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Abstract—This paper analyzes the Model Predictive Control 

technique for estimated Fluid Catalytic Cracking Unit (FCCU). 

It presents different estimated models of FCCU such as; impulse 

response model, estimated ARX model, state space model and 

output error model. These estimated models are then used as a 

model in Model Predictive Control (MPC) design. The main 

advantages of MPC is  that it can handle hard input and output 

constraints and it can be used for Multi Input Multi Output 

processes (MIMO) without increasing the complexity in control 

design. MATLAB/Simulink is used to estimate the different 

models of FCCU and simulate the results of the controller. The 

simulation results shows that state space model estimated using 

N4SID logarithm provides better result for both identification 

and control. 

 
Index Terms—FCCU, MPC, N4SID, Output Error Model, 

System Identification. 

I. INTRODUCTION 

System identification is a process to build a mathematical 

model of dynamical systems from observed input and output 

data. These methods are widely used in industry for over a 

decade. It is being used in process control, aerospace, 

automotive, disk drives and embedded systems to create 

system models for any systems. The advantage of system 

identification is that it is quick and applicable to almost all 

systems [Billings, 2013].  

On another hand Model Predictive Control (MPC) is an 

advanced optimized control method that has been widely used 

in process industries over the last two decades. It is a form of 

control in which the model of the process being controlled is 

required. The controller uses the model of the process and the 

output measurements to calculate the current control actions 

and predict the future behavior of the processes. The control 

action is calculated by minimizing the cost function at each 

sampling instant. 

This paper analyzes the estimated models of Fluid Catalytic 

Cracking Unit (FCCU) such as; impulse response model, 

estimated ARX model, state space model and output error 

model. These estimated models are then used as a model in 

Model Predictive Control (MPC) design. The response of the 

controller for these models are shown in this paper. 
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II. SYSTEM IDENTIFICATION 

The procedure to identify the dynamical model for any 

systems are as follows. First we have to select an input signal 

and apply it to the plant to collect an output data. Input signal 

can be impulse signal, step signal, Pseudo Random Binary 

Noise (PRBS), Generalized Binary Noise (GBN), multiple 

sinusoids, etc. After getting the input and output data, the 

model structure of the plant is specified. There are three 

common types of models in system identification: white-box 

identification model, black-box identification model and 

grey-box identification model.  White-box identification 

model structure is based on the first principles such as 

Newton‟s law. In White-box identification; the model 

structure is completely known and the model parameters are 

estimated from the measured data. In grey-box identification 

the model structure is partially known from the first principles 

and the rest is developed from the measured data. In 

black-box identification, the model structure and its 

parameters are completely unknown and they are estimated 

using observed input and output data. After deciding the 

model structure, the system identification algorithms is used 

to estimate the mathematical models of dynamical systems. 

After the mathematical models of dynamical systems are 

developed, the result is validated. If the estimated model is 

not good enough then other estimation methods can be tried. 

Input signals play very important role in system 

identification because it is the only way to check the behavior 

of the process and collect the output data. In general we 

cannot introduce any random input to the process that is being 

estimated. We have to select an input signal that will carry 

enough knowledge about the system and affect smoothly all 

the operating frequencies. This can be achieved by using 

many different excitation signals, such as impulse signals, 

step signals, Pseudo Random Binary Sequences (PRBS), 

Generalized Binary Noises (GBN) and multiple sinusoids. 

The choice among these input signals depends on the type of 

identification technique used and the priori knowledge of the 

system under the test. 

In practice, for any controlled process the effect of the 

noises on the system should be minimized. The Input signal is 

the only freedom that the user have to determine the 

signal-to-noise ratio. Thus the amplitude of the input signal 

should be large enough in order to improve the signal-to-noise 

ratio but it cannot be too large that the output run away from 

the equilibrium point [Nelles, 2011]. 

Pseudo Random Binary Sequence (RBS) is a two stage 

deterministic signal with a periodic sequence of length N that 

switches between two levels, e.g. +a and -a.To generate these 

Analysis of Model Predictive Control for Identified 

Fluid Catalytic Cracking Unit 

Nafay H. Rehman, NeelamVerma 



Analysis of Model Predictive Control for Identified Fluid Catalytic Cracking Unit 

  

                                                                                              255                                                                     www.erpublication.org 

 

sequences, there are two possibilities: first possibility is to use 

a quadratic residue code method suggested by Godfrey 

[Godfrey, 1993] and the second possibility is to use feedback 

shift register [Godfrey, 1993], [Eykhoff, 1974].  

