

obtained from the fitted model. Another approach is to treat

the failure times as realizations of a stochastic process and use

an appropriate time-series model to describe the underlying

failure process. b. Failure Count Models. The interest of this

class of models is in the number of faults or failures in

specified time intervals rather than in times between failures.

The failure counts are assumed to follow a known stochastic

process with a time dependent discrete or continuous failure

rate. Parameters of the failure rate can be estimated from the

observed values of failure counts or from failure times.

Estimates of software reliability mean time to next failure,

etc., can again be obtained from the relevant equations.

B. Fault Seeding Models

 The basic approach in this class of models is to "seed" a

known number of faults in a program which is assumed to

have an unknown number of indigenous faults. The

program is tested and the observed numbers of seeded and

indigenous faults are counted. From these, an estimate of

the fault content of the program prior to seeding is obtained

and used to assess software reliability and other relevant

measures.

C. Input Domain Based Models

 The basic approach taken here is to generate a set of test cases

from an input distribution which is assumed to be

representative of the operational usage of the program.

Because of the difficulty in obtaining this distribution, the

input domain is partitioned into a set of equivalence classes,

each of which is usually associated with a program path. An

estimate of program reliability is obtained from the failures

observed during physical or symbolic execution of the test

cases sampled from the input domain .

IV. FAULT COUNT MODEL

This class of models is concerned with modeling the number

of failures seen or faults detected in given testing intervals. As

faults are removed, from the system, it is expected that the

observed number of failures per unit time will decrease. If this

is so, then the -cumulative number of failures versus time

curve will eventually level off. Note that time here can be

calendar time, CPU time, number of test cases run or some

other relevant metric. In this setup, the time intervals may be

fixed a priori and the observed number of failures in each

interval is treated as a random variable. Several models have

been suggested to describe such failure phenomena. The basic

idea behind most of these models is that of a Poisson

distribution whose parameter takes different forms for

different models. It should be noted that Poisson distribution

has been found to be an excellent model in many fields of

application where interest is in the number of occurrences.

One of the earliest models in this category was proposed by

Shooman [3]. Taking a somewhat similar approach, Musa

[12] later proposed another failure count model based on

execution time. Schneidewind took a different approach and

studied the fault counts over a series of time intervals. Goel

and Okumoto [7] introduced a time dependent failure rate of

the underlying Poisson process and developed the necessary

analytical details of the models. A generalization of this

model was proposed by Goel [2]. These and some other

models in this class are described below.

A. Goel-Okumoto Nonhomogeneous Poission Process

Model

In this model Goel and Okumoto [6] assumed that a software

system is subject to failures at random times caused by faults

present in the system. Letting N(t) be the cumulative number

of failures observed by time t, they proposed that N(t) can be

modeled as a no homogeneous Poisson process, i.e., as a

Poisson process with a time dependent failure rate.

B. Goel Generalized Non homogeneous Poisson Process

Model

Most of the times between failures and failure count models

assume that a software system exhibits a decreasing failure

rate pattern during testing. In other words, they assume that

software quality continues to improve as testing progresses. In

practice, it has been observed that in many testing situations,

the failure rate first increases and then decreases. In order to

model this increasing/decreasing failure rate process, Goel

[2], [3] proposed the Goel-Okumoto NHPP model.

C. Musa Execution Time Model

In this model Musa [13] makes assumptions that are similar to

those of the JM model except that the process modeled is the

number of failures in specified execution time intervals.

D. Shooman Exponential Model :

This model is essentially similar to the JM model.

Certain Reliability Growth Models for Debugging in Software Systems

 335 www.erpublication.org

E. Generalized Poisson Model :

This is a variation of the NHPP model of Goel and

Okumotoand assumes a mean value function is the total

number of faults removed up to the end of the (i - 1) st

debugging interval, Ø is a constant of proportionality, and a is

a constant used to rescale timed .

F. IBM Binomial and Poisson Models :

In these models Brooks and Motley [4] consider the fault

detection process during software testing to be a discrete

process, following a binomial or a Poisson distribution. The

software system is assumed to be developed and tested

incrementally. They claim that both models can be applied at

the module or the system level.

G. Musa-Komodo Logarithmic Poisson Execution Time

Model

In this model [10] the observed number of failures by some

time T is assumed to be a NHPP, similar to the Goel-Okumoto

model, but with a mean value function which is a function of τ.

V. APPLICABILITY OF SOFTWARE RELIABILITY

MODELS

 In this section we consider the four classes of Software

Reliability Models and assess their applicability during the

design, unit testing, integration testing, and operational

phases of the software development process.

A. Design Phase

 During the design phase, -faults may be detected visually or

by other formal or informal procedures. Existing software

reliability models are not applicable during this phase because

the test cases needed to expose faults as required by fault

seeding and input domain based model do not exist, and the

failure history required by time dependent models is not

available.

B. Unit Testing

The typical environment during module coding and unit

testing phase is such that the test cases generated from the

module input domain do not form a representative sample of

the operational usage distribution. Further, times between

exposures of module faults are not random since the test

strategy employed may not be random testing. In fact, test

cases are usually executed in a deterministic fashion. Given

these conditions, it seems that the fault seeding models are

applicable provided it can be assumed that the indigenous and

seeded faults have equal probabilities of being detected.

