
International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 168 www.erpublication.org



Abstract— Modbus is a serial communication protocol

originally published by Modicon (now Schneider Electric)in

1979 for use with its programmable logic controllers

(PLC’s).Simple and robust, it has since become a de-facto

standard communication protocol, and it is now a commonly

available means of connecting industrial electronic devices.

Modbus enables communication between many(approximately

240) devices connected to the same network, for example a

system that measures temperature and humidity and

communicates the results to a computer. Modbus is often used

to connect a supervisory computer with a remote terminal unit

(RTU) in supervisory control and data acquisition (SCADA)

systems. Many of the data types are named from its use in

driving relays: a single-bit physical output is called a coil, and a

single-bit physical input is called a discrete input or a contact.

Modbus is a widely used in industry for a long time and

slow-control devices in accelerator control system recently.

Modbus protocol over Ethernet has advantages for non

real-time applications due to its maturity.

Index Terms— Modbus, Serial, TCP.

I. INTRODUCTION

 The Modbus protocol provides the internal standard that

the Modicon controllers use for parsing messages. During

communications on a Modbus network, the protocol

determines how each controller will know its device address,

recognize a message addressed to it, determine the kind of

action to be taken, and extract any data or other information

contained in the message. If a reply is required, the controller

will construct the reply message and send it using Modbus

protocol.
On other networks, messages containing Modbus protocol are

imbedded into the frame or packet structure that is used on the

network. For example, Modicon network controllers for

Modbus Plus or MAP, with associated application software

libraries and drivers, provide conversion between the

imbedded Modbus message protocol and the specific framing

protocols those networks use to communicate between their

node devices. This conversion also extends to resolving node

addresses, routing paths, and error-checking methods specific

to each kind of network. For example, Modbus device

addresses contained in the Modbus protocol will be converted

into node addresses prior to transmission of the messages.

Error-checking fields will also be applied to message packets,

consistent with each network's protocol.

II. TRANSACTIONS ON MODBUS NETWORKS

Standard Modbus ports on Modicon controllers use an

Manuscript received Feb. 20, 2014.

 Sowmiya G, M.E (Pursuing) from Kongu Engineering College, Erode,

India, 07676076673.

B.Parimala Devi, M.E (Pursuing) from Kongu Engineering

College,Erode,India,8012432580.

RS-232C compatible serial interface that defines connector

pinouts, cabling, signal levels, transmission baud rates, and

parity checking. Controllers can be networked directly or via

modems. Controllers communicate using a master-slave

technique, in which only one device (the master) can initiate

transactions (queries). The other devices (the slaves) respond

by supplying the requested data to the master, or by taking the

action requested in the query. Typical master devices include

host processors and programming panels. Typical slaves

include programmable Modbus Protocol controllers. The

master can address individual slaves, or can initiate a

broadcast message to all slaves. Slaves return a message

(response) to queries that are addressed to them individually.

Responses are not returned to broadcast queries from the

master. The Modbus protocol establishes the format for the

master's query by placing into it the device(or broadcast)

address, a function code defining the requested action, any

data to be sent, and an error-checking field. The slave's

response message is also constructed using Modbus protocol.

It contains fields confirming the action taken, any data to be

returned, and an error-checking field. If an error occurred in

receipt of the message, or if the slave is unable to perform the

requested action, the slave will construct an error message and

send it as its response.

Table-1.Modbus over Serial Line Uses Three-Layer Model

Layer ISO/OSI Modbus Function

 Function

7 Application Modbus Application Protocol

3-6 Various Null

2 Data-Link Modbus Serial Line Protocol

1 Physical EIA-232C or EIA-485

III. SERIAL TRANSMISSION MODES OF MODBUS

NETWORKS
Instead of traditional Seven-Layer ISO Open system

Interconnection Reference Model, the Modbus over serial

line is collapsed to three layers as shown in Table-1.At the

Top is the Application Layer which is called as Modbus

Application Protocol or simply Modbus Protocol. Layers

3-6 are not used instead, the model relies on the application

layer to ensure end-to-end delivery of the message. The data

link(Layer-2) is occupied by the Modbus Serial Line

Protocol. Finally the Physical Layer allows for either the

EIA-232C or EIA-485 Implementation. With only three

layers Modbus Serial Line is easier to understand than other

Industrial Protocols.