PRBS signals have been used for nonparametric model 

identification, such as: frequency response estimation and 

correlation analysis. In process control white noise signal is 

harmful to the actuator because it over emphasize the high 

frequency band at the cost of the low and the middle 

frequency band. In process control low pass character signals 

are preferred. Such signals can be obtained by increasing the 

clock period of the signal or by filtering the PRBS signals. 

The PRBS signal is preferred for system identification, 

because it excites all frequencies equally and imitate white 

noise in deterministic signal [Nelles, 2011]. In this paper 

PRBS signals are applied to FCCU to obtain an input-output 

data. 

A. Impulse Response Model 

Impulse response model refers to the models estimated 

using impulse response signal as an input. It is defined as 

 δ(t)=0 for all t≠0 (1) 

 

 
(2) 

From (1) and (2), it is clear that an ideal impulse function is a 

function that is zero everywhere but at the origin, where it is 

infinitely high. If a unit impulse function  is applied as an 

input to a linear time invariant system (LTI) and the impulse 

response is denoted by , then a time delay input signal 

 will give a time delay output signal represented by 

. If the input signal is represented as  

 
 

(3) 

then the output impulse response will be 

 

 

(4) 

If  is known, then for an input signal , the 

corresponding output signal can be computed.  

B. ARX Model 

ARX model relates the current output  to a finite 

number of past outputs  and inputs u(t-k). It is 

represented in linear difference equation as  

  

 
(5) 

The advantage of ARX model is that it is the most efficient 

polynomial estimation methods available. It is considered to 

be the simplest way to represent the dynamic process driven 

by an input in the presence of error and disturbances. 

ARX model can be estimated using least square method. 

Rewriting (5) in regression form gives 

  (6) 

where 

  (7) 

  (8) 

hence the model parameter  can be estimated using the least 

square estimation given as 

  (9) 

C. State Space Model 

The state space representation of dynamical system given as  

  (10) 

  (11) 

where  is the state vector,  is the system output,  

is the system input,  is the stochastic error, A, B, C, D and 

K are the system matrices.  

Estimating the parameters in state space model is 

considered to be simple because the states or the order is the 

only parameter which needed to be estimated. 

Subspace identification is a method used to estimate the 

state space matrices A, B, C and D from an input and output 

data. It was proposed by van Overschee and de Moor. Further 

development to this method was done by Larimore in 1990 in 

which he proposed canonical variate analysis (CVA) 

[Larimore, 1990].  

In 1994, van Overschee and de Moor proposed new 

numerical algorithm N4SID which identifies the mixed 

deterministic-stochastic systems.  

In N4SID, the observability and controllability of the 

system is not needed to be known in advance since the state 

space matrices are not calculated in their canonical form but it 

is calculated as the full state space matrices so there is no 

problem of identifiability [Overschee and Moor, 1994]. 

Let consider a state space model of combined deterministic 

stochastic system given as 

  (12) 

  (13) 

where A, B, C and D are the state space matrices,  is the 

state noise with covariance matrices  and  is 

the output measurement noise with covariance matrices 

 and  

If the system is observable then Kalman filter can be designed 

for the system to estimate the state variables according to 

  (14) 

where  is the steady state Kalman gain that can be solved 

using Ricatti equation. 

  (15) 

Denoting 

  (16) 

Substituting (16) in (14) gives (10) and (11). 

The system described by (12) and (13) can be represented in 

the predictor form as 

  (17) 

  (18) 

where 

  (19) 

From (17) and (18), an extended state space can be 

formulated as 

  (20) 

where is the future horizon and  

 

(21) 

 

(22) 
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(23) 

 

(24) 

By iterating (17) and (18), the following is obtained 

  (25) 

where 

 
 (26) 

 
 (27) 

By substituting (25) into (20) gives 

  

 

(28) 

In subspace identification methods following assumptions 

are made: the eigenvalues of  lies inside the unit 

circle, is observable,  is controllable and  

is a stationary, zero mean white noise with covariance 

 

Let consider an input vector  and output vector , the 

linear regression can be expressed as 

  
(29) 

which can be written in matrix form as 

  

 
(30) 

Where V is a noise vector. 

