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Abstract— It is shown that a minimal upper estimate for the 

error probability of the formal neuron, when the latter is used as 
a restoring (decision) element, can be obtained by the Laplace 
transform of the convolution of functions as well as by means of 
the generating function of the factorial moment of the sum of 
independent random variables. It is proved that in both cases the 
obtained minimal upper estimates are absolutely identical. 
 

Index Terms—generating function, probability of signal 
restoration error, restoring neuron, upper estimate.  

I. INTRODUCTION 
  Let us consider the formal neuron, to the inputs of   which 

different versions 1 2 1, , , ,n nX X X X   of one and the same 
random binary signal X  arrive via the binary channels 

1 2 1, , , ,n nB B B B   with different error probabilities 

( )1, 1iq i n= + , and the neuron must restore the correct input 

signal X  or, in other words, make  a decision Y  using the 
versions 1 2 1, , , ,n nX X X X  . When the binary signal X  
arrives at the inputs of the restoring element via the channels 
of equal reliability, the decision-making, in which some value 
prevails among the signal versions, i.e. the decision-making 
by the majority principle, was for the first time described by 
J. von Neumann [1], and later V. I. Varshavski [2] 
generalized this principle to redundant analog systems. 

In the case of input channels with different reliabilities, 
adaptation of the formal neuron is needed in order to restore 
the correct signal. Adaptation is interpreted as the control 
process of weights  ( )1, 1ia i n= +  of the neuron inputs, 

which makes these weights match the current probabilities  

( )1, 1iq i n= +  of the input channels. The purpose of this 

control is to make inputs of high reliability to exert more 
influence on decision-making  (i.e. on the restoration of the 
correct signal) as compared with inputs of low reliability. 
Restoration is carried out by vote-weighting by the relation  
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Both the input signal X  and its versions ( 1, )iX i n  are 
considered as binary random variables coded by the logical 
values  ( 1)  and ( 1) . It is formally assumed  that the 
threshold   of the restoring neuron is introduced into 
consideration by means of the identity 1na  , where 

1( )na    and the signal 1 1nX   . The main 

point of this formalism is that the signal 1 1nX    is 

dumped from some imaginary binary input 1nB   for any value 

of the input signal X , whereas the value 1nq +  is the a priori 
probability of occurrence of the signal 1X   or, which is 
the same,  the error probability of the channel  1nB  . Quite a 
vast literature [3]-[7] is dedicated to threshold logic which 
takes  into consideration  the varying reliability of channels, 
but in this paper we express our viewpoint in the spirit of the 
ideas of W. Pierce [8]. 

Let us further assume that  
1 if 0

sgn
1 if 0

Z
Z

Z
  

.                             (3) 

When 0Z  , the solution Y  at the output of the restoring 
formal neuron has the form 1+  according to (3).  The 
probability that the restored value Y  of the signal X  is not 
correct  is expressed by the formula 

{ } { }Prob Prob 0Q Y X η= ≠ = < .                 (4) 
Here  XZ   is a discrete random variable with 

probability distribution density ( )f v . This variable  is the 
sum of independent discrete variables i i ia XXη = , and the 
function ( )i if v  describes  the probability distribution density 
of individual summands iη .  For  the realizations of random 

variables   and i  we introduce the symbols v  and iv , 
respectively. 

It is easy to observe that the variable i  takes the values 

ia  and ia−   with probabilities 1 iq  and iq , respectively. 
Therefore, if we use the Dirac delta function ( )tδ , then the 
probability density  ( )i if v   can be represented as follows  
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Such formalism is completely justified and frequently used 
due to the following two properties of the delta-function  
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However ( )i if v  can also be represented as  
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The random variable η  is the sum of independent discrete 
random variables iη . Its distribution density ( )f v  can be 
defined in the form of convolution of probability distribution 
densities of summands ( )i if v : 
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= ∗ ,                                (7) 

where ∗  (superposition of the addition and multiplication 
signs) is the convolution symbol. 