Analysis and Testing of Modbus on Serial and TCP

Sowmiya G, B.Parimala Devi

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Remote_terminal_unit
http://en.wikipedia.org/wiki/Remote_terminal_unit
http://en.wikipedia.org/wiki/Supervisory_control_and_data_acquisition

Analysis and Testing of Modbus on Serial and TCP

 169 www.erpublication.org

A.DATA LINK LAYER

Referring to Fig.1, note that the PDU consists of four

elements. In the Middle is the Modbus PDU consisting of a

function code and data. Most Modbus Implementations only

use a subset of all the available function codes. The data

structure may change depending upon the function code.

Wrapping the Modbus PDU is an Error Check Field and

Address field. The Address Field only contains slave

address or the broadcast address. The Master Address is not

required or not referenced since this is a Master/Slave

protocol with commands originating from a unique master.

The Actual Framing of Modbus over Serial Line
Messages depends on whether ASCII or RTU Transmission
mode is used.

Fig.1.A Slave Address Field and Error Check Wrap around
a Modbus PDU It is a very compact frame with only one
byte reserved for the slave or broadcast address, one byte for
function code and two bytes for CRC error check. A single
byte carries the function code.

B.PHYSICAL LAYER

The original Modbus called for a point-to-point EIA-232c

link between a host computer and PLC.The EIA-485

standard supporting upto 32 devices over a common bus.

This can be implemented either using two wires or four wire

cabling configuration. With any of the serial line

implementations, a wide range of baud rates from 1.25 kbps

to 115 kbps are allowed, but all implementations must at least

support 9.6 kbps and 19.2 kbps.The default rate is 19.2 kbps.

IV. MODBUS OVER SERIAL LINE

The transmission mode defines the bit contents of the

message bytes transmitted along the network, and how the

message information is to be packed into the message

stream and decoded. Standard MODBUS networks employ

one of two types of transmission modes:

1. ASCII Mode
2. RTU Mode.

The mode of transmission is usually selected along with

other serial port communication parameters (baud rate,
parity, etc.) as part of the device configuration.

A.ASCII TRANSMISSION MODE

In the ASCII Transmission Mode (American Standard
Code for Information Interchange), each character byte in a
message is sent as 2 ASCII characters. This mode allows
time intervals of up to a second between characters during
transmission without generating errors.

B.RTU TRANSMISSION MODE

In RTU (Remote Terminal Unit) Mode, each 8-bit

message byte contains two 4-bit hexadecimal characters,

and the message is transmitted in a continuous stream. The

greater effective character density increases throughput

over ASCII mode at the same baud rate.

Slave Function Data CRC

Address Code

1 byte 1 byte 0 upto 252 2 bytes

 bytes

Fig.2.RTU Framing is more condensed than ASCII Framing

V. MODBUS MESSAGE FRAMING

A message frame is used to mark the beginning and ending

point of a message allowing the receiving device to determine

which device is being addressed and to know when the

message is completed. It also allows partial messages to be

detected and errors flagged as a result. A MODBUS message

is placed in a message frame by the transmitting device. Each

word of this message (including the frame) is also placed in a

data frame that appends a start bit, stop bit, and parity bit.

In ASCII mode, the word size is 7 bits, while in RTU mode;

the word size is 8 bits. Thus, every 8 bits of an RTU message

is effectively 11 bits when accounting for the start, stop, and

parity bits of the data frame character.

A.ASCII MODE MESSAGE FRAME

ASCII mode message starts with colon character ":" (ASCII

3AH) and end with a carriage return-line feed pair of

characters (CRLF, ASCII 0DH & 0AH). The only allowable

characters for all other fields are hexadecimal 0-9 & A-F.

Recall that it only takes 7 significant bits to represent an

ASCII character. Likewise, the MODBUS ASCII Mode data
.byte’ or character is only 7 bits long. For ASCII Mode

transmission, each character requires 7 data bits. Thus, each

character is 10 bits when accounting for the start bit, parity

bit, and stop bit of the data frame. In ASCII Mode, all

network devices continuously monitor the network for the
.start of message’ colon (:) character. When it is received,
every network device decodes the next field to determine if it
is the addressed device.

B.RTU MODE MESSAGE FRAMES

RTU mode messages start with a silent interval of at least

3.5 character times implemented as a multiple of character

times at the baud rate being used on the network. The first

field transmitted is the device address. The allowable

characters transmitted for all fields are hexadecimal values

0-9, A-F. A networked device continuously monitors the

network, including the silent intervals, and when the first field

is received (the address) after a silent interval of at least 3.5

character times, the device decodes it to determine if it is the

addressed device. Following the last character transmitted, a

similar silent interval of 3.5 character times marks the end of

the message and a new message can begin after this interval.

