

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 18 www.erpublication.org

Abstract— Computer Oriented Programs are SOFTWARE

BULIT-IN FUNCTIONS OR WRITTEN SOFTWARE in a

different COMPUTER LANGUAGES. In the past only

NUMERICAL SOFTWARE ROUTINES available are NAG

ROUTINES written in FORTRAN and ALGOLW which both

are POCESSING LANGUAGES and then later C++ languages

.The FORTRAN LANGUAGE can compute to a very high

accuracy but require and need MAIN-FRAMES

COMPUTERS . Instead people now a days are inclined to use

PERSONEL COMPUTERS for the money cost is few in such

away any person can get one .

 In this paper We FIRST list some of the

FUNCTIONS BULIT IN MATHEMATICA OR MATLAB

programming languages that deals and compute numerically or

(analytically in closed forms for 1-dimentional) and higher

dimensional integrals.

 SECOND, We will design a MATLAB SOTWARE

PROGRAMS for 1-dimentional problems or higher

multi-dimensional. For 1-dimentional Integrals METHODS We

use are Trapezoidal, Simpson’s and Gaussian Quadrature

Rules. For 2-dimentional Integrals We apply Radon’s approach

and Gismlla’s approach with regions are the SQUARE

REGION and RECTANGLE REGION WITH WEGIHT

FUNCTION THE SQUARE ROOT of X, respectively .THIRD,

for 3-dimentional or higher Integrals We apply Levin’s

Transform with our expectation to evaluate Integrals to a high

accuracy ((as We have dealt with before in[4] but using

FORTRAN languages on main frame COMPUTERS)).

 Further, the reader can be acquainted with some symbolic

languages and distinguishes them from the usual processing

languages. Furthermore, the reader will know that LEVIN’S

TRANSFORM can be used as one of the best method to sum a

large class of series to a high accuracy.

Index Terms— Symbolic Languages and Built-in Functions

.Simpson’s, Trapezoidal, Gaussian, Radon’s, Gismalla’s and

Levin’s Rules. Full Machines Accuracy and Main Frame

Computers.

I. BACKGROUND AND REVIEWS

The problem of numerical integration is one of the oldest

problem in mathematics that gives a beautiful and an insight

light to a wide range of theoretical and computational

Manuscript received Feb. 06, 2014.

 D.A.GISMALLA, Dept. of Mathematics , College of Arts and Sciences,

Ranyah Branch, TAIF University ,Ranyah(Zip Code :21975) ,TAIF ,

KINDOM OF SAUDI ARAIBA Moblie No. 00966 551593472

Dr. F. M. DAWALBAIT, Dept. of Mathematics , College of Arts and

Sciences, Ranyah Branch, TAIF University ,Ranyah(Zip Code :21975)

,TAIF , KINDOM OF SAUDI ARAIBA Moblie No. 00966 551593472

Methods in Mathematics and Numerical Analysis. This can be

seen when literature retrieval for theory and algorithms is

seek, especially for one-dimensional Quadrature Formulae

such as Lobbotta, Newton’s, Trapezoidal, Simpson and

Gaussian Quadrature Rules or for two-dimensional Cubature

Rules as in the references [6] ,[8] ,[12],[17],[18], [19] and

[20].

 The theory of Cubature is burst out when the Product

Rules generated from the one-dimensional Rules such as

Simpson Rules having the disadvantages of accumulating

rounding errors and do not attain the required minimum

number of points for functions evaluations in the formula.

Stroud [17] has developing many cubature formulae on

symmetric regions such as square and the cubic. He creates

by theoretical approaches to formulate a matrix system of

equations and then solve this system by choosing and

selecting a special paten of points to the required cubature

formula. The problem of selecting such paten of points in

such away to solve the matrix system is difficult unless a

particular suitable paten is chosen . This can be seen as a

disadvantage. However, if these suitable paten of points can

be chosen in advance in such away to solve the system of

equations , then many cubature formulas can be obtained.

 Cohen & Gismalla [6] has selected a certain paten

of points on the square and the cubic to construct some types

of cubature formulas known as symmetric cubature formulas

as in [6]. Selecting in advance the suitable paten of points can

construct good formulas , not for symmetric regions only but

on any region with a weight function for that region as in

Gismalla[7].

