

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 285 www.erpublication.org

 Abstract— Component-Based Software Systems (CBSS) have

now become more generalized approach for application as it

mainly focus on assembling individual components, to develop

the application. Today’s applications are large, complex and are

not integrated. Although they come packaged with wide range of

features but most features can neither be removed, upgraded

independently or replaced nor can be used in other applications.

One of the most critical activities in this reuse based process is

the selection of appropriate components. This paper proposes a

set of metrics i.e. coupling and cohesion metrics which will help

in the evaluation of component in CBSS at design level. These

metrics of a component may provide an indirect measurement of

its external characteristics. These propose metrics is used to

decide upon a criterion against which candidate components can

be evaluated in CBSS at design level. These new metrics are

helpful to designers and testers in performing assessment and

improvement of CBSS design quality.

Index Terms— Cohesion, Coupling, CBM (Cohesion between

Methods), LOC

I. INTRODUCTION

Software engineering is the application of a systematic,

disciplined, quantifiable approach to the design,

development, operation, and maintenance of software [1].

Stephen Schach defined the same as “A discipline whose aim

is the production of quality software, software that is

delivered on time, within budget, and that satisfies its

requirements”. Measurement is the process by which

numbers or symbols are assigned to attribute of entities in the

real world in such a way so as to describe them according to

clearly defined rules. There are different types of

measurements like Direct Measures (internal attributes): To

measure the cost, effort, LOC, speed and memory. Indirect

Measures (external attributes): To measure the functionality,

quality, complexity, efficiency, reliability and

maintainability.

Measurements are a key element for controlling software

engineering process. Measurement are very important in

software industry because

 Software metrics can help to fully understand both the

design and architecture information of the software

system.

Manuscript received April 20, 2014.

 Kratika Yadav, School of Information and Communication

Technology, Gautam Buddha University, Greater Noida, Uttar Pradesh,

 Pradeep Tomar, Assistant Professor, School of Information and

Communication Technology, Gautam Buddha University, Greater Noida,

Uttar Pradesh.

 Software design metrics can aid to discover the underlying

errors in the software design at the early stage of software

development life cycle.

The IEEE Standard Glossary of Software Engineering Terms

[1] defines a metric as „a quantitative measure of the degree to

which a system component or process possesses a given

attribute‟. Software metrics play a very important role in

assessing and predicting various attributes of software such as

complexity, reusability, maintainability, testability etc.

Among these attributes complexity affects all other attributes

of the software [2].

Software metrics are used to measure the software quality to

check whether it satisfies the requirements. Metrics are

defined as “Quantifiable measures that could be used to

measure characteristics of a software system or the software

development process.” Software metrics are essential to plan,

predict, monitor, control, evaluate, products and processes.

The main goal of the software metrics is to reduce costs,

Improve quality, Control/ Monitor schedule, small testing

effort, many reusable fragments, to better understand the

quality of the product and the program [3].

II. COMPONENT-BASED SYSTEMS

Modern approach to software re-use has been through

Component-Based Software Engineering (CBSE).

Component-Based Software Development (CBSD) approach

is based on the idea to develop software systems by selecting

appropriate of-the-shelf components and then to assemble

them with a well-defined software architecture. Exactly what

constitutes a software component has been a subject of much

debate with the field of CBSE.

Even though there is no IEEE/ISO standard definition for a

component that they know of, one of the leading exponents in

this area, Syzperski [4] defines software component as

follows: “Software component is a unit of composition with

contractually specified interfaces and explicit context

dependencies only. A software component can be deployed

independently and is subject to composition by third party”.

Syzperski indirectly states that components have to be

composed to work together in order to build a system. The

most important feature of a component is the separation of its

interface from its implementation.

CBSD has become widely accepted as a cost-effective

approach to software development, as it emphasizes the

design and construction of software systems using reusable

components. CBSD can significantly reduce development

cost and time-to-market, and improve maintainability,

reliability and overall quality of software systems. The CBSE

process consists of two separate but related processes. The

Design of Metrics for Component-Based Software

System at Design Level

Kratika Yadav, Pradeep Tomar

http://en.wikipedia.org/wiki/Software

Design of Metrics for Component-Based Software System at Design Level

 286 www.erpublication.org

first is concerned with the analysis of application domains and

the development of domain-related components (i.e.

development for reuse). The second process is concerned with

assembling software systems from prefabricated

(off-the-shelf) components (development with reuse). The

two processes i.e. Development for reuse and Development

with reuse are linked via a component market [5].