However, a difficulty could arise if the programmer is also the

tester in this phase. The input domain based models seem to

be applicable, except that matching the test profile to

operational usage distribution could be difficult. Due to these

difficulties, such models, although applicable, may not be

usable. The time dependent models, especially the time

between failures models, do not seem to be applicable in this

environment since the independent times between failures

assumption is seriously violated.

C. Integration Testing

A typical environment during integration testing is that the

modules are integrated into partial or whole systems and test

cases are generated to verify the correctness of the integrated

system. Test cases for this purpose may be generated

randomly from an input distribution or may be generated

deterministically using a reliable test strategy, the latter being

probably more effective. The exposed faults are corrected and

there is a strong possibility that the removal of exposed faults

may introduce new faults. Under such testing conditions, fault

seeding models are theoretically applicable since we still have

the luxury of seeding faults into the system. Input domain

based models based on an explicit test profile distribution are

also applicable. The difficulty in applying them at this point is

the very large number of logic paths generated by the whole

system. If deterministic testing (e.g., boundary value analysis,

path testing) is used, times between failures models may not

be appropriate because of the violation of the independence of

inter failure times assumption. Fault count models may be

applicable if sets of test cases are independent of each other,

even if the tests within a set are chosen deterministically. This

is so because in such models the system failure rate is assumed

to decrease as a result of executing a set of test cases and not at

every failure. If random testing is performed according to an

assumed input profile distribution, then most of the existing

software reliability models are applicable. Input domain

based models, if used, should utilize a test profile distribution

which is statistically equivalent to the operational profile

distribution. Fault seeding models are applicable likewise,

since faults can be seeded and the equal probability of fault

detection assumption may not be seriously violated. Thesis

due to the random nature of the test generation process. Times

between failures and failure count models are most applicable

with random testing. The next question could be about

choosing a specific model from a given class. Some people

prefer to try a couple of these model sons the same failure

history and then choose one. However, because of different

underlying assumptions of these models, there are subtle

distinctions among them. Therefore, as far as possible, the

choice of a specific model should be based on the

development environment considerations.

D. Acceptance Testing

During acceptance testing, inputs based on operational usage

are generated to verify software acceptability. In this phase,

seeding of faults is not practical and the exposed faults are not

usually immediately corrected. The fault seeding and times

between failures models are thus not applicable. Many other

considerations here are similar to those of integration testing

so that the fault count and input domain based models are

generally applicable.

E. Operational Phase

When the reliability of the software as perceived by the

developer or the "friendly users" is already acceptable, the

software is released for operational use. During the

operational phase, the user inputs may not be random. This is

because the user may use the same software function or path

on a routine basis. Inputs may also be correlated(e.g., in

real-time systems), thus losing their randomness.

Furthermore, faults are not always immediately corrected. In

this environment, fault-count models are likely to be most

applicable and could be used for monitoring software failure

rate or for determining the optimum time for installing a new

release.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 336 www.erpublication.org

VI. OBJECTIVES

The main objective of this study is to provide an efficient

SRGM method for estimating accurate imperfect debugging

in software systems. The objectives of this study are

highlighted as follows:

 To develop a SRGM by estimating imperfect

debugging in the software systems.

 To reduce fault consideration process by considering

the systems independent and dependent faults.

 To develop Yamada Weibull-Type Testing-Effort

Function Model for software reliability estimation.

 A selection function, which chooses the best

candidate to be added to the solution

 A feasibility function, that is used to determine if a

candidate can be used to contribute to a solution

 An objective function, which assigns a value to a

solution, or a partial solution,

 A solution function, which will indicate when we

have discovered a complete

VII. PROPOSED METHODOLOGY

The main aim of this research is to provide a better SRGM by

solving the drawbacks that currently exist in the literary

works. Thus, it is intended to propose a SRGM by estimating

the imperfect debugging in the software systems. In the

proposed technique, initially the basic assumptions about

software faults will be discussed. The proposed SRGM will

be based on the Non Homogeneous Poisson Process (NHPP).

The software faults MVF will be computed for all faults

presented in the software systems. Subsequently, the

proposed technique will develop a Yamada Weibull-Type

Testing-Effort Function Model for the software reliability

estimation process. The software reliability estimated by our

proposed technique will be more accurate than the existing

technique. The technique will be implemented in the JAVA

platform and the results will be analyzed to demonstrate the

performance of the proposed SRGM technique.

VIII. POSSIBLE OUTCOME

By using the proposed SRGM, the software systems

reliability will be computed by considering the faults in the

software systems. The performance of our proposed

technique will be tested by two data sets, and the results from

both the datasets will be compared with the conventional

SRGM. Overall, the proposed technique will accurately find

the reliability of the software by considering the faults

presented in the software systems

REFERENCES

[1] Tariq Hussain Sheakh and VijayPal Singh, "Taxonomical study of

Software Reliability Growth Models", International Journal of Scientific and

Research Publications, Vol. 2, No. 5, pp. 1-3, May 2012

[2] Anni Princy and Sridhar, "An Efficient Software Reliability Growth

Models with Two Types of Imperfect Debugging", European Journal of

Scientific Research, Vol. 72, No. 4, pp. 490-503, 2012

[3] Vincent Almering, Michiel van Genuchten, Ger Cloudt and Peter J.M.

