

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 140 www.erpublication.org



Abstract— NS2 is discrete network simulator which is used

for simulating various types of networks such as wired, wireless

and ad hoc network. Different traffic patterns are generated and

different mobility models are used to evaluate various

performance metrics such as packet delivery ratio and delay etc.

This paper describes the use of NS2 simulation tools starting

from installation, compilation, various necessary tools such as

XGraph, BonnMotion, cbrgen and setdest tools used along with

NS2 to support and evaluate the network.

Index Terms— AODV, DSR, DSDV, AOMDV, Cbrgen,

BonnMotion, XGraph etc

I. INTRODUCTION

System modeling refers to an act of representing an actual

system in a simply way. System modeling is extremely

important in system design and development, since it gives an

idea of how the system would perform if actually

implemented. With modeling, the parameters of the system

can be changed, tested, and analyzed. More importantly,

modeling, if properly handled, can save costs in system

development. To model a system, some simplifying

assumptions are often required. It is important to note that too

many assumptions would simplify the modeling but may lead

to an inaccurate representation of the system. Traditionally,

there are two modeling approaches: analytical approach and

simulation approach.

Simulation is widely-used in system modeling for

applications ranging from engineering research, business

analysis, manufacturing planning, and biological science

experimentation, just to name a few. Compared to analytical

modeling, simulation usually requires less abstraction in the

model (i.e., fewer simplifying assumptions) since almost

every possible detail of the specifications of the system can be

put into the simulation model to best describe the actual

system. When the system is rather large and complex, a

straightforward mathematical formulation may not be

feasible. In this case, the simulation approach is usually

preferred to the analytical approach. According to Shannon,

simulation is “the process of designing a model of a real

system and conducting experiments with this model for the

Manuscript received April 13, 2014.

 Satish Goswami, Neha Sharma, Amit Kumar, Kamlesh Puri,

Student in Department of Information Technology, Army Institute of

Technology, Pune, India

 Rahul Desai, Asst Professor, Department of Information Technology,

Army Institute of Technology, Pune, India

 Nilima Walde, Asst Professor, Department of Information Technology,

Army Institute of Technology, Pune, India

purpose of understanding the behavior of the system and/or

evaluating various strategies for the operation of the system.”

The structural components of a simulation consist of the

following:

A. Entities: Entities are objects which interact with one

another in a simulation program to cause some changes to the

state of the system.

B. Resources: Resources are a part of complex systems. In

general, a limited supply of resources has to be shared among

a certain set of entities.

C. Activities and Events: From time to time, entities engage in

some activities. This engaging creates events and triggers

changes in the system states. Common examples of activities

include delay and queuing.

D. Scheduler: A scheduler maintains the list of events and

their execution time. During a simulation, it runs a simulation

clock creates events, and executes them.

E.Global variable: In simulation, a global variable is

accessible by any function or entity in the system, and

basically keeps track of some common values of the

simulation.

Network Simulator (Version 2) is simply an event driven

simulation tool that has proved useful in studying the dynamic

nature of communication networks. Simulation of wired as

well as wireless network functions and protocols (e.g., routing

algorithms, TCP, UDP) can be done using NS2. In general,

NS2 provides users with a way of specifying such network

protocols and simulating their corresponding behaviors. Due

to its flexibility and modular nature, NS2 has gained constant

popularity in the networking research community since its

birth in 1989. University of California and Cornell University

who developed the REAL network simulator which is the

foundation of NS. Since 1995, the Defense Advanced

Research Projects Agency (DARPA) starts development of

NS through the virtual Internetwork Test bed (VINT) project.

Performance Evaluation of Routing Protocols

in Ad Hoc Network

Satish Goswami, Neha Sharma, Amit Kumar, Kamlesh Puri, Rahul Desai, Nilima Walde

Performance Evaluation of Routing Protocols in Ad Hoc Network

 141 www.erpublication.org

Fig 1: Network Simulator Architecture

NS2 consist of 200K lines of C++ code, 80K lines of OTcl

(Object Oriented Tool Command language) and 50K+ lines

of test suite, examples and docs etc. It works on all Windows

Platform using Cygwin and Unix/Linux platforms. NS2

provides users with executable command ns which take on

input argument, the name of a Tcl simulation scripting file.

Users are feeding the name of a Tcl simulation script as an

input argument of an NS2 executable command ns. In most

cases, a simulation trace file is created, and is used to plot

graph and/or to create animation.

