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Abstract— An efficient one dimensional 3-noded finite element 

model has been developed for the vibrational analysis of 

composite beam for various boundary conditions, using the 

efficient layerwise zigzag theory. The results are compared with 

2-noded beam element model. To meet the convergence 

requirements for the weak integral formulation, fifth power 

Hermite interpolation is used for the transverse displacement and 

quadratic interpolation is used for the axial displacement and 

shear rotation. Each node of an element has four degrees of 

freedom. The formulation is validated by comparing the results 

of the 2D finite element (2D-FE) for the simply supported beam. 

The present zigzag finite element results for natural frequencies 

and mode shapes of the beam are obtained with one-dimensional 

finite element (1DFE) codes developed in MATLAB. This 

comparison establishes the accuracy of zigzag finite element 

analysis for natural frequencies of the symmetric laminated 

beams, and helps to obtain natural frequencies of fixed beam and 

cantilever beam with less error. 

 

Index Terms— composite laminates, sandwich beam, 

Vibration analysis, zigzag theory, FEM, MATLAB. 

 

I. INTRODUCTION 

 

   Composite structures are increasingly used in areas like 
automotive engineering and other applications as they posses 
lower weight and higher strength and stiffness than those 
composed of other metallic materials. For design of composite 
and sandwich beams accurate knowledge of deflection and 
stress under static and dynamic loadings, natural frequencies, 
mode shapes are required. Exact elasticity solutions [1-3] have 
been provided for static, free and forced vibration cases. 
Discrete layer theories with layer wise displacement 
approximation are quite accurate but computationally 
expensive as the number of basic variables depends on number 
of layers. 
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Among most discrete layer theories [4, 5] the shear stress 

continuity at layer interfaces, is violated. Kapuria et. al. [6, 11] 

presented an assessment of zigzag theory for laminated 

composite beams by giving analytical solution for simply 

supported end conditions only Benjeddou [7] has presented 

finite element modeling of adaptive structures. Kapuria et. al. 

[8] presented a novel finite element model of efficient zigzag 

theory for static analysis of hybrid piezoelectric beams. They 

presented finite element analysis of hybrid piezoelectric beams 

under static electromechanical load using zigzag theory. They 

also compared then results with 2D finite element results 

obtained using ABAQUS to establish the accuracy zigzag 

theory. Navier type solutions for simply supported beams were 

presented in refs. [6, 9] which did not provide finite element 

formulation of zigzag theory. One of the authors [10] recently 

presented efficient layer wise finite element model for 

dynamic analysis of laminated piezoelectric beams. Two 

noded beam element model developed by Alam et. al [13] is 

an initiative approach in the field of F E analysis. 

      This work considers a three nodded finite element model 

for dynamic analysis for composite beams based on zigzag 

theory 6 in which the shear traction condition at the top and 

bottom and the transverse shear continuity condition at the 

layer interfaces are satisfied. 5
th

 Hermite interpolation function 

[12] is used for deflection and quadratic interpolation is used 

for the axial displacement and rotation. The finite element 

formulation and the MATLAB code developed thereof are 

validated by comparison of the results with the results 

obtained using ABAQUS software. The one-dimensional 

finite element (1D-FE) results for propped beam are compared 

with 2D finite element (2D-FE) results. 
.  

II. FINITE ELEMENT MODEL USING 3-NODED 

BEAM ELEMENT 

 

With reference to two noded element model [13], three nodded 

elements are used for the displacement variables. The primary 

variables, u0 w0, ψ0, within an element are expressed in terms 

of their nodal values using appropriate polynomial 

interpolation functions. The highest derivatives of u0, w0, ψ0,, 

appearing in the Variational equation [13] are u0,x , w0,xx, ψ0,x. 

To meet the convergence requirements of the finite element 

method, u0, w0,x, ψ0, must be continuous at the element 

boundaries. Hence w0 is expanded using 5
th

 power 

interpolation along x in terms of the nodal values of w0, and   
w0,x . Similarly, quadratic Lagrange interpolation along x is 

used for u0 and ψ0 in terms of their nodal values. Thus at the 
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element level, each node will have four degrees of freedom u0, 

w0, w0,x, ψ0, for the displacements. The values of an entity (…) 

at the nodes 1, 2 and 3 are donated by (…)1, (…)2, and (…)3 

respectively. 

 

   The following interpolations of u0, w0, ψ0, have been used in 

terms of the nodal values and the shape function matrices N 

and N : 

 

 u =N. 
eu0  ,      ψ0, = N.

e

0 ,     w0= N w0
e
.                      (10) 

 

with   
eu0 =

















03

02

01

u

u

u

   



















03

02

01

0






 e
,         



























3,0

03

2,0

02

1,0

01

0

x

x

x

e

w

w

w

w

w

w

w ,                                                                                           

         

  321 NNNN  ,                          (11) 

 





 654321 NNNNNNN

                                                                       

   N1=2 x
2
 /Le

2
-x/Le  ,               N2=1- 4(x/Le)

2
 ,        

   N3= x/Le +2x
2
 /Le

2
   

Similarly, other shape functions are derived using 

interpolation [12] as: 
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    The integrand in the variational equation can be expressed 

as, [ref. 13, equaion no. 23] 
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Nx, Mx, Px, and Qx are substituted from ref. [13] to obtain 

general equation after integration as: 
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The natural frequency for free vibration can be obtained from 

the above equation by making it aneigen value problem as                  
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        The beam generalized displacement are related to 

displacement vector  

U
e
 (displacement vector)   = [

eu0
T
    w

e

0
T
    

e

0 ]
T
   

 

that is  and 

 

                                                                            

                                                     

                                         and    

    

      

  

Refer appendix for the equations and matrices. 
 

