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Abstract— Computer Oriented Programs are SOFTWARE  

BULIT-IN FUNCTIONS OR WRITTEN SOFTWARE in a 

different COMPUTER LANGUAGES. In the past only 

NUMERICAL SOFTWARE  ROUTINES available are NAG 

ROUTINES written in FORTRAN   and ALGOLW which both 

are POCESSING LANGUAGES and then later C++ languages 

.The FORTRAN LANGUAGE can  compute  to a very high 

accuracy but require and  need MAIN-FRAMES 

COMPUTERS . Instead people   now a days  are inclined to use 

PERSONEL COMPUTERS for  the  money  cost is few in such 

away any person can get one  . 

   In this paper We FIRST list some of the 

FUNCTIONS BULIT IN MATHEMATICA OR MATLAB 

programming languages that deals and compute numerically or 

( analytically in closed forms  for 1-dimentional   ) and higher 

dimensional integrals.  

              SECOND, We will design a MATLAB SOTWARE 

PROGRAMS for 1-dimentional problems or higher 

multi-dimensional. For 1-dimentional Integrals METHODS We 

use are Trapezoidal, Simpson’s and Gaussian Quadrature 

Rules. For 2-dimentional Integrals We apply Radon’s approach 

and Gismlla’s approach with regions are the SQUARE 

REGION and RECTANGLE REGION WITH WEGIHT 

FUNCTION THE SQUARE ROOT of X, respectively .THIRD, 

for 3-dimentional or higher Integrals We apply Levin’s 

Transform with our expectation to evaluate Integrals to a high 

accuracy ((as We have dealt with before in[ 4] but using 

FORTRAN languages on main frame COMPUTERS )).  

  Further, the reader can be acquainted with some symbolic 

languages and distinguishes them from the usual processing 

languages. Furthermore, the reader will know that LEVIN’S 

TRANSFORM   can be used as one of the best method to sum a 

large class of series to a  high accuracy. 

 
Index Terms— Symbolic Languages and Built-in Functions 

.Simpson’s, Trapezoidal, Gaussian, Radon’s, Gismalla’s and 

Levin’s Rules. Full Machines Accuracy and Main Frame 

Computers. 

 

 

I. BACKGROUND AND REVIEWS 

 

The problem of numerical integration is one of the oldest 

problem in mathematics that gives a beautiful and an insight 

light to a wide range of theoretical and computational 
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Methods in Mathematics and Numerical Analysis. This can be 

seen when literature retrieval for theory and algorithms is 

seek, especially for one-dimensional Quadrature Formulae 

such as Lobbotta, Newton’s, Trapezoidal, Simpson and 

Gaussian Quadrature Rules  or for two-dimensional Cubature 

Rules as in  the references [6] ,[8] ,[12],[17],[18], [19] and 

[20].    

              The theory of Cubature is burst out when the Product 

Rules generated from the one-dimensional Rules such as 

Simpson Rules having the disadvantages of accumulating 

rounding errors and do not attain the required minimum 

number of points for functions evaluations in the formula. 

Stroud [17] has developing many cubature formulae on 

symmetric regions such   as square and the cubic.  He creates 

by   theoretical approaches to formulate a matrix system of 

equations and then solve this system by choosing and 

selecting a special paten of points to the required cubature 

formula.  The problem of selecting such paten of points in 

such away to solve the matrix system is difficult unless a 

particular suitable paten is chosen . This can be seen as a 

disadvantage.  However, if these suitable paten of points  can 

be chosen in advance in such away to solve the system  of 

equations , then many cubature formulas can be obtained. 

              Cohen & Gismalla  [6]  has selected a certain paten 

of  points on the square and the cubic to  construct  some types  

of cubature formulas known as symmetric cubature formulas 

as in [6 ].  Selecting in advance the suitable paten of points can 

construct  good formulas , not for symmetric regions only but 

on any region with a weight function for that region as in 

Gismalla[7]. 