NS2 consists of two key languages: C++ and Object-oriented

Tool Command Language (OTcl). While the C++ defines

backend of the simulation objects, the OTcl sets up simulation

by assembling and configuring the objects as well as

scheduling discrete events. The C++ and the OTcl are linked

together using TCL. Mapped to a C++ object, variables in the

OTcl domains are sometimes referred to as handles.

Conceptually, a handle is just a string in the OTcl domain, and

does not contain any functionality. Instead, the functionality

(e.g., receiving a packet) is defined in the mapped C++ object

(e.g., of class Connector). In the OTcl domain, a handle acts

as a frontend which interacts with users and other OTcl

objects. It may define its own procedures and variables to

facilitate the interaction.

Fig 2: NS2 Language Support

To run a simulation, a user needs to define a network scenario

in a Tcl Simulation script, and feeds this script as an input to

executable file ns. During the simulation, the packet flow

information can be collected through text-based tracing or

NAM tracing. After the simulation, an AWK program or a

Perl program can be used to analyze a text-based trace file.

The NAM program, on the other hand, utilizes a NAM trace

file to replay the network simulation using animation. After

simulation, NS2 outputs either text-based or animation-based

simulation results. To interpret these results graphically and

interactively, tools such as NAM (Network Animator) and

XGraph are used. To analyze a particular behavior of the

network, users can extract a relevant subset of text-based data

and transform it to a more conceivable presentation.

Simulation using NS2 consists of three main steps. First, the

simulation design is probably the most important step. Here,

we need to clearly specify the objectives and assumptions of

the simulation. Secondly, configuring and running simulation

implements the concept designed in the first step. This step

also includes configuring the simulation scenario and running

simulation. The final step in a simulation is to collect the

simulation result and trace the simulation if necessary.

Written mainly in C++, NS2 employs a make utility to

compile the source code, to link the created object files, and

create executable file ns. It follows the instruction specified in

the default descriptor file Makefile. The make utility provides

a simple way to incorporate newly developed modules into

NS2. After developing a C++ source code, we simply add an

object file name into the dependency, and re-run make.

II. INSTALLATION AND COMPILATION

Installation Procedure on LINUX operating System is as

follows:

1) Copy ns-allinone-2.34.tar_1.gz into /usr/local folder.

2) Unzip ns-allinone-2.34.tar_1.gz, you will get

ns-allinone-2.34.tar_1.

3) Extract ns-allinone-2.34.tar_1, you will get

ns-allinone-2.34 folder.

4) Go to ns-allinone-2.34 folder and say ./install.

It is necessary to configure NS2 before proceeding with

sample programs.

1) Open terminal and edit .bashrc file.

2) Add the TCL library, LD library and NS library path in

.bashrc file. Save the changes.

To run NS2 on Windows-based operating systems, a bit of

tweaking is required. Basically, the idea is to make

Windows-based machines emulate the functionality of the

Unix-like environment. A popular program that performs this

job is Cygwin. After getting Cygwin to work, the same

procedure as that of Unix-based installation can be followed.

Go to /usr/local/ns-allinone-2.34/ns-2.34/ directory and do

./configure

make clean

make

make install

After the installation and/or recompilation, an executable file

ns is created in the NS2 home directory. NS2 can be invoked

by executing the following statement from the shell

environment:

ns [<file>] [<args>]

Where <file> and <args> are optional input argument. If no

argument is given, the command will bring up an NS2

environment, where NS2 waits to interpret commands from

the standard input (i.e., keyboard) line-by-line. If the first

input argument <file> is given, NS2 will interpreted the input

scripting <file> (i.e., a so-called Tcl simulation script)

according to the Tcl syntax. Finally, the input arguments

<args>, each separated by a white space, are fed to the Tcl file

<file>. From within the file <file>, the input argument is

stored in the built-in variable argv.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 142 www.erpublication.org

III. NS2 FOR WIREESS NETWORK

There are two approaches for wireless communication

between two hosts. The first is the centralized cellular

network in which each mobile is connected to one or more

fixed base stations, so that a communication between two

mobile stations require to involve one or more based stations.

A second decentralized approach consists of an ad-hoc

network between users that wish to communicate between

each other. Due to more limited range of mobile nodes, nodes

not only act as a senders and receivers but also forward the

packets between other mobile nodes. Cellular stations have a

much larger range than ad-hoc networks. However, ad-hoc

networks have the advantage of being quickly deployable as

they do not require an existing infrastructure. In cellular

networks, the wireless part is restricted only to the access to a

network, and within the network classical routing protocols

can be used. Ad-hoc network in contrast rely on special

routing protocols that have to be adapted to frequent topology

changes. The current routing protocols implemented by ns are

DSDV, DSR, AODV and OLSR routing protocols.