The entire message must be transmitted as a continuous

stream. If a silent interval of more than 1.5 character times

occurs before completion of the frame (not a continuous

stream), the receiving device flushes the incomplete message

and assumes the next byte will be the address field of a new

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 170 www.erpublication.org

message. In similar fashion, if a new message begins earlier

than 3.5 character times following a previous message, the

receiving device assumes it is a continuation of the previous

message. This will generate an error, as the value in the final

CRC field will not be valid for the combined messages.

VI. MODBUS/TCP

MODBUS/TCP is a communication protocol designed to

allow industrial equipment such as Programmable Logic

Controllers, computers, operator panels, motors, sensors, and

other types of physical input/output devices to communicate

over a network. Modbus/TCP was invented by

Modicon/Group Schneider and is today is one of the most

popular protocols embedded inside the TCP/IP frames of

Ethernet. Modbus/TCP basically embeds a Modbus frame

into a TCP frame in a simple manner. This is a

connection-oriented transaction, which means every query

expects a response. This query/response technique fits well

with the master/slave nature of Modbus, adding to the

deterministic advantage that Switched Ethernet offers

industrial users. The use of OPEN Modbus within the TCP

frame provides a totally scalable solution from ten nodes to

ten thousand nodes without the risk of compromise that other

multicast techniques would give.

Table-2.MODBUS TCP Uses a Five-Layer Internet Model
MODBUS TCP/IP has became an industry de facto standard
because of its openness, simplicity, low cost development,
and minimum hardware required to support it.

It is used to exchange information between devices, monitor

and program them. It is also used to manage distributed I/Os,

being the preferred protocol by the manufacturers of this type

of devices. MODBUS TCP/IP uses TCP/IP and Ethernet to

carry the MODBUS messaging structure. MODBUS/TCP

requires a license but all specifications are public and open so

there is no royalty paid for this license. Making use of TCP/IP

also offers the use of embedded Web pages to make life even

more user friendly! Simply ‘surf’ your plant intranet for the

information you need by using your web browser.

VII. THE QUERY-RESPONSE CYCLE

A.THE QUERY

The function code in the query tells the addressed slave

device what kind of action to perform. The data bytes contain

any additional information that the slave will need to perform

the function. For example, function code 03 will query the

slave to read holding registers and respond with their

contents. The data field must contain the information telling

the slave which register to start at and how many registers to

read. The error check field provides a method for the slave to

validate the integrity of the message contents.

B.THE RESPONSE

If the slave makes a normal response, the function code in
the response is an echo of the function code in the query. The
data bytes contain the data collected by the slave, such as
register values or status.

Fig-3.Query-Response Cycle

If an error occurs, the function code is modified to indicate

that the response is an error response, and the data bytes

contain a code that describes the error. The error check field

allows the master to confirm that the message contents are

valid.

VIII. ERROR CHECKING METHODS

Standard Modbus serial networks use two kinds of error

checking. Parity checking (even or odd) can be optionally

applied to each character. Frame checking (LRC or CRC) is

applied to the entire message. Both the character check and

message frame check are generated in the master device and

applied to the message contents before transmission. The

slave device checks each character and the entire message

frame during receipt. The master is configured by the user to

wait for a predetermined timeout interval before aborting the

transaction. This interval is set to be long enough for any slave

to respond normally. If the slave detects a transmission error,

the message will not be acted upon. The slave will not

construct a response to the master. Thus the timeout will

expire and allow the master’s program to handle the error.
Note that a message addressed to a nonexistent slave device

will also cause a timeout. Other networks such as MAP or

Modbus Plus use frame checking at a level above the Modbus

contents of the message. On those networks, the Modbus

message LRC or CRC check field does not apply. In the case

of a transmission error, the communication protocols specific

to those networks notify the originating device that an error

Layer ISO/OSI Modbus Function

 Function

5,6,7 Application Modbus Application

 Protocol

4 Transport Modbus Transport

 Protocol

3 Network Internet Protocol

2 Data Link IEEE 802.3

1 Physical IEEE 802.3

Analysis and Testing of Modbus on Serial and TCP

 171 www.erpublication.org

has occurred, and allow it to retry or abort according to how it

has been setup. If the message is delivered, but the slave

device cannot respond, a timeout error can occur which can be

detected by the master’s program.