         The Germanium ( or the Russian ) Radon [14] 

investigates and develop a large information theories on 

polynomials , orthogonal polynomials and zeros polynomials 

to establish his fifth degree cubature formula on the square 

region. If someone reads the translation for this work, he will 

certainly acknowledge the valuable efforts done to connect 

these theories in such away to establish Radon Rule. One of 

the  neatness and beauty of Radon approach is that Gismalla [ 

7] has summarized it  in steps  as an algorithm in such away to 

construct cubature formulas not on a symmetric region as a 

square  but on any region  with its weight function . This can 

be seen in Gismalla[7 ] for deriving the same fifth degree 

formula on rectangle region 

  with weight function 

 . 

             The theories of polynomials as investigated in Radon 

Rule as  algorithms to construct cubature formulas was carried  

out  further in Moller [23] and Shimds [24 ]. Moller seeks 

formulas that attain the minimum odd number of points while 

Shimd’s work[24 ]  to attain the minimum even number of 

points . Gismalla[8] apply Schimd’s approach to construct a 

forth degree formula and two sixth degree formula on the 

rectangle region   with 
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weight function  . Both these two approaches can be 

computerized to generate many cubature formulas but the cost 

of complexity is too great and high . Even if the complexity is 

revealed one can expect to obtain formulas with some points 

outside the region in consideration.  

       Nevertheless, Stroud [16] has written a great deal of 

MATLAB SOFTWARE for many regions such as the circle, 

square, cubic and triangle. The useful of formulas on a 

triangle can be dealt with for problems on finite element 

methods especially when it is symmetric. NAG  

ROUTINES in FORTRAN languages are available but with 

the restriction that most of them on main frames computers. 

QUADPACK for numerical Integration can found on 

FORTRAN or C++ languages or elsewhere.  

 

II. THE  BULIT-IN   MATHEMATICA  INTEGRATE  

FUNCTIONS  

Here , We discuss some of the built_in symbolic Mathematica 

functions for integration . These functions are   Integrate ,  

NIntegrate and   Manipulate with Integrate. 

 

A. Integrate 

            The Integrate function is used to evaluate the 

indefinite integral  

 in Mathematica Mode environment .  Typing  just the 

command Integrate in the following line below and then press 

the two keys SHIFT+ENTER simultaneously to get the result 

for required indefinite integral as in Example 2.1. The reader 

must know a little knowledge about how  to  execute a 

Mathematica function command . Once the command 

Integrate[1/(x^3+1),x] is typed and the two keys 

SHIFT+ENTER are  pressed  simultaneously , the 

Mathematica will execute  it as input automatically with  

in[1]:= to indicate that this the first input as 

                      in[1]:= Integrate[1/(x^3+1),x] 

The output result will be preceded automatically with out[1]:= 

to indicate that this the first output result as an answer   

out[1]:=  +  Log[1+x]-  Log[1-x+x
2
] 

 Similarly , any further input or  output will be preceded by its 

number in  sequence  automatically for second input or output   

         in[2]:=  or  out[2]:=   ,....  etc.   

 

 Example 2.1 

The following Integrate function gives the indefinite 

integrals 

Integrate[f,x]  , gives the indefinite integral  

 

In[1]:=  Integrate[1/(x^3+1),x] 

Out[1]=  +  Log[1+x]-  Log[1-x+x
2
] 

--------------------------------------------------- 

In[2]:=  Integrate[x^n,x] 

Out[2]=   

-------------------------------------------- 

In[3]:=   Integrate[1/(x^4-a^4),x] 

Out[3]=   +  -  

--------------------------------------------------------- 

In[4]:= Integrate[Log[1-x^2],x] 

Out[4]= -2x – Log[-1+x] + Log[1+x] + x Log[1-x
2
] 

------------------------------------------------------- 

The following Integrate function gives the definite 

integral 

Integrate[f,{x,xmin,xmax}]  ,the definite 

integral  

Here are Integrate functions for the definite 

integral . 