DSDV [1,2] is the destination sequenced distance vector

routing protocols where routing messages are exchanged

between neighboring mobile nodes (i.e. mobile nodes that are

within range of one another). Routing updates may be

triggered or routine. Updates are triggered in case routing

information from one of the neighbors forces a change in the

routing table. A packet for which the route to its destination is

not known is cached while routing queries are sent out.

Optimized List State Routing (OLSR) [3,4] is an optimized

version of traditional link state protocol such as OSPF. It uses

the concept of Multipoint relays (MPRs) to efficiently

disseminate link state updates across the network. Only the

nodes selected as MPRs by some node are allowed to generate

link state updates. Moreover, link updates contain only the

links between MPR nodes and their MPR- selectors in order

to keep the update size small. Thus, only partial topology

information is made available at each node.

The Dynamic Source Routing (DSR) [5-7] protocol is

characterized by the use of source routing. That is, the sender

knows the complete hop-by-hop route to the destination.

These routes are stored in a route cache. The data packets

carry the source route in the packet header. When a node in

the ad hoc network attempts to send a data packet to a

destination for which it does not already know the route, it

uses route discovery process to dynamically determine such a

route.

Ad Hoc on Demand Distance Vector Routing (AODV) [8-9]

is pure on-demand routing protocol. AODV uses traditional

routing tables, one entry per destination. This is in contrast to

DSR, which can maintain multiple route cache entries for

each destination. Without source routing, AODV relies on

routing table entries to propagate a RREP back to the source

and, subsequently, to route data packets to the destinations.

AODV uses destination sequence numbers as in DSDV to

prevent routing loops and to determine freshness of routing

information.

IV. TRAFFIC PATTERN GENERATION

In order to evaluate above routing protocols, it is necessary to

generate traffic (TCP or UDP) among nodes. Random traffic

connections of TCP and CBR can be setup between mobile

nodes using a traffic-scenario generator script. This traffic

generator script is available under

~ns/indep-utils/cmu-scen-gen and is called cbrgen.tcl. It can

be used to create CBR and TCP traffics connections between

wireless mobile nodes. In order to create a traffic-connection

file, we need to define the type of traffic connection (CBR or

TCP), the number of nodes and maximum number of

connections to be setup between them, a random seed and

incase of CBR connections, a rate whose inverse value is used

to compute the interval time between the CBR packets. So the

command line looks like the following:

ns cbrgen.tcl [-type cbr|tcp] [-nn nodes] [-seed seed] [-mc

connections] [-rate rate] > output.tcl

The start times for the TCP/CBR connections are randomly

generated with a maximum value set at 180.0s, thus the

simulation time is at least 180 seconds. And the number of

nodes has no relationship to the maximum number of

connections (mc), we can have 10 nodes, also 10 connections

as one node could have multiple simultaneous connections to

other nodes. The parameter "rate" means how many packets

per second, thus, for CBR traffic, the packet interval is the

reversal of this parameter. And for TCP traffic, we don't have

to specify rate, ftp connections are going to be used. the

default packet size is 512 bytes.

AWK is a general-purpose programming language designed

for processing of text files. AWK refers to each line in a file as

a record. Each record consists of fields, each of which is

separated by one or more spaces or tabs. Generally, AWK

reads data from a file consisting of fields of records, processes

those fields with certain arithmetic or string operations, and

outputs the results to a file as a formatted report. To process

an input file, AWK follows an instruction specified in an

AWK script. An AWK script can be specified at the command

prompt or in a file.

AWK can be invoked from a command prompt as following:

awk [-F<ch>] {<pgm>} [<vars>] [<data_file>]

The bracket <> contains a variable which should be replaced

with actual values at the invocation. These variables include

ch Field separator, pgm An AWK script, pgm_file a file

containing an AWK script, vars Variables used in an AWK

file and data_file an input text file.

V. MOBILITY PATTERN GENERATION

The scenario for a particular experiment is defined using the

tool BonnMotion, Java software which creates and analyses

mobility scenarios. It is developed within the Communication

Systems group at the Institute of Computer Science IV of the

University of Bonn, Germany, where it serves as a tool for the

investigation of mobile ad hoc network characteristics. The

scenarios can also be exported for the network simulator ns-2

and GlomoSim/QualNet. Several mobility models are

supported, namely the Random Waypoint model, the

Performance Evaluation of Routing Protocols in Ad Hoc Network

 143 www.erpublication.org

Gauss-Markov model, the Manhattan Grid model and the

Reference Point Group Mobility model.

