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Abstract—Membrane transport proteins (named 

transporters) play key roles in transporting cellular molecules 

across cells and cellular compartment boundaries, mediating the 

absorption and removal of unwanted materials from cells, and 

establishing electrochemical gradients across membranes. A 

variety of transporters are responsible to absorption, 

distribution, and excretion of drugs. The immense importance of 

developing computational prediction methods arises mainly 

from two aspects: 1) specific transporters have been explored as 

therapeutic targets, and 2) few effective prediction method 

exists. This study proposes an optimization method HTPred to 

identify and analyze human transporters from protein 

sequences, mainly comprising the four steps: 1) constructing a 

new dataset (named HITSET) consisting of 5,176 reviewed 

human transporters and non-transporters, 2) encoding the 

sequences of human transporters by using physicochemical 

properties of amino acids in the AAindex database, 3) utilizing 

an optimal feature selection to identify informative 

physicochemical properties by maximizing prediction accuracy 

of a support vector machine based classifier, and 4) ranking and 

analyzing the identified properties according to prediction 

contribution to gain insight into human transporters. The blind 

test accuracies on the datasets without and with reducing 

sequence identity (<25%) were 84.71% and 74.59% using 18 

and 29 physicochemical properties, respectively. The top-one 

property is the free energy change of alpha (Ri) to alpha (Rh), 

which shows that the inside/outside preferences of the amino 

acids in a polypeptide chain which presumably reflect the 

interactions of the residues with water. Transporters are 

membrane-spanning molecules that mostly form pore-like 

structures which interact with water so that their interior side is 

originally formed from the polar groups. 

 

 
Index Terms—About four key words or phrases in 

alphabetical order, separated by commas.  

 

I. INTRODUCTION 

  Integral membrane proteins, which are embedded into 

biological membranes, include several functional classes such 

as receptors, enzymes, and transporters [1]. Membrane 

transport proteins (simply transporters) are composed by one 

or more protein subunits. Transporters play key roles in 

transporting cellular molecules across cells and cellular 

compartment boundaries, mediating the absorption and 

removal of unwanted materials from cells, and establishing 

electrochemical gradients across membranes [2-5]. The 

immense importance of studying transporters has clinical 

basis. Specific transporters have been explored as therapeutic 

targets [6-7]. Moreover, a variety of transporters are 

responsible to absorption, distribution, and excretion of 

drugs, as the electro-chemical gradients which establish 

across membranes influence drug partitioning into and out of 

cells and cell organelles [8, 9]. Thus, computational 

prediction of transporters is vital for facilitating functional 

study of genomes and searching for new therapeutic targets 

and pharmacologically relevant transporters, and would help 

in the design of novel anti-microbial drugs [10]. 

The human genome, with an estimated total of 35,000 genes, 

contains numerous gene families that encode membrane 

transporters. Currently, our knowledge of the relevant human 

transporters is limited due to the very nature of 

membrane-bound proteins, as they are technically demanding 

to be crystallized for structural characterization by 

spectroscopic methods. That being the case, a bioinformatics 

approach offers an attractive alternative [2].  

Several databases have already been built as comprehensive 

repositories of transporter sequences for the purpose of 

helping computational biologists to develop and test their 

prediction methods. In a context of drug discovery and 

development the most immediately accessible database is 

Human ABC-Transporter Database which gives key 

information on expression, function and substrate for ABC 

family members only [11]. On the other hand, web-accessible 

relational Human membrane transporter database (HMTD) is 

a good resource to identify other transporter families which 

plays a role in drug absorption, distribution, metabolism and 

excretion. It performs indexing of transporters in a number of 

ways and provides information on sequence variants, altered 

functions caused by polymorphisms/mutations, and the 

(patho) physiological role and associated disease [12]. It can 

be queried to list all the known transporters in a given tissue or 

the tissue distribution of a given transporter.  