In[5]:= Integrate[Sin[x]^2,{x,a,b}] 

Out[5]= (- a + b + Cos[a]Sin[a] – Cos[b]Sin[b]) 

----------------------------------------------------- 

In[6]:= Integrate[Exp[-x^2],{x,0,Infinity}] 

Out[6]=  

----------------------------------------------------- 

In[7]:= Integrate[1/(x^3+1),{x,0,1}] 

Out[7]=   (2   +Log[64]) 

---------------------------------------------------- 

In[8]:=   

Out[8]= (EulerGamma+Log[4]) 

------------------------------------------------------ 

Mathematica cannot give you a formula for this definite 

integral   but instead We can get a numerical 

result 

In[9]:=   Integrate[x^x],{x,0,1}] 

Out[9]=     

----------------------------------------------------------- 

Here below N and %  indicates the numerical for the current 

input % Integrate Command 

In[10]:=   N[%] 

Out[10]=  0.783431 

--------------------------------------------------------- 

Here is the Integrate for the multiple integral   

 

Integrate[f,{x,xmin,xmax},{y,ymin,ymax} 

 

For Multiple integral with x integration outermost: 

In[11]:=   Integrate[Sin[x y],{x,0,1},{y,0,x}] 

Out[11]=   (EulerGamma-CosIntegral[1]) 

--------------------------------------------------------- 

In[12]:=   

Out[12]=    (EulerGamma-CosIntegral[1]) 

------------------------------------------------------- 

Integrals over Regions 

This does an integral over the interior of the unit circle. 

In[13]:=  Integrate[If[x^2+y^2<1,1,0],{x,-1,1},{y,-1,1}] 

Out[13]=     

Here is an equivalent form. 

 

In[14]:=  Integrate[Boole[x^2+y^2<1],{x,-1,1},{y,-1,1}] 

Out[14]=      

     

 Even though an integral may be straightforward over a simple 

rectangular region, it can be significantly more complicated 

even over a circular region. 

This gives a Bessel function. 
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In[15]:=  Integrate[Exp[x] 

Boole[x^2+y^2<1],{x,-1,1},{y,-1,1}] 

Out[15]=   2   BesselI[1,1] 

 

 

B. NIntegrate            

        

NIntegrate[f,{x,xmin,xmax}] 

gives a numerical approximation to the integral 

 

NIntegrate[f,{x,xmin,xmax},{y,ymin,ymax},…] 

gives a numerical approximation to the multiple integral 

 

 

This implies that the built-in NIntegrate Mathematica 

function evaluates integrals in one  or  multi-dimensional 

integrals numerically to a good  limit of accuracy as can be 

shown here  in Example 2.2 

 

Example2.2   Compute a numerical integral: 

In[16]:=   NIntegrate[Sin[Sin[x]],{x,0,2}] 

Out[16]=  1.24706 

---------------------------------------------------- 

This finds a numerical approximation to the integral 

. 

In[17]:=     NIntegrate[Exp[-x^3],{x,0,Infinity}] 

Out[17]=    0.89298 

----------------------------------------------------- 

Compute a multi dimensional integral (with singularity at the 

origin): 

In[18]:=   

NIntegrate[ ,{x1,0,1},{x2,0,1},{x3,0,1},{x4,0,1

}] 

Out[18]= 1.2391 

-------------------------------------------------------- 

Here is the numerical value of the double integral     

 

In[19]:=   NIntegrate[x^2+y^2,{x,-1,1},{y,-1,1}] 

Out[19]=   2.66667 

------------------------------------------------------ 

 

C. Manipulate with Integrate 

The Command Maipulate means that parameters can be 

manipulate continuously or in discrete steps. Also , it is 

possible to manipulate two parameters . The manipulation can 

be done for many results such as expansion or plotting a 

function. Here , We give an Example 2.3 for Manipulate with 

Plot and Integrate                                              

Example 2.3 (( See In[20] –In[22])) 
 

 

 

In [20]:=      Manipulate[Plot[Sin[x (1+ax)], 

{x,0,6}],{a,0,2}] 

 

                 Out[20]      

a

1 2 3 4 5 6

1.0

0.5

0.5

1.0

       
  

------------------------------------------------------------------------ 

In[21]:= Manipulate[Integrate[Sin[x(1+a 

x)],{x,0,6}],{a,0,2}]  

 

   Out[21]= 

a

0.578525 0. 