Since mobility patterns may play a significant role in

determining the protocol performance, it is desirable for

mobility models to emulate the movement pattern of targeted

real life applications in a reasonable way. Otherwise, the

observations made and the conclusions drawn from the

simulation studies may be misleading. Thus, when evaluating

routing protocols, it is necessary to choose the proper

underlying mobility model. For example, the nodes in

Random Waypoint model behave quite differently as

compared to nodes moving in groups. It is not appropriate to

evaluate the applications where nodes tend to move together

using Random Waypoint model. Therefore, there is a real

need for developing a deeper understanding of mobility

models and their impact on protocol performance. One

intuitive method to create realistic mobility patterns would be

to construct trace-based mobility models, in which accurate

information about the mobility traces of users could be

provided. However, since MANETs have not been

implemented and deployed on a wide scale, obtaining real

mobility traces becomes a major challenge. Therefore,

various researchers proposed different kinds of mobility

models, attempting to capture various characteristics of

mobility and represent mobility in a somewhat 'realistic'

fashion. Much of the current research has focused on the

so-called synthetic mobility models that are not trace-driven.

[10-12]

Fig 3: Different Mobility Models

Random Direction Mobility Model (RDMM) is designed to

avoid concentration of mobile nodes (MNs) at centre of the

simulation area, as seen in the Random Waypoint model. In

this model, MNs choose a random direction in which to travel

similar to the Random Walk Mobility Model. An MN then

travels to the border of the simulation area in that direction.

Once the simulation boundary is reached, the MN pauses for a

specified time, chooses another angular direction (between 0

to 180 degrees) and continues the process.

In Random Walk Mobility Model (RWkMM), a mobile node

moves from its current location to a new location by randomly

choosing a direction and speed in which to travel [14]. The

new speed and direction are both chosen from predefined

ranges, respectively [min-speed, max-speed] and [0, 2*pi]

respectively based on uniform distribution. Each movement

in the RWkMM occurs in either a constant time interval ‟t„or a

constant travelled distance ‟d„, at the end of which a new

direction and speed are calculated.

Fig 4: Topography showing Random Waypoint Mobility Models

Fig 5: Topography showing Random Group Mobility Model

Gauss-Markov Mobility Model (GMMM) was designed to

adapt to different levels of randomness via tuning parameters.

Initially each mobile node is assigned a current speed and

direction. At each fixed intervals of time n a movement occurs

by updating the speed and direction of each mobile node.

Specifically, the value of speed and direction at the nth

instance is calculated based on the basis of the value of speed

and direction at the (n-1)st instance and a random variable

using the following equations:

VI. ANALYSIS OF AD HOC NETWORK

We have generated the movement scenario files using the

setdest program which comes with the NS-2 distribution.

These scenario files are characterized by pause time. The total

duration of each simulation run is 200 seconds. Different

movement patterns for five different pause times are created:

0, 50, 100, 150 and 200 seconds. These varying pause times

affect the relative speed of the mobile nodes. A pause time of

200 seconds corresponds to the motionless state of the nodes

in the simulation environment as the total duration of the

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-4, April 2014

 144 www.erpublication.org

simulation run time is 200 seconds. On the contrary when we

choose the pause time of 0 second, it indicates continuous

motion of the nodes.

#./setdest –v 2 –n 10 –s 1 –m 1 –M 10 –t 300 –P 1 –p 0 –x

800 –y 800 > motion/scen-10-0

This command will generate motion file having 10 nodes

movement in 800 by 800 area, -m is the minimum speed, -M is

the maximum speed, thus speed varying from 0 to 10 m/s, -p is

the pause time which is changing from 0 to 300 in steps of 50s.

–s and –P is the speed type (uniform or normal) and pause

time type (uniform and normal) respectively.

Ns-2 simulator

Mobility

Scenario file
Traffic File

Trace file (.tr)

Output file (.csv)

Performance

Graphs

Network

animator file

(.nam)

Network

Animator

Topology

graphs

Output (Dsdv.o)

C/C++

compiler

Routing protocol

source code (.cc, .h)

Scenario

Parameters

Scenario

Parameters
Traffic pattern

Parameters

Tcl Script File

(e.g script.tcl)

Mobility

Scenario

generator

(Bonn Motion)

CMU Traffic

Generator

utility

(cbrgen.tcl)

Analyzer module

(.java file)

Graph drawing

software (e.g Excel)

#include <proto.h>

#include <dsragent.h>

void main()

{

 ….