Sonnemans, "Using Software Reliability Growth Models in Practice", IEEE

Computer Society, pp. 82-88, 2010

[4] Quadri and Ahmad, "Software Reliability Growth Modeling with New

Modified Weibull Testing–effort and Optimal Release Policy", International

Journal of Computer Applications, Vol. 6, No.12, pp. 1-10, September 2010

[5] Preethi and Aasha, "A Quality Oriented Approach for Developing an

Enhanced Software Reliability Growth Model", International Journal of

Advanced Research in Technology, Vol. 2, No. 2, pp. 39-44, March 2012

[6] Geetha Rani Neppala, Satya Prasad and Kantam, "Software Reliability

Growth Model using Interval Domain Data", International Journal of

Computer Applications, Vol. 34, No. 9, pp. 5-8, November 2011

[7] Khaled M. S. Faqih, "What is Hampering the Performance of Software

Reliability Models? A literature review", In Proceedings of the International

Multi Conference of Engineers and Computer Scientists, Hong Kong, Vol. I,

2009

[8] Chin-Yu Huang, Sy-yen Kuo and Lyu, "An Assessment of Testing-Effort

Dependent Software Reliability Growth Models", IEEE Transactions on

Reliability, Vol. 56, No. 2, pp. 198-211, 2007

[9] Quadri, Ahmad and Peer, ―Software Optimal Release Policy and

Reliability Growth Modeling‖, In Proceedings of the 2nd National

Conference on Computing for Nation Development, New Delhi, India, pp.

423-431, 2008

[10] Sharma, Garg, Nagpal and Garg, "Selection of Optimal Software

Reliability Growth Models Using a Distance Based Approach", IEEE

Transactions on Reliability, Vol. 59, No. 2, pp. 266-276, 2010

[11] Vladimir P. Bubnov, Alexey V. Tyrva and Anatoly D. Khomonenko,

"Model of Reliability of the Software with Coxian Distribution of Length of

Intervals between the Moments of Detection of Errors", In Proceedings of

IEEE Conference on Annual Computer Software and Applications, Munich,

pp. 310-314, 2011s

[12] Kapur, Pham, Anand and Yadav, "A Unified Approach for Developing

Software Reliability Growth Models in the Presence of Imperfect Debugging

and Error Generation", IEEE Transactions on Reliability, Vol. 60, No. 1, pp.

331-340, 2011

[13] Purnaiah, Rama Krishna and Bala Venkata Kishore, "Fault Removal

Efficiency in Software Reliability Growth Model", Advances in

Computational Research, Vol. 4, No. 1, pp.-74-77, 2012

[14] Sunil Kumar Khatri, P.K. Kapur and Prashant Johri, "Flexible Discrete

Software Reliability Growth Model for Distributed Environment

Incorporating Two Types of Imperfect Debugging", In Proceedings of the

International Conference on Advanced Computing & Communication

Technologies, Rohtak, Haryana, pp. 57-63, 2012

 M.Jahir Pasha was born in Kurnool, Andhra Pradesh,

India in 1988.He is currently pursuing Doctors degree at department of

computer science and engineering, Jain University, Bangalore, India. He has

obtained his Bachelor of Technology and Master of Technology in

Information Technology and Reliability Engineering from Jawaharlal Nehru

technological university Hyderabad, Andhra Pradesh, India, and Jawaharlal

Nehru technological university, Anantapur, Andhra Pradesh, India in 2009

and 2011 respectively. He is currently working as assistant professor in the

department of computer science and engineering, Modugula kalvathamma

institute of technology for women, Rajampet, kadapa, Andhra Pradesh,

India. His current research is focused on software reliability.

Dr. H.N. Suresh received his BE (E&C)

from P.E.S College of Engineering, Mysore

University, Karnataka, India, in the year 1989

and completed his M.Tech (Bio Medical

Instrumentation) from SJCE Mysore affiliated

to University of Mysore., in the year of 1996

and since then he is actively involved in

teaching and research and has Twenty six years

of experience in teaching. He obtained his PhD

(ECE) from Anna university of Technology.He worked at various capacities

in affiliated University Engineering Colleges. For Visveswaraya Technical

University and Bangalore University he worked as a Chairman for Board of

Examiners, and member of Board of Studies etc. At present he is working as

Professor and BIT research coordinator in Bangalore Institute of

Technology, Bangalore Affiliated to Visveswaraya Technical University. He

has good exposure in the field of signal processing, Wavelet Transforms,

Neural Networks,Pattern recognition,Bio Medical Signal Processing,

Netwoking and Adaptive Neural network systems. He has published more

than 30 research papers in the refereed international journals and presented

contributed research papers in refereed international and national

conferences. He is a member of IEEE, Bio Medical Society of India,

ISTE,IMAPS & Fellow member of IETE.