The most widely adopted TC-classification system of all 

transport proteins is provided by Transport Classification 

Database (TCDB) [10]. It contains comprehensive 

information on experimentally-characterized transporters 

which are organized within a simple tree structure based on 

both function and homology, and contains over 550 

transporter families. However, the sequences are from various 

organisms and human sequences are not available for all 

transporters [1]. Employing homology searches (ex., BLAST) 

against experimentally-determined transporters in the TCDB, 

a putative transporter database named TransportDB was 

constructed for hundreds of completely sequenced genomes 

[13, 14]. However, some categories of transporters were 

manually excluded here. The comparison of above-mentioned 

databases (shown in Table 1) shows that TCDB has the largest 
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number of entries. TransportDB contains computationally 

predicted sequences, which are not all experimentally 

verified. TCDB provides widely adopted TC-classification 

system for all transporters. TCDB and its associated tools, 

such as SSEARCH, have been widely used to predict and 

classify putative transporters. Lin et al. explored a support 

vector machine (SVM) method for transporter proteins 

prediction using training set, composed of TCDB sequences 

and their homologs searched by BLAST against 

SWISS-PORT database [15]. Li et al. used training data from 

TCDB to propose a Nearest Neighbor approach which 

integrate homology and motif search methods in order to 

discover transporter families [16]. Vagner et al. used 

BLASTP to analyze predicted plant transporters in Medicago 

against TCDB database [17]. 

 
Table 1: The comparison of existing Transporters Databases 

Feature TCDB 
Transpor

tDB 
HMTD 

ABC-Tr

ansporter 

Database 

HITSET 

Total 

Number 

of entries 

~ 5,600 ~ 4,650 ~ 250 ~ 45 5,176  

Reviewe

d entries 

+ 

(reviewe

d) 

+/- 

(predicte

d) 

+ 

(review

ed) 

+ 

(reviewe

d) 

+ 

(reviewe

d) 

TC-syste

m 

+ +/- - - +/- 

Human\

All 

organism

s 

database 

All 

organism

s 

All 

organis

ms 

Human Human Human 

Gene 

descripti

on 

- + + + - 

+/- in “Reviewed entries” stands for the databases of experimentally proved 

transporter proteins along with the proteins with computationally predicted 

annotations; +/- in “TC-system” stands for the databases, which have 

classification another from the TC-system, but some classes remain the 

same. 

 

To facilitate the study of transporters, we have constructed a 

human integral transporter dataset (named HITSET). 

HITSET creates a view for all human proteins containing 

membrane-spanning regions, deposited in the SwissProt 

database. All entries of HITSET were extracted from 

Swiss-prot using keyword “reviewed”. HITSET and 

TransportDB follow only main classes of TC-system. The 

ABC-Transporter Database and HITSET both include only 

human protein subunits. HITSET has the largest number of 

reviewed human sequences.  

These proteins are clustered into families. We identified 

5,176 human transmembrane proteins and divided them into 

family-belonged and orphan groups according to general 

annotation of UniProtKB/Swiss-Prot. Family-belonged 

groups had 916 families, totally 4,030 proteins and orphan 

groups had 1,146 proteins. 728 reviewed transporters were 

arranged into six major functional classes: Human Alpha-type 

channels, Human Beta-type porins, Human Toxins, Human 

Secondary active transporters, Human Primary active 

transporters, and Human Unclassified transporters. HITSET 

also contains 18 proteins from six specific families. Our 

dataset does not include auxiliary transport proteins that 

modulate the activity of other transporters rather than 

performing the transport themselves.  

The availability of HITSET will allow further development of 

computational methods for novel human whole-protein and 

3D-structure transporter predictions, as well as identify 

candidates for further experimental investigation [18, 19]. 

With the advancement of research about transporters and the 

increase of our knowledge, more data will be added to the 

database. The progression of research may also enable us to 

include the secondary and tertiary structures (as more 

membrane transport proteins are crystallized) of membrane 

transporter genes in our database.  

This study proposes an optimization method HTPred to 

identify and analyze human transporters in HITSET from 

protein sequences. HTPred utilizes SVM and informative 

physicochemical properties selected by maximizing 

prediction accuracy of the SVM-based classifier. The blind 

test accuracies on the datasets without and with reducing 

sequence identity (<25%) were 84.71% and 74.59%, 

respectively, using 18 identified physicochemical properties. 

The 18 physicochemical properties were further analyzed to 

gain insight into human transporters. 

 The style will adjust your fonts and line spacing. Do not 

change the font sizes or line spacing to squeeze more text 

into a limited number of pages. Use italics for emphasis; do 

not underline.  