}

Flow diagram for running MANET routing protocols in ns-2

Tools/utilities

Output

User Input

LEGEND

Fig 6: Flow Diagram for running routing protocols in NS2

Thus for simulation network parameters listed below in table

1 are used.

TABLE I

SIMULATION PARAMETERS

Parameter Value

Number of nodes 10 to 100 nodes

Mobility model Random Waypoint Mobility

Model, Random Group

Mobility Model

Simulation time 400 s

Topology Size 800 m × 800 m

Routing protocols analysed DSDV, DSR, AODV,

Packet size 512 bytes

Mobility rate 10m/s to 50 m/s

Pause time 0, 50, 100, 150 and 200 s

Packet delivery ratio (PDR) and end to end delay are used to

evaluate the performance of above mentioned routing

protocols.

Fig 7: Packet Delivery Ratio vs. Number of Nodes

Here the provided graphical result shows the packet delivery

ratio over increasing number of nodes. From the above given

results we can say, that DSDV returns poor result as we start

increasing the number of nodes. AODV and DSR protocols

returns best result and thus achieves packet delivery ratio in

range of 95% to 99%. But as we start increasing number of

nodes results falls down below 95%.

Fig 8: Delay vs. Number of Nodes

It is observed that as we start increasing the number of nodes,

delay will starts increasing. DSDV with the minimum delay as

it is proactive protocol.

REFERENCES

[1] E. Kulla, M. Hiyama, M. Ikeda, L. Barolli, V. Kolici, R. Miho,
“MANET performance for source and destination moving scenarios
considering OLSR and AODV protocols”, Mobile Information
Systems, vol. 6, no. 4, 2010, pp. 325–339.

[2] C. E. Perkins and P. Bhagwat, “Highly Dynamic
Destination-Sequenced Distance Vector Routing (DSDV) for Mobile
Computers” Proc. ACM SIGCOMM‟94, London, U.K., Sep. 1994, PP.
234-44.

Performance Evaluation of Routing Protocols in Ad Hoc Network

 145 www.erpublication.org

[3] T. Clauses et al, Optimized Link State Routing Protocol,
Http://www.ietf.org.internet-drafts/draft-ietf-manet-olsr-11.txt, July
2003, IETF Internet Draft.

[4] E. Spaho, L. Barolli, G. Mino, F. Xhafa, V. Kolici, R. Miho,
“Implementation of CAVENET and its usage for performance
evaluation of AODV, OLSR and DYMO protocols in vehicular
networks”, Mobile Information Systems, vol. 6, no. 3, 2010, pp.
213–237.

[5] C E Perkins, E M Royer, S R Das and M K Marina. Performance
Comparison of two On Demand Routing Protocols for ad hoc
networks. IEEE Personal Communications, 8(1):16-28, 2001

[6] Y-C Hu and D. Johnson. Caching strategies in On Demand Routing
Protocols for wireless Ad Hoc Networks. In Proceedings of
IEEEE/ACM MobiCom, pages 231-242, 2000

[7] Y-C Hu and D. Johnson. Implicit Source Routes for on Demand Ad
Hoc Network Routing. In Proceedings of ACM MOBIHOC, pages
1-12, 2001

[8] Z. Haas, J.Halpern, and L. Li. Gosssip-based Ad Hoc Routing. In
Proceedings of IEEE infoCom, pages 1707-1716, 2002

[9] E. Kulla, M. Hiyama, M. Ikeda, L. Barolli, V. Kolici, R. Miho,
“MANET performance for source and destination moving scenarios
considering OLSR and AODV protocols”, Mobile Information
Systems, vol. 6, no. 4, 2010, pp. 325–339.

[10] Megat Zuhairi, Haseeb Zafar, David Harle, The impact of mobility
models on the performance of mobile Ad Hoc network routing
protocol. IETE Journal of Research, Vol.29, Issue 5, pages
414-420,2012

[11] A. Boukerche, S.K. Das and A. Fabbri, “Analysis of randomized
congestion control with DSDV routing in ad hoc wireless networks”,
Journal of Parallel and Distributed Computing (JPDC) 61 (2001)
967–995.

[12] Fan Bai, Ahmed Helmy “A Framework to systematically analyze the
Impact of Mobility on Performance of Routing Protocols for Adhoc
Networks”, IEEE INFOCOM 2004

http://www.ietf.org.internet-drafts/draft-ietf-manet-olsr-11.txt