By minimizing the following function 

  
(31) 

Where  is the F
th

 norm, the least square solution is given 

as 

  (32) 

The model prediction is then given as 

  
(33) 

The least square residual is given as 

 
 

(34) 

Based form (10) and (11), an extended state space model can 

be formulated as 

  (35) 

where f  is the future horizon and 

 

 

(36) 

 

 

(37) 

 

 

(38) 

 

 

(39) 

 

The Kalman state is estimated from past input and output data 

based on equation 25 as 

  
(40) 

where 

  (41) 

From equations 41 and 35 

  

 

(42) 

where  

Under open-loop conditions, is uncorrelated to so 

 

 

(43) 

Furthermore,  is uncorrelated to  from the Kalman filter 

theory. Therefore 

 

 

(44) 

In N4SID we have to eliminate first eliminate by 

post-multiplying  on (42). 

 

 

(45) 

Then the noise term is removed by multiplying  from the 

result of equation (44). 

 

 

 

(46) 

and 

 

 

(47) 

N4SID performs Singular Value Decomposition (SVD) on 

 
 

(48) 

where  contains the n largest singular value and 

chooses . 

D. Output Error Model 

The output-error model is defined, as follows 

  

 

(49) 

where ξ(t) is an undisturbed output, y(t) is the oputput at t, 

and are the unknown parameter that 

needed to be estimated.Rewriting (49) in compact form gives 

 

 

(50) 

where 

 

 

(51) 

 

 

(52) 

The output error model is estimated using regularization 

method. The parameters are estimated by minimizing the 
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mean square error given by a sum of systematic error (bias) 

and random error (variance). 

  (53) 

III. MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) is considered to be an 

advanced optimized control method that has been widely used 

in process industries over the last two decades. The strategy 

that Model Predictive Controllers (MPC) uses to calculate the 

control actions characterized as : At the k
th

 sampling instant, 

the values of the control action, , for the next „M‟ sampling 

instants. are calculated. 

They are calculated by minimizing the difference between the 

predicted outputs and the reference trajectories over the next 

„P‟ sampling instants while satisfying the constraints. In 

MPC, the control horizon „M‟ and the predicted horizon „P‟ 

are the tuning parameters. After calculating the control moves 

for M sampling instants. The controller will implement the 

first  control move  At the next sampling instant, k+1, 

the control moves are recalculated for the next M sampling 

instants, [k+1 to k+M], and the first control 

move is implemented. These steps are repeated at 

each sampling instants. 

 

 
Fig.  1MPC Strategy 

 

In MPC strategy, the dynamical model of the plant being 

controlled is required. It is needed to calculate the future 

predicted output. The dynamical model of the plant must be 

accurate thus it must capture the dynamics of the processes 

completely. If the dynamical model of the process is not 

accurate then the result of the controller might not give the 

desired performance of the process outputs. There are many 

different types of models which can be used in MPC, such as 

impulse response, step response, transfer function models and 

sate space models. 

To obtain the control law, objective function is needed. 

Different objective function leads to different algorithms. 

There are several different choices for objective functions. 

The first one is a standard least-squares or quadratic objective 

function. The objective function is a sum of squares of the 

predicted residuals and the control moves. A quadratic 

objective function can be written as 

 

 

 

(54) 

where represents the model predicted output,  is the 

reference setpoint,  is the change in manipulated input 

from one sample time to the next,  is a weight for the 

changes in the manipulated input, is a weight for the 

changes in the predicted output, and the subscripts indicate 

the sample time . Pis a prediction horizon and M is a control 

horizon. 

The controller minimizes the objective function given in 

(54) to obtain the control moves.  The objective function is 

minimized at each sampling instant using quadratic equation 

solvers.  

There are many different quadratic solvers available such 

as; interior point, active set, augmented Lagrangian, 

conjugate gradient, KIWIK algorithm, etc. The details of 

these algorithms are not considered in this paper.  

In general the quadratic problem can be formulated as  

 
 

          Subject to  

(55) 

where  is the optimal solution which gives the minimum, H 

is the positive definite Hessian matrix, A is a matrix of linear 

constraint coefficients, and b and fare the vectors. The H and 

A matrices are constants matrices which are calculated during 

the initialization of the controller and b and f vectors are 

calculated at the beginning of each sampling instant. 

The quadratic solver tries to find the minimum of the 

function given in (55) which satisfies the constraints. 

In MPC calculation, it is assumed that all the states of the 

process are measurable but that‟s not true. In most of the 

application it is impossible to measure all the states and the 

estimation of the states are required. Observer, Kalman filter 

and Extended Kalman filter can be used for the state 

estimation. 