 The Germanium (or the Russian) Radon [14]

investigates and develop a large information theories on

polynomials , orthogonal polynomials and zeros polynomials

to establish his fifth degree cubature formula on the square

region. If someone reads the translation for this work, he will

certainly acknowledge the valuable efforts done to connect

these theories in such away to establish Radon Rule. One of

the neatness and beauty of Radon approach is that Gismalla [

7] has summarized it in steps as an algorithm in such away to

construct cubature formulas not on a symmetric region as a

square but on any region with its weight function . This can

be seen in Gismalla[7] for deriving the same fifth degree

formula on rectangle region

 with weight function

 .

 The theories of polynomials as investigated in Radon

Rule as algorithms to construct cubature formulas was carried

out further in Moller [23] and Shimds [24]. Moller seeks

formulas that attain the minimum odd number of points while

Shimd’s work[24] to attain the minimum even number of

points . Gismalla[8] apply Schimd’s approach to construct a

forth degree formula and two sixth degree formula on the

rectangle region with

Computer Oriented Programs on Multi-Dimensional

Numerical Integration

D.A.GISMALLA & Dr. F. M. DAWALBAIT

Computer Oriented Programs on Multi-Dimensional Numerical Integration

 19 www.erpublication.org

weight function . Both these two approaches can be

computerized to generate many cubature formulas but the cost

of complexity is too great and high . Even if the complexity is

revealed one can expect to obtain formulas with some points

outside the region in consideration.

 Nevertheless, Stroud [16] has written a great deal of

MATLAB SOFTWARE for many regions such as the circle,

square, cubic and triangle. The useful of formulas on a

triangle can be dealt with for problems on finite element

methods especially when it is symmetric. NAG

ROUTINES in FORTRAN languages are available but with

the restriction that most of them on main frames computers.

QUADPACK for numerical Integration can found on

FORTRAN or C++ languages or elsewhere.

II. THE BULIT-IN MATHEMATICA INTEGRATE

FUNCTIONS

Here , We discuss some of the built_in symbolic Mathematica

functions for integration . These functions are Integrate ,

NIntegrate and Manipulate with Integrate.

A. Integrate

 The Integrate function is used to evaluate the

indefinite integral

 in Mathematica Mode environment . Typing just the

command Integrate in the following line below and then press

the two keys SHIFT+ENTER simultaneously to get the result

for required indefinite integral as in Example 2.1. The reader

must know a little knowledge about how to execute a

Mathematica function command . Once the command

Integrate[1/(x^3+1),x] is typed and the two keys

SHIFT+ENTER are pressed simultaneously , the

Mathematica will execute it as input automatically with

in[1]:= to indicate that this the first input as

 in[1]:= Integrate[1/(x^3+1),x]

The output result will be preceded automatically with out[1]:=

to indicate that this the first output result as an answer

out[1]:= + Log[1+x]- Log[1-x+x
2
]

 Similarly , any further input or output will be preceded by its

number in sequence automatically for second input or output

 in[2]:= or out[2]:= ,.... etc.

 Example 2.1

The following Integrate function gives the indefinite

integrals

Integrate[f,x] , gives the indefinite integral

In[1]:= Integrate[1/(x^3+1),x]

Out[1]= + Log[1+x]- Log[1-x+x
2
]

In[2]:= Integrate[x^n,x]

Out[2]=

--

In[3]:= Integrate[1/(x^4-a^4),x]

Out[3]= + -

In[4]:= Integrate[Log[1-x^2],x]

Out[4]= -2x – Log[-1+x] + Log[1+x] + x Log[1-x
2
]

The following Integrate function gives the definite

integral

Integrate[f,{x,xmin,xmax}] ,the definite

integral

Here are Integrate functions for the definite

integral .

In[5]:= Integrate[Sin[x]^2,{x,a,b}]

Out[5]= (- a + b + Cos[a]Sin[a] – Cos[b]Sin[b])

In[6]:= Integrate[Exp[-x^2],{x,0,Infinity}]

Out[6]=

In[7]:= Integrate[1/(x^3+1),{x,0,1}]

Out[7]= (2 +Log[64])

--

In[8]:=

Out[8]= (EulerGamma+Log[4])

--

Mathematica cannot give you a formula for this definite

integral but instead We can get a numerical

result

In[9]:= Integrate[x^x],{x,0,1}]

Out[9]=

Here below N and % indicates the numerical for the current

input % Integrate Command

In[10]:= N[%]

Out[10]= 0.783431

Here is the Integrate for the multiple integral

Integrate[f,{x,xmin,xmax},{y,ymin,ymax}

For Multiple integral with x integration outermost:

In[11]:= Integrate[Sin[x y],{x,0,1},{y,0,x}]

Out[11]= (EulerGamma-CosIntegral[1])

In[12]:=

Out[12]= (EulerGamma-CosIntegral[1])

Integrals over Regions

This does an integral over the interior of the unit circle.