A.PARITY CHECKING

Users can configure controllers for Even or Odd Parity

checking, or for No Parity checking. This will determine how

the parity bit will be set in each character. If either Even or

Odd Parity is specified, the quantity of 1 bits will be counted

in the data portion of each character (seven data bits for

ASCII mode, or eight for RTU). The parity bit will then be set

to a 0 or 1 to result in an Even or Odd total of 1 bit.

For example, these eight data bits are contained in an RTU
character frame:

1100 0101

The total quantity of 1 bit in the frame is four. If Even Parity is
used, the frame’s parity bit will be a 0, making the total
quantity of 1 bits still an even number (four). If Odd Parity is
used, the parity bit will be a 1, making an odd quantity (five).

B.LRC CHECKING

In ASCII mode, messages include an error–checking field
that is based on a Longitudinal Redundancy Check (LRC)
method. The LRC field checks the contents of the message,
exclusive of the beginning ‘colon’ and ending CRLF pair. It is

applied regardless of any parity check method used for the

individual characters of the message. The LRC field is one

byte, containing an 8–bit binary value. The LRC value is

calculated by the transmitting device, which appends the LRC

to the message. The receiving device calculates an LRC

during receipt of the message, and compares the calculated

value to the actual value it received in the LRC field. If the

two values are not equal, an error results. The LRC is

calculated by adding together successive 8–bit bytes of the

message, discarding any carries, and then two’s

complementing the result. It is performed on the ASCII

message field contents excluding the ‘colon’ character that

begins the message, and excluding the CRLF pair at the end of

the message. In ladder logic, the CKSM function calculates a

LRC from the message contents.

C.CRC CHECKING

In RTU mode, messages include an error–checking field

that is based on a Cyclical Redundancy Check (CRC) method.

The CRC field checks the contents of the entire message. It is

applied regardless of any parity check method used for the

individual characters of the message. The CRC field is two

bytes, containing a 16–bit binary value. The CRC value is

calculated by the transmitting device, which appends the CRC

to the message. The receiving device recalculates a CRC

during receipt of the message, and compares the calculated

value to the actual value it received in the CRC field. If the

two values are not equal, an error results. The CRC is started

by first preloading a 16–bit register to all 1’s. Then a process

begins of applying successive 8–bit bytes of the message to

the current contents of the register. Only the eight bits of data

in each character are used for generating the CRC. Start and

stop bits, and the parity bit, do not apply to the CRC. During

generation of the CRC, each 8–bit character is exclusive

ORed with the register contents. Then the result is shifted in

the direction of the least significant bit (LSB), with a zero

filled into the most significant bit (MSB) position. The LSB is

extracted and examined. If the LSB was a 1, the register is

then exclusive ORed with a preset, fixed value. If the LSB

was a 0, no exclusive OR takes place. This process is repeated

until eight shifts have been performed. After the last (eighth)

shift, the next 8–bit byte is exclusive ORed with the register’s

current value, and the process repeats for eight more shifts as

described above. The final contents of the register, after all

the bytes of the message have been applied, is the CRC value.

When the CRC is appended to the message, the low-order

byte is appended first, followed by the high-order byte. In

ladder logic, the CKSM function calculates a CRC from the

message contents.

REFERENCES

[1]Modbus Application Specification protocol V1.1b, http://www.modbus

-IDA.org, December 28, 2006.
[2] Modbus over Specification and Implementation Guide V1.02,

http://www.modbus -IDA.org, December 20, 2006.

[3] Modbus Messaging on TCP and Implementation Guide V1.0b,

http://www.modbus -IDA.org, October 24, 2006.
[4] Modbus Protocol Reference Guide Rev.J, http://www.modbus -IDA.org,

June 1996.

Sowmiya G, Pursuing M.E (Embedded Systems) in
Kongu Engineering College. Completed B.E (ECE) in Excel College of
Engineering.

B.Parimala Devi, Pursuing M.E (Embedded Systems) in
Kongu Engineering College. Completed B.E (ECE) in Maharaja
Engineering College for Women.

http://www.modbus-ida.org,/
http://www.modbus-ida.org,/
http://www.modbus-ida.org,/
http://www.modbus-ida.org,/