II. MATERIALS AND METHODS 

A.  HITSET dataset 

The procedure for construction of the HITSET dataset is 

given in the following six steps.   

Step 1: Obtaining human transmembrane transporter 

proteins. 

We collected 5,176 proteins by using the keyword 

“transmembrane” with the query – reviewed:yes AND 

organism: "Homo sapiens (Human) [9606] in 

UniProtKB/Swiss-Prot (version 2011 11, www.expasy.org).  

Step 2: Dividing into family-belonged and orphan groups. 

We categorized the 5,176 human transmembrane 

transporters into 916 families (4,030 proteins) and orphan 

groups (1,146 proteins) according to their sequence 

similarities and general annotations of each protein in 

UniprotKB/Swiss-Prot. 

Step 3: Distinguishing the confirmed, potential and 

non-transporter proteins among orphan groups. 

Orphan group proteins were manually checked on four 

main UniprotKB/Swiss-Prot annotations: protein names, gene 

names, function (general annotation) and sequence 

similarities (general annotation). If these annotations 

contained transporter-related names such as channel, pore, 

leak, porin, facilitator, gap junction, transporter, porter, 

uniporter, cotransporter, symporter, exchanger, antiporter, 

exporter, importer, carrier, shuttle, pump, translocator, 

translocon, permease, translocase and so on, or transport 

actions related vocabularies such as release, facilitate, 

transport, cotransport, symport, exchange, antiport, uptake, 

efflux, influx, import, export, intake, outlet, translocate, 

partition, extrusion, intrusion, accumulate, diffusion and so 

on, corresponding proteins were divided into confirmed and 

potential transporter proteins. We used PubMed to search for 
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the related works and curated literatures on confirmed 

transporters. The remaining proteins were classified into 

non-transporters. 

Step 4: Distinguishing the confirmed, potential and 

non-transporter proteins among family- belonged groups. 

Family-belonged transporters were analyzed in the same 

way, as described in Step 3. According to Swiss-Port 

annotations, they were divided into confirmed, potential and 

non-transporters.  

Step 5: establishing HITSET 

There were totally 9 superfamilies, 916 families and 4030 

transmembrane transporters in human transmembrane 

transporter dataset. These 4030 family-belonged proteins 

were composed of 713 confirmed, 170 potential and 3147 

non-transporter proteins. Totally 358 literatures were curated. 

The orphan human transmembrane transporters included 15 

confirmed, 20 potential and 1111 non-transporter proteins. 

Finally, after combining previous family-belonged and 

orphan groups, HITSET contained 5176 human 

transmembrane transporters, 9 superfamilies, 916 families, 

728 confirmed, 190 potential, and 4258 non-transporter 

proteins. The numbers of superfamilies, families, proteins, 

literatures, human transporters, potential human transporters 

and non-human-transporters in previous five steps are shown 

in Table 2. 

 
Table 2. The statistics of previous five steps in HITSET construction 

st

e

p

s 

Superf

amily 

numbe

r 

Famil

y 

numb

er 

Protei

n 

numb

er 

Literat

ure 

numbe

r 

HTS PH

TS 

NHT

S 

1 - - 5176 - - - - 

2 9 916 5176 - - - - 

3 6 0 1146 21 15 20 1111 

4 8 916 4030 362 713 170 3147 

5 9 916 5176 379 728 190 4258 

HTS: human transporter; PHTS: potential human transporter ; NHTS: 

non-human-transporter. 

 

Step 6: Designing “HT” (“Human Transporter”) code. 

We referred to TC-system [10] to classify human 

transmembrane transporter subunits into six main classes. The 

classification criterion of TC-system is based on the mode of 

transport, energy- coupling mechanisms and transmembrane 

structure of transporters. The definition of six main classes 

and corresponding Human Transporter code (HT code) are 

given below: 

1. Human Transporter Alpha-type channels (HTA) 

The transmembrane regions of this type of transporters are 

mainly composed of alpha helixes, and the transport 

processes of these transporters are usually energy 

independent and do not require carriers to regulate the 

transport. 

2. Human Transporter Beta-type porins (HTB) 

In this type of human transporter subunits, the 

transmembrane region is composed exclusively of β-strands, 

and form β-barrels in general. The transport processes are 

usually energy independent and do not require the regulation 

of carriers as HTA. 