 
         

------------------------------------------------------------------------                          

In[2 2]:=    Manipulate[Integrate[1/(x^n-1),x],{n,2,10,1}] 

      

Out[22]= 

 

n


ArcTanx

2

1

4
Log1 x

1

4
Log1 x

 
                                                                                                                                                               

 

III.  THE BULIT-IN   MATLAB  QUAD  FUNCTIONS 

 

 Here We shall describe the four Built-in Matlab QUAD 

functions to evaluate numerically an integrand over 

One-dimensional accurately to about six decimal places. 

These functions are QUAD, QUADL, DBLQUAD and 

TRIPLEQUAD as can be seen in sections 3.1, 3.2, 3.3 and 

3.4, respectively. 

                                                                          

A. QUAD 

QUAD  Numerically evaluate integral, adaptive Simpson 

quadrature 

Q = QUAD(FUN,A,B ) 

 

      Q = QUAD(FUN,A,B) tries to approximate the integral of 

function FUN from A to B to within an error of 1.e-6 using 

recursive adaptive Simpson quadrature.  The function Y = 
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FUN(X) should accept a vector argument X and return a 

vector result Y, the integrand evaluated at each element of X.                                                                                        

    Q = QUAD(FUN,A,B,TOL) uses an absolute error 

tolerance of TOL instead of the default, which is 1.e-6.  

Larger values of TOL result in fewer function evaluations and 

faster computation, but less accurate results.  The QUAD 

function in MATLAB 5.3 used a less reliable algorithm and a 

default tolerance of 1.e-3. 

      Use array operators.*, ./ and .^ in  in the definition of 

FUN so that it can be evaluated with a vector argument. 

Example 2.4   Approximate the integral   by   

using    quad function in 

 Matlab. Observe that the FUN in Q=QUAD(FUN , A,B) can 

be sent as an argument to  the function quad using two 

approaches i.e.  FUN can be specified as: 

                   

                    An inline object: 

                     F = inline('1./(x.^3-2*x-5)'); 

                     Q = quad(F,0,2); 

  

                      A function handle: 

                      Q = quad(@myfun,0,2); 

                     where myfun.m is an M-file: 

                      function y = myfun(x) 

                      y = 1./(x.^3-2*x-5); 

------------------------------------------------------- 

Type in the Command window to demonstrate an inline object 

: 

>> F = inline('1./(x.^3-2*x-5)'); 

>> Q = quad(F,0,2) 

Q =  -0.4605 

----------------------------------------------------- 

Or Type in the Command window to demonstrate a function 

handle: 

>> Q = quad(@myfun,0,2) 

Q =  -0.4605 

----------------------------------------------- 

B. QUADL 

 

The  differences between the   built-in function QUADL and 

QUAD  is  that  it uses   high order recursive adaptive  

Lobatto quadrature and  the function QUAD may be more 

efficient with low accuracies or nonsmooth integrands . 

Further QUADL can be executed similary as QUAD for FUN 

 can be  specified as inline or as a function handle. 

Example 2.5 Approximate the integral   by 

using quadL function in Matlab 

------------------------------------------------------- 

Type in the Command window to demonstrate an inline object 

: 

         >> F = inline('1./(x.^3-2*x-5)'); 

>> Q = quadl(F,0,2) 

Q =  -0.4605 

----------------------------------------------------- 

Or Type in the Command window to demonstrate a function 

handle: 

>> Q = quadl(@myfun,0,2) 

Q =  -0.4605 

------------------------------------------------- 

C. DBLQUAD 

  DBLQUAD Numerically evaluate double integral. 

DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX) evaluates 

the double integral of    FUN(X,Y) over the rectangle XMIN 

<= X <= XMAX, YMIN <= Y <= YMAX FUN(X,Y) should 

accept a vector X and a scalar Y and return a   vector of values 

of the integrand .  

    DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX,TOL) 

uses a tolerance TOL instead of the default, which is 1.e-6  . 

DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX,TOL,@

QUADL) 

  uses quadrature function QUADL instead of the default 

QUAD FUN can be an inline object or a function handle  

 

Example 2.6  Approximate the integral 

 

  by 

using    dblquad  function in Matlab 

------------------------------------------------------- 

Type in the Command window to demonstrate an inline object 

: 

        >> F = inline('y*sin(x)+x*cos(y)'); 

           >> Q =   dblquad(F, pi, 2*pi, 0, pi) 

Q =  -9.8696 

        ----------------------------------------------------- 

Or Type in the Command window to demonstrate a function 

handle: 

>> Q =   dblquad(@integrnd, pi, 2*pi, 0, pi 

Q =-  -9.8696 

Observe that  integrnd.m is an M-file: 

function f = integrnd(x, y ) 

f = y*sin(x)+x*cos(x); 

------------------------------------------------- 

 

D. TRIPLEQUAD 

 

TRIPLEQUAD Numerically evaluate triple integral .  

    

TRIPLEQUAD(FUN,XMIN,XMAX,YMIN,YMAX,ZMIN,

ZMAX) evaluates the triple integral of FUN(X,Y,Z) over the 

three dimensional rectangular region XMIN <= X <= 

XMAX, YMIN <= Y <= YMAX, ZMIN <= Z <= ZMAX   

        FUN(X,Y,Z) should accept a vector X and scalar Y and 

Z and return a vector of values of the integrand.  

TRIPLEQUAD(FUN,XMIN,XMAX,YMIN,YMAX,ZMIN,

ZMAX,TOL) uses a tolerance TOL 

instead of the default, which is 1.e-6 

Example 2.7   

Approximate the integral 

 

by   using    triplequad  function in Matlab 

------------------------------------------------------- 

Type in the Command window to demonstrate an inline object 

: 

>> F = inline('y*sin(x)+z*cos(y)'); 

>> Q = triplequad( F, 0, pi, 0, 1, -1, 1) 

Q =  2.0000 

----------------------------------------------------- 

Or Type in the Command window to demonstrate a function 

handle: 

>> Q = triplequad(@integrnd, 0, pi, 0, 1, -1, 1) 
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Q =-  2.0000 

Observe that  integrnd.m is an M-file: 

function f = integrnd(x, y, z) 

f = y*sin(x)+z*cos(x); 

------------------------------------------------- 

 

IV. MALAB  SOFTWARE  METHODS & ALGORITHMS 

FOR NUMERICAL INTEGRATION 

 

These techniques are a generalization of a small low-order 

degree formula. The main interval  is piece wisely divided 

into small sub-intervals and the required rule is applied on 

each   ones.  If  we apply Simpson's rule on each subinterval it 

is called Simpson’s composite  rule as shown by  Theorem 

(4.2) while Trapezoidal composite rule by  the following  

Theorem (4.1) 

A. Trapezoidal Rule 

 

The   composite  Trapezoidal  rule  is given without proof  in 

Theorem 4.1 

 

Theorem 4.1    Trapezoidal composite rule 

If  ],[
2

baCf   , there exists a ],[ ba  for which 

Trapezoidal composite rule over n subintervals of 

],[ ba  can be expressed with the error term as  

 )([
2

)( af
h

dxxfb
a

 

)]()(
1

1

2 bfjf
n

j
x 




  

)1.4()(''
12

)( 2
f

ab h


 

 