It is obvious that in view of formula (7) the error 
probability at the decision element output can be written in 
two equivalent forms   
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where the probability distribution density ( )i if v  is defined by 
(5) in the first case and by (6) in the second case. Integration 
or summation in both cases is carried out continuously or 
discretely over all negative values of the variable v . 
Formulas (8) and (9) give an exact value of the error 
probability of  restoration of a binary signal by the formal 
neuron. 

Note that for practical calculations, formula (9) can be 
written in a more convenient form. Indeed, the complete 
number of discrete values of the variable v  is 12n  since   

   

1 2 1,n nv a a a a       

where ia  is equal either to  ia  or to ( )ia− , whereas the 

proper sign of the weight ia  is meant to be within the round 
brackets.  

By formula (9), to each discrete value of the sum v  there 

corresponds the term 1( 1, 2 )n
jQ j   which is the product of 

( 1)n  co-factors of the form kq  or (1 )kq .   
In particular  

   

1

1 2 11

1

( ) ( )
,

1, 2

n

j i i n ni

n

Q f v f v q q q q

j







        



 

where  



if ( )
1 if ( )

k k k
k

k k k

q v a
q

q v a
   

 

for any ( )1, 1k k n= + . 

Thus formula (9) can also be written in the form  
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which is more adequate for cognitive perception and practical 
realization.  

II. FINDING A MINIMAL UPPER ESTIMATE BY THE 
FIRST METHOD 

From the expression  

( )
0

Prob 0 ( )Q f v dvη
−∞

= < = ∫  

it follows that for a  real positive number ( 0)s s >  
0
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But the left-hand part of this inequality is the Laplace 
transform of the function ( )f v  

( ) ( ) ,svf v e f v dv
∞

−

−∞
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where  L  is the Laplace transform operator. 
Therefore  

( )Q f v≤ L[ ].                                  (11) 
The random value η  with realizations v  is the sum of 

independent random variables iη  having realizations iv . In 
that case, as is known, the Laplace transform for the 
convolution ( )f v  of functions ( )i if v  is equal to the product 
of Laplace transforms of convoluted functions: 

1
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The latter implies that  
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By expression (5) for functions ( )i if v  and the Laplace 
transform definition, we obtain  
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Using this expression in formula (12) we have  
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Here we should make use of one more property of the Dirac 
delta function 

0 0( ) ( ) ( ).t t t dt tδ
∞
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With this property taken into account, from formula (13) 
we obtain  
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Here s , as mentioned above, is an arbitrary real positive 
number. Before we continue simplifying the right-hand part of 
inequality (14), we have to define a value of s  for which 
expression (14) gives a minimal upper estimate. 

Passing to the natural logarithm of inequality (14) we come 
to the expression  

1

1
ln ln (1 ) .i i

n
a s a s

i i
i

Q q e q e
+

− +

=

 ≤ − + ∑  

Let us define here partial derivatives with respect to 
arguments ia  by using the elementary fact that 

( )( ) f xdyy f x e
dx
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if ( )f xy e= , and also the fact that 1ln ( ) ( ) .
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For the right-hand part of this inequality  to be equal to 
zero, it suffices that the following condition be fulfilled  
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whence  it follows that  
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If the weights ia  of the neuron inputs are put into 
correspondence with error probabilities iq  of these inputs by 
the relations  

1
ln ,i

i
i

q
a

q
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=                                (15) 

then the sought value of s  will be  
1 .
2

s =                                    (16) 

Using equality (16) in formula (14), we obtain a minimal 
upper estimate for the error probability Q  of the restoring 
neuron. Indeed, for the right-hand part of expression (14) the 
following chain of identical transforms is valid:  
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Let us take into account here that  
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Then we have  
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The second co-factor in the right-hand part of this 
expression is the hypebolic cosine of the argument iλ : 
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Finally, for estimate (14) we can write  
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For the error probability Q , the right-hand part of the 

above inequality is the upper estimate Q+ : 
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The minimum minQ+  of this upper estimate Q+  is equal to  
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It is attained when for the zero argument the hyperbolic 
cosine attains the minimum equal to 1.  