3. Human Transporter Toxins (HTT) 

Transporter toxins (PFT) are synthesized and secreted by 

one cell; it could insert itself into the membrane of a target cell 

and form a pore which the target cell usually cannot handle it. 

HTT is energy independent but doesn't require the regulation 

of carriers for transport. 

4. Human Transporter Secondary active transporters 

(HTS) 

HTS is energy independent and require the regulation of 

carriers for transport. 

 

5. Human Transporter Primary active transporters (HTP) 

HTP is energy dependent and require the regulation of 

carriers for transport. 

6. Human Transporter Unclassified transporters (HTU) 

Human transporters which were not classified into previous 

five main classes were assigned to this class. If the latest 

researches will prove that a HTU member can be classified to 

one of the previous five classes, then this code would be 

discarded and changed into a new one of the updated classes 

for it. The numbers of superfamilies, families and proteins in 

step 6 are shown in Table 3. 

 
Table 3. The statistics of step 6 in HITSET construction 

HT 

code 

Superfamil

y number 

Family 

numbe

r 

Protein 

number 

HTS 

number 

PHTS 

number 

HTA 0 44 334 288 46 

HTB 0 1 3 3 0 

HTT 0 2 3 3 0 

HTS 3 68 448 334 114 

HTP 1 18 100 85 15 

HTU 0 9 30 15 15 

Total 4 142 918 728 190 

Human Transporter Alpha-type channels (HTA); Human Transporter 

Beta-type porins (HTB); Human Transporter Toxins (HTT); Human 

Transporter Secondary active transporters (HTS); Human Transporter 

Primary active transporters (HTP); Human Transporter Unclassified 

transporters (HTU). 

 

The confirmed and potential transporters in HITSET were 

classified as follows: HTWX1X2Y1Y2Z1Z2Z3. Here, “HT” 

is an abbreviation for “Human Transporter”; letter “W” 

corresponds to one of six main transporter classes: A 

(Alpha-type channels), B (Beta-type porins), T (Toxins), S 

(Secondary active transporters), P (Primary active 

transporters), and U (Unclassified transporters). Positions of 

“X1X2”, “Y1Y2” and “Z1Z2Z3” correspond to superfamily, 

family and member, respectively. HT codes were specialized 

for confirmed and potential transporter subunits, not for 

non-transporter subunits. Potential transporters were 

highlighted by adding “P” (Potential) at the end of HT code, 

so that HT code became “HTWX1X2Y1Y2Z1Z2Z3P”. If a 

potential transporter subunit will be proved as an actual 

transporter subunit in the future, the “P” in the end of the HT 

code would be deleted; inversely, if a potential transporter 

subunit were proved as a non-transporter subunit, the HT 

code of this subunit would be discarded. 

 

To develop a powerful statistical predictor, we divided 

HITSET into training (1A, 2A) and independent test (1B, 2B) 
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subsets. HITSET subset 1 contains 728 human transporters, 

190 human potential transporters and 4258 non-transporters, 

totally 5176 human transmembrane proteins. In order to 

balance the transporter and non-transporter of subset 1, we 

randomly selected 728 proteins from 4258 non-transporters, 

so the final training dataset (HITSET subset 1A) of HITSET 

contains 728 transporters and 728 non-transporters, as shown 

in Table 4. The remaining 3530 human non-transporters and 

190 human potential transporters were used to construct an 

independent test set (HITSET subset 1B), as shown in Table 

4.  

To reduce the sequence redundancy of HITSET, we used 

USEARCH with identity threshold set to 25%. As a result we 

got 3250 human transporters. Among these 3250 transporters, 

366 were transporters, 144 were potential transporters, and 

2740 were non-transporters. Then we randomly selected 366 

of the 2740 non-transporters to balance the dataset, and the 

final subset 2A contains 366 transporter and 366 

non-transporters, as shown in Table 5. The remaining 2374 

human non-transporters and 144 human potential transporters 

were used to construct an extra independent test set (subset 

2B), as shown in Table 5.  