Where   a= x0   < x1  < x2   …..< xn 1  < xn  =b  , 

h=(b-a)/n, and 

       For each   j=0,1,2,….,n 

Example 2.7   Here , We write a Matlab program to 

approximate 
6.1
1.1

dxex  

using the Trapezoidal composite rule given by Eqn.(4.1).The 

program is in Fig(4.1)       

gives  the exact value , the approximated value and  the 

approximated Error by printing values of   Ie, Ir and Error                     

respectively 

 

B. Simpson’s Rule 

Theorem 4.2   Simpson’s composite rule    If  

],[
4

baCf   , there exists a ],[ ba  for 

which Simpson's composite rule  over n=2m 

subintervals of ],[ ba  can be expressed with the 

error term as            

)2(
1

1

2)([
3

)( x jf
m

j

af
h

dxxfb
a






  

)]()(

1

4 12 bff
m

j
x j 



   

 

     )2.4()()4(

180

4)(
f

hba 
  

                                                

 Where   a= x0   < x1  < x2  …..< x m 12   < x m2  

=b  , h=(b-a)/2m, and  j=0,1,2,3,….,2m 

 

Example 2.8   

We compute  
6.1
1.1

dxex   using  the  

Simpson’s composite rule  given by  Eqn.(4.2).The program 

in Fig(4.2) gives  the exact value ,  the approximated value   

and  the approximated Error by printing the  values of   Ie, Ir 

and Error   respectively.    Observe that Simpson’s rule in 

Example 2.8 uses   seven points because We  must   have    

the number of points to be even and one must be cautious 

about the factors 2&4 in theEqn.(4.2). This why some people 

prefer to apply the trapezoidal rule in Eqn.(4.1) instead of  

Simpson’s rule. 

                                

 

C. Gaussian quadrature 

All the Newton-Cotes formulas or the formulas that we have 

been given so farrequire that the values of the function whose 

integral is to be approximated   be known at   evenly spaced 

points, which might be the expected situation if  tabulated data 

for the  function was being used. If the function is given 

explicitly, however, the points of  evaluating the function 

could be chosen in another manner, which leads to increase  

the accuracy of approximation. 

 

Gaussian quadrature it chooses the points values for 

x1  , x2   ……….., xn 1  , xn  

in the interval [a ,b ]and  the constants 

c1  ,c2      ……….. ,
 cn 1   ,

      
cn  

in an optimal manner to minimize the  error  obtained in 

performing the  approximation given by Eqn.(4.3) 

)3.4()()(
1

x j
j

j

b

a
f

n
dxxf c




 

 
Using the Legendre polynomials and their  corresponding 

roots , it can be shown quadrature rule  is exact for any 

polynomial P(x) ( and has degree of precision  at least 

2n-1)given  by 

Eqn.(4.4) .                                                   

)4.4()(
1

1

1
)( x jp

n

j
c jdxxp 
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The roots of Legendre polynomials are the abscissa points   

x1   , x2 , …., xn 1  , xn  and the 

coefficients  c1 ,c2  ,
 
.. ,

 cn 1 ,
 cn , both 

are given in Table 4.1 below 
      Table 4.1 lists the values for these coefficients and 

abscissa points for n=2,3,4. Other can be found in 

Stroud and Secrest[18] or elsewhere . 

                 Since the simple linear transformation 

t=[1/(b-a)](2x-a-b) will translate any interval [a, b] 

into [-1, 1] provided b>a , the Legendre polynomials 

Eqn.(4.4) can be used to approximate  

dt
abatbab

f
n

j
j

c
b

a
dxxf

2

)(

2

)(

1
)(





 








 (4.5) 

for any function that can be evaluated at the required points 

 

Example 2.9     Approximate the integral 

 5.1
1

2
dxxe

 
using Gaussian Quatrature 

rules  with n=2 and n=3 .The exact value to seven decimal 

places is 0.1093643 

 

Table 4.1 shows the coefficients and points for Gaussian rules 

for n=2,3&4 

 
 

 
 