III. RELATED WORK

Many different metrics have been proposed for

Object-Oriented Systems(OOS), there are three major sets of

design metrics reported in the research literature. They are

mainly for principle structures that, if improperly designed,

negatively affect the design and code quality attributes. They

are due Chidamber and Kemerer (CK) suite [6], Lorenz and

Kidd (LK suite) [7,8] and Britto e Abreu (MOOD Suite) [9].

In CBS research mainly conducted on the two major areas

.Many research papers, such as [10-12], focused on

measuring the reusability of software components whereas

others such as [13,14,16,17], centered on measuring

interaction complexity of integrated components.

Kuljit Kaur Chahal et. al. [15] provide a good description on

a metric based approach to evaluate design of software

components. They are focusing on quality of internal design

of a software component and its relationship to the external

quality attributes of the component. They have studied the

basic elements of the component based software development

approach [23]. In this paper, several points of difference of

the traditional software development from the modern

component based software development are identified.

Software development processes with new sets of activities

for this paradigm are discussed. They applied CK-Metric suite

and Abreu’s Metric suite to a model software component. It

was found that the internal design of the software component

lacks quality [13]. Designers of the component have not made

use of the features of the object oriented methodology.

V. L. Narasimhan and B. Hendradjaya [16] has proposed two

sets of metrics to measure complexity and criticality of large

software systems designed and integrated using the principles

of CBSE. From the Component Interface Definition

Language (CIDL) specification, they derive two suites of

complexity metrics, namely, Component Packing Density

(CPD) metrics and Component Interaction Density (CID).

The CPD metric relates component constituents to the number

of integrated components. The CID metric suite relates

interactions between components to the number of available

interactions in the entire system. They also define a set of

criticality criteria for component integration. They proposed

experimental design and the expected results are also outlined

in this paper. The metrics proposed in this paper can be used

to identify the complexity and criticality of the metrics. By

recognizing a complex and/or critical component, it should

give a contribution on the effort and cost estimation. This

information should help a software project leader to estimate

better.

M. Abdellatief et. al. [17] has proposed, a set of metrics based

on the Component Information Flow (CIF) was developed to

characterize and evaluate the effect of the component design

size on the quality of Component-Based Software System

(CBSS) design. A CIF based on inter-component flow and

intra-component flow. CIF measurement and

multidimensional approaches for measurement interpretation

evaluate the area of component. The theoretical evaluation

results indicated that the proposed metrics are valid size

measures. An application that demonstrates the intuitiveness

of the mentioned approach is also presented. Results show

that multidimensional analysis of design size appears

promising as a means of capturing the quality of the CBSS

design in question.

Eun Sook Cho et. al. [18] has proposed a metrics for

measuring the complexity, customizability, and reusability of

software components. They have measured the complexity,

customizability, and reusability of components produced

during component development process for banking domain.

Several different metrics have been for this purpose

Component Complexity Metric (CCM), Component Plain

Complexity (CPC), Component Static Complexity (CSC),

Component dynamic complexity (CDC), and Component

Cyclomatic Complexity (CCC) and Component Reuse Level

(CRL). They applied CRL to measure the reuse level of

developed components into component-based banking

systems. They have found that the complexity of a component

may help to estimate the component‟s size. Also, reusability

and customizability of components effect on the reusability of

components during component based software development.

Hironori Washizaki et. al. [19] has proposed a new metric that

measures the coupling-based complexity of CBS by

abstracting the target system‟s structure through a step-wise

process and taking into consideration the characteristics of

remote components. There metric can be applied to CBS

based on the Enterprise JavaBeans component architecture.

As a result of experimental evaluations, it is found that there

metric better reflects the maintainability than conventional

metrics. It is also found that there metric is non-redundant

with existing metrics such as Coupling Factor.