 
Table 4. The sequence numbers of HITSET subset 1 in various stages 

Classes Total Subset 1A Subset 1B 

Transporter  728 728 0 

Potential transporter 190 0 190 

Non-human-transporter 4258 728 3530 

 
Table 5. The sequence numbers of HITSET subset 2 in various stages 

Dataset Total 25%ide

ntity 

3 classes Total Subset 

2A 

Subset 

2B 

HITSET 5176 3250 HTS 366 366 0 

   PHTS 144 0 144 

   NHTS 2740 366 2374 

 

B. Sequence representation using physicochemical 

properties 

AAindex is a database developed by Kanehisa et al., which 

collects numerical indices representing physicochemical and 

biochemical properties of amino acids [20]. By removing the 

properties with an amino acid value „NA‟, the number of 

properties in AAindex 9.0 is reduced from 544 to 531. The 

531 properties were used as initial features to construct an 

SVM classifier for the discrimination between cancerlectins 

and non-cancerlectins. The original sequences in the dataset 

HITSET were transformed to the numerical indices according 

to the corresponding values of amino acids of each feature. To 

calculate a feature vector value of a protein, the feature values 

of every amino acid in a protein sequence were summed up, 

and divided by the sequence length of the protein. In this way, 

every protein was represented as a 531 feature vector for later 

machine learning classification. The average values of each 

physicochemical property form a feature vector of the protein 

sequence. These values were normalized to the scale between 

-1 and 1 for using SVM.  

C. Feature selection by using IBCGA 

An efficient inheritable bi-objective combinatorial genetic 

algorithm IBCGA [21] based on an intelligent genetic 

algorithm IGA [22] is utilized to solve the feature selection 

problem while maximizing prediction accuracy. IGA based 

on orthogonal experimental design uses a divide-and-conquer 

strategy and a systematic reasoning method instead of the 

conventional generate-and-go method to efficiently solve the 

combinatorial optimization problem C(n, m) having a huge 

search space of size n!/(m!(n-m)!)), where n=531 in this 

study. IBCGA can efficiently search the space of C(n, r±1) by 

inheriting a good solution in the space of C(n, r) [14]. 

Therefore, IBCGA can economically obtain a complete set of 

high-quality solutions in a single run.  

The normalized protein sequences of the training data sets 

were the input for SVM. Fitness function is the only guide for 

genetic algorithms to obtain desirable solutions. The fitness 

function of IBCGA is the overall accuracy five-fold 

cross-validation (5-CV). IBCGA with the fitness function 

f(X) can simultaneously obtain a set of solutions, Xr, where 

r=rstart, rstart+1, …, rend in a single run. The algorithm of 

IBCGA with the given values rstart and rend is described as 

follows: 

Step1. (Initiation) Randomly generate an initial population 

of Npop individuals. All the n binary GA-genes have r 1‟s and 

n-r 0‟s where r = rstart. 

Step2. (Evaluation) Evaluate the fitness values of all 

individuals using f(X). 

Step3. (Selection) Use the traditional tournament selection 

that selects the winner from two randomly selected 

individuals to form a mating pool. 

Step4. (Crossover) Select pc•Npop parents from the mating 

pool to perform orthogonal array crossover on the selected 

pairs of parents where pc is the crossover probability. 

Step5. (Mutation) Apply the swap mutation operator to the 

randomly selected pm•Npop individuals in the new 

population where pm is the mutation probability. To prevent 

the best fitness value from deteriorating, mutation is not 

applied to the best individual. 

Step6. (Termination test) If the stopping condition for 

obtaining the solution Xr is satisfied, output the best 

individual as Xr. Otherwise, go to Step 2. In this study, the 

stopping condition is to perform 40 generations. 

Step7. (Inheritance) If r < rend, randomly change one bit in 

the binary GA-genes for each individual from 0 to 1; increase 

the number r by one, and go to Step 2. Otherwise, stop the 

algorithm. 

D. Prediction Method HTPred 

The selected m physicochemical properties and the 

associated parameter set of SVM by using HTPred are used to 

implement the computational system and analyze the 

physicochemical properties to further understand the human 

transporters. Since the HTPred is a non-deterministic method, 

it should make more effort to identify an efficient and robust 

feature set of informative physicochemical properties in five 

aspects. The procedure is as the following steps: 

Step 1 : We prepare the independent data sets where each 

set is used as the training data set of 5-CV.  