IV. FLUID CATALYTIC CRACKING UNIT 

The fluid catalytic cracking unit (FCCU) is complex 

interactive process in in petroleum refining industries.  It 

takes chains of hydrocarbons and breaks them into smaller 

ones which allows refineries to utilize their crude oil 

resources more efficiently. It uses an extremely hot catalyst to 

crack the hydrocarbons into smaller ones. FCCU processes 

present challenging control problem because it has very 

complex kinetics of both cracking and coke burning reactions 

and it has strong interaction between the reactor and 

regenerator.A schematic of FCCU is shown in fig. 2. 

The FCCU contains of two main parts: the reactor and the 

regenerator. In reactor, the reaction between the mixture of 

hydrocarbon vapors and catalyst takes place. This reaction 

breaks the long molecules of hydrocarbons into smaller one 

which leaves from the top of the reactor. Steam is supplied to 

remove hydrocarbons from the catalyst. The cracking reaction 
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produces carbon materials and un-cracked organic materials 

known as coke that reduces the catalyst activity. The catalyst 

is taken into regenerator where it is regenerated by burning off 

the deposited coke with air. The regenerated catalyst is then 

taken to the reactor to repeat the cycle. The combustion of the 

coke in the regenerator produces a heat absorbed by the 

regenerated catalyst. This absorbed heat provides the energy 

for the vaporization and cracking reactions that take place in 

the catalyst riser. 

 

 
Fig.  2 Schematic of FCCU 

 

The FCCU considered here is developed from [Skogested, 

1993]. It has two manipulated variable and two controlled 

variables. The manipulated variables are: which is the flow 

rate of regenerated catalyst and which is the flow rate of air 

to regenerator. The controlled variable are: which is the 

riser outlet temperature and which is the regenerator 

temperature. 

V. RESULTS AND DISCUSSIONS 

PRBS signals applied to the model of FCCU developed in 

Simulink. The developed model is based on the work of 

Skogested, 1993. This model has two manipulated variables 

and two controlled variables.  The input-output data is then 

used to estimate the different models of FCCU. 

The estimated impulse model is shown in fig. 3 and fig. 4.  

From those figures, it is clear that the impulse model was 

unable to estimate the correct model. Impulse model 

produced a fit of 4.214% for , and -555.1% fit for .  
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Fig.  3 Riser Outlet temperature, Impulse Model 
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Fig.  4 Regenerator Temperature, Impulse Model 

ARX model is shown in fig. 5 and fig. 6. This model 

produced a fit of 86.8% for  , and 85.5% fit for .  
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Fig.  5 Riser Outlet temperature, ARX Model 
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Fig.  6 Regenerator Temperature, ARX Model 

 

State Space Model is shown in fig. 7 and fig. 8.This model 

produced a fit of 87.83% for  , and 84.68% fit for .  
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Fig.  7 Riser Outlet temperature, State Space Model 
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Fig.  8 Regenerator Temperature, State Space Model 
 

Output error model is shown in fig. 9 and fig. 10. This 

model produced a fit of 84.65% for  , and 80.8% fit for 

.  
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Fig.  9 Riser Outlet temperature, Output Error Model 

1000 1500 2000 2500
-150

-100

-50

0

50

100

150

Time

R
eg

en
er

at
or

 T
em

pe
ra

tu
re

 (
K

)

Measured and simulated model output

 

 

Estimated

data

 
Fig.  10 Regenerator Temperature, Output Error Model 

 

Since the estimated impulse model was unable to produce a 

correct model, it was not used in MPC design. In MPC ARX 

model, state space Model and output error model are used. 

The results of MPC design is shown in fig. 11 and fig. 12 and 

fig. 13. The results show that the state space model estimated 

using N4SID produce better response than ARX model and 

ARX model produces better response than output error model 
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Fig.  11 MPC Design ARX Model 
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Fig.  12MPC Design State Space Model 
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Fig.  13MPC Design Output Error Model 
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VI. CONCLUSION 

In this paper, system identification techniques are used to 

estimate the dynamical models of FCCU. Impulse model, 

ARX model, state space model and output error model are 

estimated and compared.  The result of the simulation shows 

that an Impulse model was unable to give a correct fit, 

however; ARX model, state space model and output error 

model produced a good fit. The estimated models then used in 

MPC design to control the riser outlet temperature and 

regenerator temperature of FCCU unit. MPC design is 

simulated in MATLAB. The result of the simulation shows 

that the estimated state space model using N4SID algorithm 

gives better result than ARX model and ARX model gives 

better result than output error model. 
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