Fig.(4.1) The Composite Trapezoidal Rule in file 

compTrapezoidal.m  & its command window for running it. 
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Fig.(4.3(b))  The command window for  the file 

quassianTable.m    with the   Gauss Table not  passed  as 

parameters as in Fig.(4.3(b)) below 

 

 
 

Fig.(4.3(b)) Guassian Quatrature rules in the file 

quassianTable.m 

 

V. CUBATURE’S RULES FOR 2-DIMENTIONAL INTEGRATION 

       Cubature formulae are quadrature formulae that having 

the minimum points to attain the required degree of accuracy 

when evaluating a polynomial as an integrand  .In  a series of 

papers rules for constructing cubature formulae have been 

established as in STRUOD [4],  SCHIMD [17],RADON[14] 

andGISMALLA[6-8].      

                                          

A.  Gismalla’s Rules 

 Here , We are cited two rules from Gismalla[ 7] , where the 

first one is a fourth degree using seven points to integrate an 

integrand f(x,y) with weight function   on the rectangle 

region of integration  

 . 

The  Rule is given by Eqn.(4.6 ) , where the 

abscissas x(j) & y(j)  and the coefficients c(j) for j=1(1)7 are 

given inTable 4.2  . Similarly the second is a fifth degree rule 

using seven points . The Rule is by Eqn.(4.6),   where the 

abscissas x(j) & y(j)  and the coefficients c(j) for j=1(1)7 are 

given in Table 4.3 .The Matlab Program for Gismalla fourth 

degree Rule is given in by the file GismallaRule4.m in 

Fig.(4.4) & for the fifth drgree Rule is by GismallaRule5.m in 

Fig.(4.5) 

 

 
 

 

 

B. Radon’s Rule   

 

 Radon[ 14 ] has established a fifth degree formula where the 

region of the integration is the square with the unity  weight  

function w(x)=1 and the formula is given by Eqn.( 4.7)   
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Table 4.2  The abscissas x(j) & y(j)  and the coefficients c(j) 

for j=1(1)7 for the fourth degree 

 

Table 4.3  The abscissas x(j) & y(j)  and the coefficients c(j) 

for j=1(1)7 for the fifth degree 

 
 

 
Fig(4.5)  The fifth degree GismallaRule5 with  Matlab 

Program         

         GismallaRule5.m & its Command Window 

 

 

 
 

    Where the abscissa and weight coefficient are in Table 4.4 

and the Matlab Program for RadonRule.m  is in the Fig.(4.6). 

As in Gismalla[ 12 ] , the reader can test these the three 

programs GismallaRule4.m, GismallaRule5.m and Radon 

Rule 5.m for the   three  given integrals below with their exact 

values 

 

 

 
 

 
 

Table 4.4  The abscissas x(j) & y(j)  and the coefficients c(j) 

for j=1(1)7 for RadonRule5 in Eqn.(4.7) with  Matlab 

Program RadonRule5.m  in  Fig(4.6) 

 

VI. LEVIN’S TRANSFORM RULE FOR HIGHER DIMENSIONAL 

INTEGRATION  

     Levin’s U-transform Method [12] has  been shown and 

used to efficiently compute certain types of multiple integrals 
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to a high decimal places of accuracy using FORTARN 

program languages . The Computing Machine was the main 

FRAME computer applied with a FULL machine accuracy to 

get high decimal places of accuracy. The Levin’s Method has 

a drawback; it fails to compute certain types of series. 

             Instead of FORTARN program language written for 

Levin’s Method which  cannot be available  now or after , We 

write it  here instead using Matlab program. In contrast for 

using FULL machine accuracy when using FORTAN 

language, the command format long can be used instead in 

the Matlab program to get high decimal places of accuracy . 

Levin’s U-transform is defined in Eqn.(4.11) as  

=

 

 

where  is the partial sum of n terms of the convergent series 

of positive terms as in Eqn.(4.12). 

