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Abstract— A new very large scale integration (VLSI) 

algorithm for a 2N-length discrete Hartley transform (DHT) that 

can be efficiently implemented on a highly modular and parallel 

VLSI architecture having a regular structure is presented. The 

DHT algorithm can be efficiently split on several parallel parts 

that can be executed concurrently. Moreover, the proposed 

algorithm is well suited for the sub expression sharing technique 

that can be used to significantly reduce the hardware complexity 

of the highly parallel VLSI implementation. Using the 

advantages of the proposed algorithm and the fact that we can 

efficiently share the multipliers with the same constant, the 

number of the multipliers has been significantly reduced such 

that the number of multipliers is very small comparing with that 

of the existing algorithms. Moreover, the multipliers with a 

constant can be efficiently implemented in VLSI. 

 
Index Terms— Discrete Hartley transform (DHT), DHT 

domain processing, fast algorithms. 

 

I. INTRODUCTION  

 

The discrete fourier transform (DFT) is used in many 

digital signal processing applications as in signal and image 

compression techniques, filter banks [1], signal 

representation, or harmonic analysis [2]. The discrete Hartley 

transform (DHT) [2], [3] can be used to efficiently replace the 

DFT when the input sequence is real. In the literature, there 

are some fast algorithms for the computation of DHT [4] [7] 

and some algorithms for the computation of generalized DHT 

[8]–[10]. 

There are also several split-radix algorithms for 

computing DHT with a low arithmetic cost. Thus, Sorensen et 

al. [11] and Malvar [12] proposed split-radix algorithms for 

DHT with a low arithmetic cost. Bi [13] proposed another 

split-radix algorithm where the odd-indexed transform 

outputs are computed using an indirect method. The classical 

split-radix algorithm is difficult to implement on VLSI due to 

its irregular computational structure and due to the fact that 

the butterflies significantly differ from stage to stage. Thus, it 

is necessary to derive new such algorithms that are suited for a 

parallel VLSI system. 

There are also in the literature several fast 

algorithms that use a recursive strategy as that in [14] for 
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discrete cosine transforms (DCT) and that in [10] for 

generalized DHT. Since DHT is computationally intensive, it 

is necessary to derive dedicated hardware implementations 

using the VLSI technology. 

One category of VLSI implementations is 

represented by systolic arrays. There are many systolic array 

implementations of DHT [15]–[18]. Systolic array 

architectures are modular and regular, but they use 

particularly pipelining and not parallel processing to obtain a 

high-speed processing.  

In the literature, highly parallel solutions as those in 

[8] and [19] were also proposed. In [8], a highly parallel and 

modular solution for the implementation of type-III DHT 

based on a new VLSI algorithm is proposed. In [19], we have 

a highly parallel solution for the implementation of DHT 

based on a direct implementation of fast Hartley transform 

(FHT). It is worth to note that hardware implementations of 

FHT are rare.  

Multipliers in a VLSI structure consume a large 

portion of the chip area and introduce significant delays. This 

is the reason why memory-based solutions to implement 

multipliers have been more and more used in the literature 

[15], [20]–[24]. To efficiently implement multipliers with 

lookup-table-based solutions, it is necessary that one operand 

to be a constant. When one of the operands is constant, it is 

possible to store all the partial results in a ROM, and the 

number of memory words is significantly reduced from 2
2L

 to 

2
L
. 

In this brief, a new VLSI DHT algorithm that is well 

suited for a VLSI implementation on a highly parallel and 

modular architecture is proposed. It can be used for designing 

a completely novel VLSI\ architecture for DHT. Moreover, 

using sub expression sharing technique [25] and sharing the 

multipliers with the same constant, the hardware complexity 

can be significantly reduced, the number of multipliers being 

very small, significantly less than that in [8]. In the proposed 

solution, we have used only multipliers with a constant that 

can be efficiently implemented in VLSI. The proposed 

solution is not only appealing by its high level of parallelism 

and by using a modular and regular structure but it can be also 

used to obtain a small hardware complexity by extensively 

sharing the common blocks. 