Step 2 : HTPred is performed R independent runs for 
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each of independent data sets. In this study, R = 30. There are 

total 30 sets of m physicochemical properties for each of 

independent data sets.   

Step 3 : Choose the set of selected physicochemical 

properties with a maximal accuracy.    

HTPred will automatically determine a set of informative 

physicochemical properties and an SVM-model for 

predicting human transporters and non-transporters. The 

prediction performances were evaluated in terms of the test 

accuracy, Mathew‟s correlation coefficient (MCC), 

Specificity and Sensitivity. 

III. RESULTS AND DISCUSSION 

If you are using Word, use either the Microsoft Equation 

Editor or the MathType add-on (http://www.mathtype.com) 

for equations in your paper (Insert | Object | Create New | 

Microsoft Equation or MathType Equation). “Float over text” 

should not be selected.  

A.  Identified properties by IBCGA 

The statistical result of IBCGA in selecting property sets 

from R = 30 independent runs on subsets 1A and 2A is given 

in Fig. 1. The highest scores were obtained on the 20th run for 

subset 1A and 20th run for subset 2A. These runs were 

selected and their prediction accuracies for different numbers 

of features are given in Fig. 2. The best property numbers for 

the 20th run of subset 1A and 20th run of subset 2A were 

m=37 and 32, respectively, with accuracies of 86.63% and 

88.52%. The feature numbers and corresponding accuracies 

are shown in Fig. 2. However, the 26th independent run of 

subset 1A and the 29th independent run of subset 2A showed 

the most “stable solution” of all runs (shown in Fig. 3). The 

training accuracies on the subsets 1A and 2A were 86.42% 

and 86.68% with the feature numbers of m=18 (shown in 

Table 7) and 29, respectively.  

Based on the result of 30 independent runs of subset 1A‟s and 

subset 2A‟s training sets, we found that the accuracies were 

similar to each other. In this case, we decided to use the most 

stable solutions for subsets 1A and 2A to establish human 

transporter prediction models, HTPred_a and HTPred_b, 

respectively. 

 
Table 6.  The prediction accuracies (%) on the datasets without (subset 1) 

and with reducing sequence identity 25% (subset 2). 

 Training 
Accuracy 

Test 
Accuracy 

Sensitivity  Specificity MC
C 

Subset 1 86.42 84.71 82.64  86.78 0.69 

Subset 2 86.68 74.59 72.13 77.05 0.49 

 

Table 7. The 18 properties of the 26th independent run on the training subset 

1A  

Featu

re ID 

AAindex 

identity 

Description 

20 BURA74
0102 

Normalized frequency of extended structure (Burgess 

et al., 1974) 

54 CIDH92
0101 

Normalized hydrophobicity scales for alpha-proteins 

(Cid et al., 1992) 

65 DAYM78
0201 

Relative mutability (Dayhoff et al., 1978b) 

94 FINA910
103 

Helix termination parameter at posision j-2,j-1,j 

(Finkelstein et al., 1991) 

105 GEIM80
0109 

Aperiodic indices for alpha-proteins (Geisow-Roberts, 

1980) 

133 JOND75
0102 

pK (-COOH) (Jones, 1975) 

171 MAXF76
0101 

Normalized frequency of alpha-helix 

(Maxfield-Scheraga, 1976) 

174 MAXF76
0104 

Normalized frequency of left-handed alpha-helix 

(Maxfield-Scheraga, 1976) 

207 NAKH92
0106 

AA composition of CYT of multi-spanning proteins 

(Nakashima-Nishikawa, 1992) 

220 OOBM85
0103 

Optimized transfer energy parameter (Oobatake et al., 

1985) 

236 PALJ810
114 

Normalized frequency of turn in all-beta class (Palau 

et al., 1981) 

310 RACS82
0111 

Average relative fractional occurrence in E0(i-1) 

(Rackovsky-Scheraga, 1982) 

357 ROSM88
0103 

Loss of Side chain hydropathy by helix formation 

(Roseman, 1988) 

364 SUEM84
0102 

Zimm-Bragg parameter sigma x 1.00E+04 (Sueki et 

al., 1984) 

379 VELV85
0101 

Electron-ion interaction potential (Veljkovic et al., 

1985) 

386 WERD7
80103 

Free energy change of alpha(Ri) to alpha(Rh) 

(Wertz-Scheraga, 1978) 

388 WOEC73
0101 

Polar requirement (Woese, 1973) 

506 DIGM05
0101 

Hydrostatic pressure asymmetry index, PAI (Di 

Giulio, 2005) 

 

 

B. Prediction performance evaluation 

The effectiveness of the identified informative 

physicochemical and biochemical properties was evaluated 

by implementing HTPred_a and HTPred_b predictors. The 

independent test accuracies of HTPred_a and HTPred_b on 

subsets 1B and 2B were 84.71% and 74.59%, respectively. 