 
Here , our aim is to apply Levin’s U-transform  Matlab 

program to evaluate the  three multiple integrals considered in 

[12] using FORTARAN language . The three Lattice Green 

functions are 

 
 

 
 

 
 

Since cos(2x)=cos2(x)-1    and  

           cos(2y)=cos2(y)-1 , it follows that 
                     

    

            where                  

 

 

 
 

   Now by expanding the integrand in G(000) ,  and  in 

Eqn.(4.13) ,Eqn.(4.18) and Eqn.(1.19) respectively and 

applying Wallis’ formula ,  We get the  integrals as 
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Fig(4.7)    Matlab Program  LevinTranfSum.m   with  its  Two 

Command Window 

for G(000) and   . The Output are in Table 4.5 &Table 4.6 

 

 

where the coefficients terms  a’s are given by  

 

 
 

Now the Matlab Program to integrate G(000) ,  and  in 

Eqn.(4.20) ,Eqn.(4.21) and Eqn.(4.22) respectively is given in 

Fig(4.7). The output  

results from the command window  program for G(000) ,  

and  are given in Table 4.5 , Table 4.6 and Table 4.7  

respectively.. 

        Observe that to compute the integral  I5   , 

We need to replace the generating ratio function 

and the initial term a0  by   

f=inline(' ((2*s-1)/(2*s))*((2*s+1)/(2*s+2))^2');  

and  a0=0.25 ; in the command window program for 

LevinTranfSum.m given in Fig.(4.7) . 

         Hence the values for the integral G(100) in Eqn.(4.16) 

and G(110) in Eqn.(4.17) can be 

evaluated up to  eight decimal places of 

accuracy as in Eqn.(4.24) where 

G(110)=0.229599014               

     and      G(100)=0.29091226      (4.24) 

 

VII. CONCLUSION 

The reader must know all types of Programs Built-in as 

ROUTINES SOFTWARE 

  are inflexible programs to suit and solve any particular types 

of problems while the  others are flexible programs. This can 

be seen  if someone attempts to run the routine DBLQUAD on 

MALAB for the integral  

  

 an  ERROR will be occurred. This 

because DBLQUAD on MATLAB for interval [0,1] which 

runs on  variable x will be transformed for a different one by 

the inside QUAD quadrature used by DBLQUAD . Even if 

one doesn’t submit the parameters a=0 and b=1 in the 

MATLAB program GismallRule4.m or GismaleRule5.m an 

ERROR will be occurred due to the fact that any 

transformation to the interval [0,1] will effect to translate the 

corresponding weight function  to a 

different weight function and so the abscissas’ and 

coefficients will be different from their corresponding  in the 

given rule in Eqn.(4.6)                                           

   However, the program RadonRule5.m can run these 

integrals efficiently without any errors provided the integrand 

function must be submitted as 

                      

integrands given by Eqn.(4.18) , Eqn.(19) and Eqn.(20). 

           Levin’s Transform in Eqn.(4.11)  written as functions 

or subroutines using FORTRAN languages  , even on 

main-frames computers will compute the integrals G(000) ,  

and  in Eqn.(4.20) ,Eqn.(4.21) and Eqn.(4.22) respectively 

only to five or sixth decimal places at most. In Gismalla[12] 

these integrals were computed to a very high decimal places 

up to 12 decimals places using the same Levin’s Transform in 

Eqn.(4.11)  . The  cost is very very too expensive , the 

technique Levin’s Transform must be phrased and 

unexpressed as function or procedures each times when it is 

called with SOME SPECIAL COMMAND WITTEN ON 

THE FIRST TOP LINES to generate the FULL MACHINE 

ACCRACCY which are unavailable unless given by the 

advisory of the main-frame 

computers. The computational remarks with 

Levin’s Transform as a function written in FORTRAN 

language can found in gismalla[ 12]. 

        On the contrary, the LevinTrasfSum.m given in Fig.(4.7) 

computes these integrals neatly 

up to eight digits of accuracy exactly without  a great 

complexity and efforts using the symbolic languages 

MATLAB and even the program is SHORT. 
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