The rest of this brief is organized as follows. In 

Section II, we present a new algorithm for computing an N 

-point DHT. In Section III, we present an algorithm for a 

small-length DHT. In Section IV, we analyze the arithmetic 

cost, and in Section V, we present some examples of our 
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algorithm. In Section VI, we present the new VLSI 

architecture. The conclusion is presented in Section VII. 

II. NEW VLSI ALGORITHM FOR DHT 

Let  N≥4 be a power of two. For any real input 

sequence {x(i):i=0,1,...,N−1}, the DHT(N) is defined by 

X(k) = DHT (N) {x(i)} = 

 for k=0,1,...,N−1---------- (1) 

Where cas(x)=cos(x)+sin(x). 

We can compute a N-length DHT using a new 

algorithm given by the following relations: 

XN(k){x(i)}= XN/2(k){x(2i)}+u(0).sin(2kπ/N) + 

[XN/2(k){u(i)}-u(0)/2].2.cos(2kπ/N)------------------(2) 

 XN(N/2+k){x(i)}=  

 

XN/2(k){x(2i)}-u(0).sin(2kπ/N)-[XN/2(k){u(i)}-u(0)/2].2.cos(

2kπ/N) for k=0,1,….N/4 -------------- (3) 

XN(N/2-k){x(i)}=  

 

XN/2(N/2-k){x(2i)}+u(0).sin(2kπ/N)-[XN/2(N/2-k){u(i)}-u(0)

/2].2.cos(2kπ/N) for k=0,1,….N/4 --- (4) 

 

XN(N-k){x(i)}=  

 

XN/2(N/2-k){x(2i)}-u(0).sin(2kπ/N)-[XN/2(N/2-k){u(i)}-u(0)/

2].2.cos(2kπ/N) for k=0,1,….N/4 --- (5) 

Where 

XN/2(k){x(2i)} = ----------(6) 

XN/2(k){U(i)} = ------------(7) 

are DHT of length N/2, with {u(i) : i=0,1 ……..(N/2)-1} an 

auxiliary input sequence given by  

u(N/2 -1) = x(N-1)--------------------------------------(8) 

u(i) =x(2i+1)-u(i+1)   for i=(N/2)-2,…1,0-----------(9) 

For the computation of (2)–(5), there are necessary 

extra7 N/4 additions and N/2 multiplications, if we share the 

multipliers with the same constant. For the computation of the 

auxiliary input sequence using (8) and (9), there are necessary 

extra N/2−1 additions. 

The obtained algorithm can be used as a VLSI algorithm 

where the number of multipliers can be significantly reduced 

by sharing the multipliers with the same constant as will be 

shown in Section VI. The number of multipliers can be further 

reduced using sub expression sharing techniques and the 

sharing of multipliers with the same constant, as shown in 

Section VI. 

 

 

Table-I 

COMPUTATIONAL COMPLEXITY 

 
 

III. ALGORITHM FOR A SMALL DHT 

An efficient implementation of a fast DHT algorithm 

closely depends on an efficient algorithm for a small DHT. 

We present here an efficient DHT algorithm for a length N=8 

 

X(0) = [(x(0)+x(4))+(x(2)+x(6))+( x(1)+x(5))+( x(3)+x(7))] 

X(2) = [(x(0)+x(4))-(x(2)+x(6))+( x(1)+x(5))-( x(3)+x(7))] 

X(4) = [(x(0)+x(4))+(x(2)+x(6))-( x(1)+x(5))-( x(3)+x(7))] 

X(6) = [(x(0)+x(4))-(x(2)+x(6))-( x(1)+x(5))-( x(3)+x(7))] 

X(1) = [(x(0)-x(4))+(x(2)-x(6))+c(x(1)-x(5))] 

X(3) = [(x(0)-x(4))-(x(2)-x(6))+c(x(3)-x(7))] 

X(5) = [(x(0)-x(4))-(x(2)-x(6))-c(x(1)-x(5))] 

X(7) = [(x(0)-x(4))-(x(2)-x(6))-c(x(3)-x(7))] 

With c=  

 

 We have M DHT(8) =2 and A DHT(8) =16 as defined in 

the following. Due to the fact that we have to multiply with the 

same constant “ c ,” we can share the same multiplier, thus 

further reducing the number of multipliers. 