Gui Gui et. al. [20] has proposed a set of new static metrics of

coupling and cohesion developed to assess the reusability of

Java components retrieved from the Internet by a software

component search engine. These metrics differ from the

majority of established metrics in three respects: They

measure the degree to which entities are coupled or resemble

each other, they quantitatively take account of indirect

coupling and cohesion relationship and they also reflect the

functional complexity of classes and methods. An empirical

comparison of the new metrics with eight established metrics

is described. Results show the new metrics are consistently

superior at measuring and ranking the reusability of software

components. The methodology used in metrics, to determine

the strength of indirect relationships when a pair of vertices

was linked by multiple paths was crude though effective:

They simply chose the strength indicated by the strongest

path. The consequence of this is that indirect relationships

may be underestimated. It would be possible to remedy this by

aggregating the weights contributed by all possible paths

between two vertices. The metrics are: WTcoh for measuring

cohesion and WTcoup for measuring coupling. Both the

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 287 www.erpublication.org

metrics consider transitive (indirect) relationships between

entities.

Chuan Ho Loh et. al. [21] has attempted to quantify the

amount of cohesion in classes and components via a suite of

object-oriented design metrics. They proposed four

object-oriented design metrics to evaluate cohesion at the

class and component level. The metrics are augmented based

on different definitions of LCOM. The metrics are normalized

to produce values in the range, thus yielding more meaningful

values than other cohesion metrics such as LCOM1 and

LCOM4. The proposed metrics attempt to evaluate whether

an artifact (i.e. class or component) represents one abstraction

(good) or multiple abstractions (bad). If the artifact represents

multiple abstractions, it should be split up into multiple

artifacts (i.e. classes and components).

IV. PROBLEM DESCRIPTION

Software engineering aims at development of high-quality

software and tools to promote quality software that is stable

and easy to maintain and use [22]. In order to assess and

improve software quality during the development process,

developers and managers use, among other means, ways to

automatically measure the CBS at Design level. In CBS

component design has two perspectives external or interface

design that is visible to the component user (component

assembler), and internal design that is initially visible to the

component developer only and later to the component

maintainer too[15]. It is a known fact that effort of software

maintenance depends largely upon the internal design of the

software [23]. If internal design of a component is not good,

more cost (in terms of effort and time) will be involved in

updating the component to meet changed requirements. A

well designed system can be easily maintained. Good design

leads to the high component reusability, low dependency

among components and ease of the maintenance software. A

well designed component, in which the functionality has been

appropriately distributed to its various sub-components, is

more likely to fault free and various will be easier to adapt.

Poor quality comes from poor design, where internal

structures and methods are exposed, resulting in complicated

inter-dependencies that grow worse over time [15]. The bad

design choices may be made because of time to market

pressure. In a research literature survey, a lot of work has been

reported that maps the internal measures of the object oriented

designs to the external attributes of the software products [24,

25].

V. PROPOSED WORK

Components definition adopted in this paper clearly supports

Szyperski’s [4] definition. In CBS components, Interface and

classes are the fundamental units. The member of a class is the

attributes, constructors and methods. Similarly, the member

of a component is the classes and the interface. In this paper

we mainly focus on the internal attribute of a component in

CBS at design level. Internal attribute of software includes

size of the software component, modularity (responsibility

distribution among classes), information hiding, abstraction

used, level of cohesion, coupling and complexity etc.

According to our research literature survey, no prior work

exists on the evaluation method of component in CBS at

design level.

This section describes the cohesion and coupling metrics

computable with the information available at design level in

CBS. At the design level, the design components that are

identifiable are name of the class, classes, its attributes,

object, method signature includes name of the method and its

parameter list which describes name of the parameter and

their types. A class does not have a detailed or algorithmic

description of its methods available at this level.

A. Cohesion Metrics

Cohesion, originating from the structured design, refers to the

relatedness of the elements in a module. A highly cohesive

module is one whose elements have a close relationship

among them in order to provide the sole functionality of the

module . Cohesion metrics measure the extent to which the

methods of a class are related to each other and evaluate the

quality of a CBS at design level.

Cohesion In Class (CIC)

Cohesion in class refers to the frequency of attributes usage

by the methods of class. A class is cohesive if the association

of elements declared in the class is focused on accomplishing

a single task.

 n

 ∑ f(Ai) / TM

 i=0

CIC= FA/TM (1)

 n = no. of attribute in the class

f(Ai) = Frequency of each attribute that are used by methods

in the class

TM= total no. of method in the class

Cohesion Between Method (CBM)

Cohesion between method refers to the relatedness of class

members i.e. its attributes and methods. This metric considers

the method-method interaction. This metric can easily

account for direct and transitive interaction.