III. RESULT AND DISCUSSION 

 

A highly inhomogeneous symmetric beam is analyzed for 

simply supported boundary condition. The stacking order is 

mentioned from the bottom. The beams is composite beam of 

material [11] with Y1 = 181GPa and Y2 = Y3 =10.3 GPa and      

 12=
  13=.25,

  23=.33 .consisting of four plies of equal 

thickness 0.25h. It has symmetric lay-up [0/90/90/0]. The 

density of materials of the beam is 1578 kg/m
3 

[11].Flexural 

natural frequencies and mode shapes of laminated composite 

beams have been computed by developing 1D-FE MATLAB 

program [11]. [Table 1] 
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Fig. 2 % error in  1 for 1
st
 longitudinal mode using 2 noded  

beam elements 

 

 

 

Table 1 % error of natural frequencies of symmetric beam (b) 

simply supported boundary condition using FEM and 2D exact 

values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 % error in  1 for 1
st
 longitudinal mode using 3-noded 

beam elements 

 

 

IV. CONCLUSION 

 

 

The present FE model is developed for vibration analysis of 

symmetric beam for various end conditions. The presented 

model can be used for computing frequencies for various end 

conditions. The comparison shows that the 1DFE model of 

zigzag theory yields very accurate results for mode shapes for 

simply supported beams. 
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V. APPENDIX
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the constants are given by    
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c8=  [ 38/(3*Le), -64/(3*Le),  26/(3*Le)] 

     [ -64/(3*Le), 128/(3*Le), -64/(3*Le)] 

     [  26/(3*Le), -64/(3*Le),  38/(3*Le)] 

  

 

c9= [ 4/Le^2,  13/Le, 0, 0, -4/Le^2,  3/Le] 

    [-8/Le^2, -24/Le, 0, 0,  8/Le^2, -8/Le] 

    [ 4/Le^2,  11/Le, 0, 0, -4/Le^2,  5/Le] 

 

 

c10= 

   [ 1273/(70*Le^3),  779/(70*Le^2), -64/(5*Le^3),  96/(7*Le^2),  

   [  779/(70*Le^2),    586/(35*Le), -32/(5*Le^2),    32/(7*Le),  

   [   -64/(5*Le^3),   -32/(5*Le^2), 128/(5*Le^3),            0,   

   [    96/(7*Le^2),      32/(7*Le),            0,   128/(7*Le),                 

   [ -377/(70*Le^3), -331/(70*Le^2), -64/(5*Le^3), -96/(7*Le^2),      

   [  121/(70*Le^2),    124/(35*Le),  32/(5*Le^2),    32/(7*Le),  
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   -331/(70*Le^2),    124/(35*Le)] 

    -64/(5*Le^3),    32/(5*Le^2)] 

    -96/(7*Le^2),      32/(7*Le)] 

   1273/(70*Le^3), -569/(70*Le^2)] 

   -569/(70*Le^2),    166/(35*Le)] 

  

c11=    
   [  (34*Le)/15, -(28*Le)/15,  (14*Le)/15] 

   [ -(28*Le)/15,  (46*Le)/15, -(28*Le)/15] 

   [  (14*Le)/15, -(28*Le)/15,  (34*Le)/15]            
 

c12=   
  [ -146/105,   (29*Le)/21,  16/15, -(64*Le)/105,  34/105,      Le /21] 

  [      5/7,  -(57*Le)/35,      0, (128*Le)/105,    -5/7,  -(8*Le)/35] 

  [  -34/105, (131*Le)/105, -16/15, -(64*Le)/105, 146/105, (19*Le)/105] 

 

 
c13=  
  

[  139/(105*Le),       -61/105, -128/(105*Le),          8/21,  -11/(105*Le),       -1/70] 

[       -61/105,  (731*Le)/630,        -8/105, -(152*Le)/315,         23/35, (22*Le)/315] 

[ -128/(105*Le),        -8/105,  256/(105*Le),             0, -128/(105*Le),       8/105] 

[          8/21, -(152*Le)/315,             0,  (256*Le)/315,         -8/21, -(8*Le)/315] 

[  -11/(105*Le),         23/35, -128/(105*Le),         -8/21,  139/(105*Le),     -13/210] 

[         -1/70,   (22*Le)/315,         8/105,   -(8*Le)/315,       -13/210,   (4*Le)/45] 

  

c14= 
 [  (1046*Le)/3465,  -(24*Le^2)/385,     (8*Le)/63,  -(32*Le^2)/693,    

 [  -(24*Le^2)/385, (139*Le^3)/2310,  (8*Le^2)/315,  (64*Le^3)/3465,  

 [       (8*Le)/63,    (8*Le^2)/315,  (256*Le)/315,               0,        

 [  -(32*Le^2)/693,  (64*Le^3)/3465,             0, (256*Le^3)/3465,    

 [   (131*Le)/3465, (359*Le^2)/3465,     (8*Le)/63,   (32*Le^2)/693,   

 [ -(29*Le^2)/3465, -(67*Le^3)/6930, -(8*Le^2)/315,  -(8*Le^3)/1155,  

 

 

(131*Le)/3465,   -(29*Le^2)/3465] 

(359*Le^2)/3465, -(67*Le^3)/6930] 

    (8*Le)/63,   -(8*Le^2)/315] 

(32*Le^2)/693,  -(8*Le^3)/1155] 

(1046*Le)/3465, -(38*Le^2)/1155] 

-(38*Le^2)/1155, (16*Le^3)/3465] 

  

  

 

 

 