IV. ARITHMETIC COST 

 

Let A DHT( N ) and M DHT( N ) denote the number 

of additions and multipliers for computing DHT( N ) .We 

have 

MDHT(N) =2MDHT(N/2) +(1/2)N-------------------------(10) 

ADHT(N) =2ADHT(N/2) +(9/4)N-1-----------------------(11) 

Where MDHT(s) =2 and ADHT(s) =16     Solving the recursions 

(10) and (11), we obtain 

MDHT(N)= ---------------------------(12) 

ADHT(N)= - ----------------------(13) 
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Table I lists the required number of multiplications 

and additions for the proposed algorithm, the Sorensen one 

and Bi algorithm, where rotations are implemented with four 

multiplications and two additions (Radix-2 [13] ∗ ) and with 

three multiplications and three additions (Radix-2 [13] ∗∗). 

 The values of M in the proposed algorithm are computed 

considering that the multipliers with the same constant are 

shared. The number of multipliers in Sorensen algorithm [11] 

is significantly greater than that in the proposed one. The 

number of multipliers for Bi algorithm where rotations are 

implemented with four multiplications and two additions is 

greater than the necessary number of multipliers for our 

algorithm and slightly smaller when the rotations are 

implemented with three multiplications and three additions. 

However, the split-radix algorithm has an irregular structure 

and is difficult to be implemented in hardware as opposed to 

our algorithm that has a regular and modular structure and can 

be very easily implemented in parallel as it will be shown in 

Section VI for a DHT of length N=32 . Moreover, the number 

of multipliers in the proposed implementation can be 

significantly further reduced by sharing multiplications as 

shown in Section IV. 

 

V. EXAMPLE OF THE PROPOSED ALGORITHM 

 

We shall illustrate the main features of the proposed 

algorithm considering a DHT of length N =32 

A.DHT of Length N=32 

We first compute recursively the auxiliary input 

sequences 

 

Then, we have to compute in parallel (21)–(28).  

 

These equations have been obtained by a further 

reformulation of the equations obtained directly from (2)–(5) 

in such a way that we can extensively use the technique of sub 

expression sharing [18] and sharing the multipliers with the 

same constant. Thus, the number of multipliers has been 

significantly reduced at only 16, a significantly lower value 

than the theoretical value 40 from Table I that has been 

obtained using (2)–(5) without using the aforementioned 

technique. As can be seen, the proposed VLSI algorithm has a 

very good potential for using hardware sharing techniques, 

and many sub expressions have been used in common. We 

can thus significantly reduce the hardware complexity of the 

VLSI implementation. Moreover, due to the fact that the same 

constant is used in several multiplications, we can use the 

technique of sharing the multipliers with the same constant. 

Having only multiplications with a constant, we can 

efficiently implement these multipliers in VLSI. 

 

VI. HIGHLY PARALLEL VLSI ARCHITECTURE 

 

 

In order to clearly illustrate the features and 

advantages of the proposed algorithm, the VLSI architecture 

for a DHT of length N=32 is presented in Fig. 1(a) and (b). It 

can be seen that the proposed architecture is highly parallel 

and has a modular and regular structure being formed of only 

a few blocks: U, MUL, ADD/SUB, XCH, and a few 

additional adders/subtracters. The “U” blocks implement 

(20), XCH blocks interchange the values and are simply 

implemented in hardware by appropriate wiring, and MUL 

blocks are used to implement the shared multipliers with a 

constant. This block contains four multipliers with a constant. 

Each multiplier is shared by four input sequences that are 

multiplied with the same constant in an interleaved manner 

using multiplexers and demultiplexers controlled by two 

clocks. One of the advantages of this algorithm and 

architecture is the fact that the multiplications with the same 

constant are shared in the MUL blocks. Thus, the number of 

multipliers is significantly less than the value 40 given in 

Table I which has become now only 16. The final values Y(k) 

of Section A and Y0(k) of Section B are finally added to 

obtain the output sequence Y(k) using an additional adder not 

presented in Fig. 1 for simplicity. 