If a= 0 and m> 1 then CBM =0

if a > 0 and m = 0 or m = 1 then CBM =1

otherwise,

 a

CBM = Mi(Ai)

 i=0

 am(m-1) (2)

Mi(Ai) = sum of the method that are used same type of

attribute

m= no. of method in the class.

a= no. of attribute

Cohesion Between Component (CCom)

Cohesion between component refers to the relatedness

between the component.

Design of Metrics for Component-Based Software System at Design Level

 288 www.erpublication.org

 If CC = TIC then CCM = 0

 If CC = 0 then CCM = 1

CCom = n

Otherwise, ∑CCi/TIC

 i= 1 (3)

TIC = Total no. of interface count between the component

CC = Caller component

n = no. of Component

B. Coupling Metrics

The term “coupling” was first used in software engineering by

Stevens et al in the days when structured programming was

the norm. It was defined as “the measure of the strength of

association established by a connection from one module to

another” [26].The coupling of a class means the measurement

of the interdependence of class with the other classes.

Coupling and cohesion relate to particular relationships that

exist between classes, and within a class, respectively.

Relationships that contribute to coupling were defined by

Eder et al [27]. Three types of coupling were defined:

interaction coupling, component coupling and inheritance

coupling.

Coupling between Class (CuC)

Coupling between class refers to the dependency on other

classes.This study attempt to measure a class coupling on the

basis of UML relationships.

CuC = No. of classes count that are coupled × Weight Value

of each relationship between class.

m(m-1) (4)

m = no. of classes paired

According to accessibility between classes, the size of weight

value for the relationships is defined.

The weight value for the relationships as following

priority[17].

Dependency<Association<Generalization<Aggregation<Co

mposition

The weight value of each relationship will find through the

metrics which is given by Imrain Baig

Coupling Between Method (CuM)

CuM = ∑I(mi)/M (5)

I(mi)=count of each imported method in a class

 M= total no. of methos in the class

Coupling Between Components (CuCom)

Coupling between Components refers to the dependency of a

component and a impact-dependency of acomponents.

CC = CD + IC (6)

CD=Component Dependency

IC= Interface Coupling

Interface Coupling (IC) = No. of inflows of a component

VI. CONCLUSION

The aim of software engineering is to develop high quality

software and quality is a customer satisfaction. In software

system with reusable component, the customer of a software

component is interested in external product attributes like

functionality, reliability, reusability, maintainability,

portability, efficiency and understandability etc. It was found

that internal design of a software component affect the quality

of a software component. Each design constructs affects

certain quality attributes of a component. In this paper we

have proposed a new metrics for cohesion and coupling for a

CBS. Metrics can be used to check as to up to which level a

particular object oriented software component follows the

principals of a good object oriented design. Good design

leads to the ease of maintenance of the software component.

Cohesion is considered as one of most important

characteristics in design of a component. Cohesion can be

used to identify the poorly designed classes and components

in CBS. This new metric will helpful to designers, researchers

and practioners of both parties in performing assessment and

improvement of CBSS design quality.

REFERENCES

[1] ANSI/IEEE (1990), IEEE Standard Glossary of software Engineering

Terminology, IEEE computer Society.

[2] Gill N.S and Grover P.S.,(2003) “Component–Based Measurement:

Few Useful Guidelines”; ACM SIGSOFT Software Engineering,

Volume 28 No.6, pp.30.

[3] Fenton N.E, (1991), “Software Metrics: A Rigorous Approach”,

Chapman and Hall.

[4] Szyperski C. (1998), Component Software–Beyond Object-Oriented

Programming, Addison-Wesley

[5] Butler, G., Li, L., and Tjandra, I.A., (2008) “Reusable Object-Oriented

Design”, available athttp://citeseer.ist.psu.edu/butler95reusable.html

[6] S. R. Chidamber and C. F. Kemerer,”A Metrics Suite for Object

Oriented-Design,”IEEE Transactions on Software Engineering,

vol.20,no. 6, pp.476-493, 1994.

[7] R. Pressman. (2000) “Software Engineering: a Practitioner's

Approach: European Adaptation.” 5th edition, McGraw-Hill, UK.

[8] M. Lorenz and J. Kidd, (1994) ”Object-Oriented Software Metrics: A

Practica Guide”, Prentice Hall, Englewood Cliffs, New Jersey.