The analysis focused on the identified properties obtained 

from HTPred_a.  

For the 3530 sequences of the subset 1B, HTPred_a 

predicted 2931 non-human-transporters and 599 human 

transporters with the accuracy of 83.03%. Among 190 

potential human transporters, 128 sequences were predicted 

as human transporters and 62 as non-human-transporters. 

Then we used PubMed to search for the related works of 190 

potential human transporters and curated the related works of 

human transporters. We found out that 14 proteins were 

experimentally identified lately as human transporters. 

Among the above-mentioned proteins, 10 sequences were 

predicted as human transporters and 4 sequences were 

predicted as non-human-transporters by HTPred_a. The 

protein name, gene name, HT code, predicted result and 

related reference are shown in Table 8. The experimental 

results reveal that the identified set of physicochemical 

properties is promising for the transporter prediction. 

 

 
Table 8. Experimentally identified human transporters and the prediction 

result of HTPred. 

Protein name Gene HT code Re
sul
t 

Reference 

Piezo-type 
mechanosensitive 
ion channel 
component 1 

PIEZ
O1 

HTA0044001P 0 Coste et al. [23] 

Piezo-type 
mechanosensitive 
ion channel 
component 2 

PIEZ
O2 

HTA0044002P 1 Coste et al. [23] 

Zinc transporter 10 SLC3
0A10 

HTS0006006P 0 Tuschl et al. [24] 
Quadri et al. [25] 

Putative small 
intestine 

SLC1
7A4 

HTS0107008P 1 Togawa et al. [26] 
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sodium-dependent 
phosphate transport 
protein 
Probable cationic 
amino acid 
transporter 

SLC7
A14 

HTS0201001P 1 Jaenecke et al. 
[27] 

Choline 
transporter-like 
protein 5 

SLC4
4A5 

HTS0010001P 1 Sugimoto et al. 
[28] 

Anoctamin-10 Ano1
0 

HTA0002010P 1 Tian et al. [29] 

Anoctamin-7 Ano7 HTA0002007P 0 Tian et al. [29] 
Anoctamin-4 Ano4 HTA0002004P 1 Tian et al. [29] 
Anoctamin-6 Ano6 HTA0002006P 1 Tian et al. [29] 
Anoctamin-8 Ano8 HTA0002008P 0 Tian et al. [29] 
Anoctamin-9 Ano9 HTA0002009P 1 Tian et al. [29] 
Anoctamin-5 Ano5 HTA0002005P 1 Tian et al. [29] 
Anoctamin-3 Ano3 HTA0002003P 1 Tian et al. [29] 

 

C. Main effect difference analysis 

The HTPred_a classifier distinguishes transporters from 

non-transporters. The main effect difference (MED) [22] was 

used to estimate effects of individual features. The principle 

of the MED analysis is to calculate MED scores according to 

the prediction effectiveness. The most effective property has 

the largest value of MED. Due to the function diversities of 

transporters, we mainly focused on the top-ranked features 

which have high MED scores. The 18 properties ranked by 

using MED obtained from HTPred_a on the training feature 

set are shown in Fig. 4. 