 

The proposed architecture has a high throughput of 

32 samples per clock and can be pipelined. It is highly parallel 

using a low hardware complexity structure. The multipliers 

with a constant in MUL blocks can be efficiently implemented 

in hardware using the techniques proposed in [20]–[24]. 

Parallel processing is one of the major ways to reduce power 

consumption, the high processing speed being traded off for 

low power using the reduction of the supply voltage value 

[26]. The required control structure is very simple which is 

another important advantage. We define another module as 

 = ----------(20) 

For X32 (k), we can write the following relations: 
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+ }.2.cos(2kπ/16)]+x(0)/2+ .sin(2kπ/16)+  

Sin(2kπ/32)+ { + { .2.cos(2kπ/16)].2.cos((2kπ/32)+ .2.sin( 

2kπ/16)cos(2kπ/32).--------------------------------------------------------------------------------------------------------------(21) 

  

}.2.cos(2kπ/16)]+x(0)/2- .sin(2kπ/16)+ cos(2kπ/32)- { -

{ .2.cos(2kπ/16)].2.sin((2kπ/32)+ .2.sin( 

2kπ/16) sin(2kπ/32).--------------------------------------------------------------------------------------------------------------(22) 

 

}.2.cos(2kπ/16)]+x(0)/2- .sin(2kπ/16)- sin(2kπ/32)- { -

{ .2.cos(2kπ/16)].2.cos((2kπ/32)- .2.sin(2kπ/16) cos(2kπ/32).-----------------------------------(23) 

  

}.2.cos(2kπ/16)]+x(0)/2- .sin(2kπ/16)- cos(2kπ/32)-

 

{ - { .2.cos(2kπ/16)].2.sin((2kπ/32)- .2.sin(2kπ/16) sin(2kπ/32). 

 For k=0,1….3.--------------------------------------------------------------------------------------------------------------------(24) 

  

}.2.cos(2kπ/16)]+x(0)/2+ .sin(2kπ/16)+ cos(2kπ/32)+

{ - { .2.cos(2kπ/16)].2.sin((2kπ/32)+ .2.sin(2kπ/16) 

sin(2kπ/32).------------------------------------------------------------------------------------------------------------------------(25) 

 

}.2.cos(2kπ/16)]+x(0)/2- .sin(2kπ/16)+

sin(2kπ/32)- { { .2.cos(2kπ/16)].2.cos((2kπ/32)+ .2.sin(2kπ/1

6) cos(2kπ/32).-------------------------------------------------------------------------------------------------------------------(26) 

 

 

}.2.cos(2kπ/16)]+x(0)/2+ .sin(2kπ/16)- cos(2kπ/32)-

{ - { .2.cos(2kπ/16)].2.sin((2kπ/32)- .2.sin(2kπ/16)cos(2kπ/32).----(27) 

  

}.2.cos(2kπ/16)]+x(0)/2- .sin(2kπ/16)- sin(2kπ/32)+

{ { .2.cos(2kπ/16)].2.cos(2kπ/32)- .2.sin(2kπ/16)cos(2kπ/32 

For k=0,1…….4).--------------------------------------------------------------------------------------------------------------------(28)



 

International Journal of Engineering and Technical Research (IJETR) 

                                                                                                 ISSN: 2321-0869, Volume-2, Issue-2, February 2014    

 

                                                                                              204                                                         www.erpublication.org 

 

 

 

 

Fig. 1. (a) VLSI architecture for DHT of length N = 32 (Section A). 

 (b) VLSI architecture for DHT of length N = 32 (Section B). 

 

VII. CONCLUSION 

 

In this brief, a new highly parallel VLSI algorithm 

for the computation of a length-N = 2n DHT having a modular 

and regular structure has been presented. Moreover, this 

algorithm can be implemented on a highly parallel 

architecture having a modular and regular structure with a low 

hardware complexity by extensively using a sub expression 

sharing technique and the sharing of multipliers having the 

same constant. 
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