[9] F. Abreu and R. Carapuça,”Object-Oriented Software

Engineering:Measuring and Controlling the Development Process”,

Proceedings of the 4th International Conference on Software Quality,

McLean, VA,USA,1994.

[10] Washizaki, H., Yamamoto, H., Fukazawa, Y.: „A metrics suite for

measuring reusability of software components‟. Proceeding of Ninth

International Symposium on Software Metrics, 2003, p. 211

[11] Rotaru, O.P., Dobre, M.: „Reusability metrics for software

components‟. Proc. ACS/IEEE 2005 Int. Conf. on Computer Systems

and Applications, Cairo, Egypt, AICCSA-05, 2005, pp. 24–29.

[12] Gill and Balkishan‟s, (2008), “Dependency and Interaction Oriented

Complexity Metrics of Component-Based Systems”, ACMSIGSOFT

Software Engineering, Vol. 33, pp. 1-5.

[13] Salman, N.: „Complexity metrics AS predictors of maintainability and

integrability of software components‟, J. Arts Sci., 2006, 5, pp. 39–50

[14] Kuljit Kaur Chahal and Hardeep Singh, (2008) "A Metrics Based

Approach to Evaluate Design of Software Components”, Proceeding

of IEEE International Conference on Global Software Engineering,

pp. 269-272.

[15] V. L. Narasimhan and B. Hendradjaya , (2007) “A New Suite of

Metrics for the Integration of Software Components‟‟, Informing

Science and Information Technology.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 289 www.erpublication.org

[16] M. Abdellatief et. al.,(2012) "Multidimensional Size Measure for

Design of Component-Based Software System‟‟, The Institute of

Software and Technology, Vol. 6, pp. 350–357.

[17] Eun Sook Cho, Dongduk Women's University, (2001) "Component

Metrics to Measure Component Quality‟‟, IEEE Transaction on

Software Engineering, pp. 419-426

[18] Hironori Washizaki Tomoki Nakagawa, Yuhki Saito and Yoshiaki

Fukazawa, (2006), “A Coupling-based Complexity Metric for Remote

Component-based Software Systems Toward Maintainability

Estimation”, IEEE Asia Pacific Software Engineering Conference, pp.

73-86.

[19] Gui Gui and Paul. D. Scott, (2009) “Measuring Software Component

Reusability by Coupling and Cohesion Metrics”, Journal of

Computers, Vol. 4, pp. 737-805.

[20] Chuan Ho Loh and Sai Peck Lee, (2009) “Towards Cohesion-based

Metrics as Early Quality Indicators of Faulty Classes and

Components”, proceeding of International Symposium on Computing,

Communication, and Control, Vol. 1, pp. 314-319.

[21] V. Krishnapriya, Dr. K. Ramar, (2010) “Exploring the Difference

between Object Oriented Class Inheritance and Interfaces Using

Coupling Measures”, proceeding of IEEE International Conference

on Advances in Computer Engineering.

[22] Briand, L.C., Morasca, S., Basili, V.R.: „Measuring and assessing

maintainability at the end of high level design‟. Proc. Conf. on,

Software Maintenance, 1993, CSM-93, 1993, pp. 88–87

[23] Basili, V. R., Briand, L.C., and Melo, W.L., “A validation of

object-oriented design metrics as quality indicators”, IEEE

Transactions on Software Engineering 22(10), 1996.

[24] Chidamber, S.R., Darcy, D.P., and Kemerer, C.F., “Managerial Use of

Metrics for Object Oriented Software: An Exploratory Analysis”,

IEEE Transactions on Software Engineering, vol. 24(8), 1998.

[25] Heung Seok Chae, Yong Rae Kwon and Doo Hwan Bae, (2000), “A

cohesion measure for object-oriented classes”, Software Practices and

Experinces.

[26] Sukainah Husein,and Alan Oxley, (2009) “A Coupling and Cohesion

Metrics Suite for Object-Oriented Software” proceeding of

International Conference on Computer Technology and Development,

pp. 421-425.

[27] Abdellatief, M., Sultan, A.b.M., Abdul Ghani, A.A., Jabar, M. (2011)

“Component-based system dependency metrics based on

componentinformation flow measurement”, Proceeding of Sixth

International Conference on Software Engineering Advances,

Barcelona, Spain, pp. 76–83