This estimate confirms in a certain sense the advantage  of 
the choice of weights of the restoring neuron in compliance 
with the error probabilities of input signals according to the 
following relations  
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III. OBTAINING A MINIMAL UPPER ESTIMATE BY 
THE SECOND METHOD 

Simulteously, for the probability Q  it is useful to obtain a 
minimal upper estimate in the closed analytic form by one 
more new approach.  

As is known [9], the generating function ( )v S  of the 
factorial moment of the sum η  of independent random 
variables iη  is equal to the product of generating functions 

( )
iv S  of the factorial moments of individual summands, i.e.  
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Here Μ  is the mathematical expectation symbol  and S  
is an arbitrary complex number for which series (19) and (20) 
exist on some segment of the real axis containing the point 

1S  . 
Since in relation (20), summation is carried out on the set 

of two possible values ia  and ia  of the variable iv , using 
(6) we have  
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The substitution of (21) into relation (18) gives  
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When 0v  , the value vS  satisfies the condition  
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Let us assume that inequality (22) is fulfilled. Then the 
following relation is valid:  
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The right-hand part of this expression can be taken as the 
upper estimate Q+  of the error probability Q  of the restoring 
neuron  

1

1

(1 ) i i

n
a a

i i
i

Q q S q S
+

−+

=

 = − + ∏ . 

The latter relation is easily rewritten in the equivalent form  
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Now we can find the minimum minQ+  of expression (24) and 

the value 0iw  of iw  will attach a minimum to the upper 

estimate of the error probability Q+  of the restoring neuron. 
For this, we use the conditions  
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If (26)  is substituted into expression (24), then by the 

second method for a minimal upper estimate of the error 
probability of the restoring neuron we obtain the relation   
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which coincides with result (17) obtained by the first method.  
The weights ( 1, 1)ia i n   which match the error 

probabilities ( )1, 1iq i n= +  are defined from relations (26) 

with notation (25) taken into account: 
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Since the value S  satisfies condition (22), we have ln 0S   
and therefore  
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Thus, the weights ( 1, 1) ,ia i n= + which are consistent with 

the error probabilities ( )1, 1iq i n= +  and attach  a minimum 

to the upper estimate of the error probability of the restoring 
neuron, are defined to within the a general  positive factor K .  

IV. CONCLUSION 
A minimal upper estimate of the error probability of the 

restoring formal neuron is defined by formula (17) or, which 
is the same, by formula (27). In both cases the result can be 
written in the form  

1
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exp ( ) ,
n

i
i

Q A q
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+

=

 
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∑                       (30) 
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where 

( ) 2 (1 ) .lni i iA q q q = −                          (31) 

In view of relations (31) confirming the non-negativity of 
the values ( )iA q ,  formula (30)  implies that an increase of 
the number n  of inputs of the formal decision neuron bings 
about a monotone decrease of the minimal upper estimate of  
the error probability of restoration of the binary signal  minQ+  
by the exponential law if, certainly, the  error probabilities  

( )1, 1iq i n= +  at these inputs are not equal to 1
2

 when the 

minimal upper estimate of the error probability minQ+    is equal 
to 1.  

This result is demonstrates an essenatial  inner connection 
with Shannon’s theorem [10]. According to this theorem, the 
number of messages of length   n  (duration τ ) composed of 
individual symbols – both in the absence and in the presence 
of fixed and probabilistic constraints (in the latter case it is 
assumed that the source is ergodic) – grows by the 
asymptotically exponential law as  n  (or τ ) increases. In 
particular we understand this connection as follows: as the 
number n  of inputs of the restoring formal neuron increases, 
the initial information to be  used in making the decision Y  
increases by the exponential law if there are  a number of 
possible versions of the input signal, while the minimal upper 
estimate minQ+  of the probability Q  that the made decision is 
erroneous decreases by the same exponential law. 
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