D. Relationship between transporters and selected 

physicochemical properties 

Some typical properties in the set of the selected 18 

features in the AAindex database are discussed below. The 

property WERD780103, described as “free energy change of 

alpha (Ri) to alpha (Rh)” is the most meaningful feature as it 

shows the inside/outside preferences of the amino acids in a 

polypeptide chain which presumably reflect the interactions 

of the residues with water [30]. Transporters are 

membrane-spanning molecules that mostly form pore-like 

structures which interact with water so that their interior side 

is originally formed from the polar groups. Just as in the 

molecule of acetylcholine receptor (shown in Fig. 5), residues 

surrounding a pore which is shown with a red axe might be 

abundant with polar groups. In this case, the conformational 

preferences of the residues in a protein could reveal whether 

or not it is wholly or partially in contact with solution and thus, 

show its membrane connection. The DIGM050101 property, 

described as “hydrostatic pressure asymmetry index”, or PAI 

gives values to individual amino acids that are positively 

correlated to the polarity as well. Giulio et al. [31] showed 

that on average, the more polar amino acids possess a higher 

PAI value, that is to say they are more barophilic. In this 

respect, barophily contributes to the distinction of protein 

structures, which are membrane-spanning.  

The NAKH920106 feature, named “AA composition of 

CYT of multi-spanning proteins” expands the list of features 

by pointing out the differences in amino acid composition 

between cytoplasmic (CYT) and extracellular (EXT) protein 

domains [32]. Thus, transporters possessing transmembrane 

regions, have both CYT and EXT domains presented and the 

difference (CYT – EXT) becomes a meaningful 

characteristic.  

The OOBM850103 feature, which corresponds to the 

“optimized transfer energy parameter”, investigates tertiary 

structure of a protein [33]. This information might be 

important if several subunits are forming a pore-like structure 

in a membrane as 5 subunits of acetylcholine receptor (Fig. 5).  

The relationship between protein sequence and structure in 

integral membrane associated transporter proteins is 

emphasized by the frequencies of amino acid exchanges in 

their transmembrane segments. As pointed out by Jones D.T. 

et al. [34], the transmembrane protein mutation data matrix is 

quite different from the matrix calculated from a general 

sequence set. Consequently, relative mutability feature 

(DAYM780201) contains valuable information for 

classification task [35]. The FINA910103 feature, described 

as “Helix termination parameter at position j-2, j-1, j” 

characterizes the α-helical contents of transporter proteins 

and can serve as a distinguishing feature as long as 

transporters posses α-helical regions most of which have 

defined localizations [36].  

Two features found to be presented in the subsets 1A and 

1B. These are MAXF760101 and CIDH920101, described as 

“Normalized frequency of alpha-helix” and “Normalized 

hydrophobicity scales for alpha-proteins”, respectively. 

Normalized frequency of alpha-helix is a conformational 

information collected from each single residue in a peptide 

chain to represent the whole backbone conformation [37]. It is 

significant in α-helics recognition in transporters. The 

normalized hydrophobicity scales for alpha-proteins feature 

reflect the predominance of alpha-helixes in the whole set of 

transmembrane transporters, thus alpha class proteins 

hydrophobicity scale can represent transporter proteins in our 

model [38]. 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Accuracies of training subsets 1A and 2A for 30 independent 

runs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The number of selected features and accuracies of subsets 1A 

and 2A at 20th independent run 
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Figure 3. The number of selected features and accuracies of subsets 1A 

and 2A at 26th and 29th independent runs, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The histogram of 18 properties with MED scores obtained from 

HTPred_a on training subset 1A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. The 3D Structure of acetylcholine receptor pore. The red axes 

are going through the pore of the transporter. Five subunits, forming the pore 

are shown in different colors. 

 

IV. CONCLUSIONS 

Membrane transport proteins (named transporters) play 

key roles in 1) transporting cellular molecules across cells and 

cellular compartment boundaries, 2) mediating the absorption 

and removal of unwanted materials from cells, and 3) 

establishing electrochemical gradients across membranes. A 

variety of transporters are responsible to absorption, 

distribution, and excretion of drugs. Therefore, it is desirable 

to develop prediction methods for discovery of transporters 

and their functions. This study has established a dataset of 

reviewed human transporters and non-transporters, named 

HITSET. Consequently, we have proposed an optimization 

method HTPred to identify and analyze human transporters 

from protein sequences based on the SVM classifier.  

We used the physicochemical properties of amino acids in 

the AAindex database and the feature selection algorithm 

IBCGA to select features which are important to identify 

whether a protein is a transporter or not. We ranked and 

analyzed the identified properties according to prediction 

contribution to gain insight into human transporters. The 

results suggested that free energy change, transfer energy 

parameter, mutability and other secondary structure 

properties of residues play important roles in the 

transportation function. 
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