In[13]:= Integrate[If[x^2+y^2<1,1,0],{x,-1,1},{y,-1,1}]

Out[13]=

Here is an equivalent form.

In[14]:= Integrate[Boole[x^2+y^2<1],{x,-1,1},{y,-1,1}]

Out[14]=

 Even though an integral may be straightforward over a simple

rectangular region, it can be significantly more complicated

even over a circular region.

This gives a Bessel function.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 20 www.erpublication.org

In[15]:= Integrate[Exp[x]

Boole[x^2+y^2<1],{x,-1,1},{y,-1,1}]

Out[15]= 2 BesselI[1,1]

B. NIntegrate

NIntegrate[f,{x,xmin,xmax}]

gives a numerical approximation to the integral

NIntegrate[f,{x,xmin,xmax},{y,ymin,ymax},…]

gives a numerical approximation to the multiple integral

This implies that the built-in NIntegrate Mathematica

function evaluates integrals in one or multi-dimensional

integrals numerically to a good limit of accuracy as can be

shown here in Example 2.2

Example2.2 Compute a numerical integral:

In[16]:= NIntegrate[Sin[Sin[x]],{x,0,2}]

Out[16]= 1.24706

--

This finds a numerical approximation to the integral

.

In[17]:= NIntegrate[Exp[-x^3],{x,0,Infinity}]

Out[17]= 0.89298

Compute a multi dimensional integral (with singularity at the

origin):

In[18]:=

NIntegrate[,{x1,0,1},{x2,0,1},{x3,0,1},{x4,0,1

}]

Out[18]= 1.2391

--

Here is the numerical value of the double integral

In[19]:= NIntegrate[x^2+y^2,{x,-1,1},{y,-1,1}]

Out[19]= 2.66667

--

C. Manipulate with Integrate

The Command Maipulate means that parameters can be

manipulate continuously or in discrete steps. Also , it is

possible to manipulate two parameters . The manipulation can

be done for many results such as expansion or plotting a

function. Here , We give an Example 2.3 for Manipulate with

Plot and Integrate

Example 2.3 ((See In[20] –In[22]))

In [20]:= Manipulate[Plot[Sin[x (1+ax)],

{x,0,6}],{a,0,2}]

 Out[20]

a

1 2 3 4 5 6

1.0

0.5

0.5

1.0

--

In[21]:= Manipulate[Integrate[Sin[x(1+a

x)],{x,0,6}],{a,0,2}]

 Out[21]=

a

0.578525 0.

--

In[2 2]:= Manipulate[Integrate[1/(x^n-1),x],{n,2,10,1}]

Out[22]=

n

ArcTanx

2

1

4
Log1 x

1

4
Log1 x

III. THE BULIT-IN MATLAB QUAD FUNCTIONS

 Here We shall describe the four Built-in Matlab QUAD

functions to evaluate numerically an integrand over

One-dimensional accurately to about six decimal places.

These functions are QUAD, QUADL, DBLQUAD and

TRIPLEQUAD as can be seen in sections 3.1, 3.2, 3.3 and

3.4, respectively.

A. QUAD

QUAD Numerically evaluate integral, adaptive Simpson

quadrature

Q = QUAD(FUN,A,B)

 Q = QUAD(FUN,A,B) tries to approximate the integral of

function FUN from A to B to within an error of 1.e-6 using

recursive adaptive Simpson quadrature. The function Y =

Computer Oriented Programs on Multi-Dimensional Numerical Integration

 21 www.erpublication.org

FUN(X) should accept a vector argument X and return a

vector result Y, the integrand evaluated at each element of X.

 Q = QUAD(FUN,A,B,TOL) uses an absolute error

tolerance of TOL instead of the default, which is 1.e-6.

Larger values of TOL result in fewer function evaluations and

faster computation, but less accurate results. The QUAD

function in MATLAB 5.3 used a less reliable algorithm and a

default tolerance of 1.e-3.

 Use array operators.*, ./ and .^ in in the definition of

FUN so that it can be evaluated with a vector argument.

Example 2.4 Approximate the integral by

using quad function in

 Matlab. Observe that the FUN in Q=QUAD(FUN , A,B) can

be sent as an argument to the function quad using two

approaches i.e. FUN can be specified as:

 An inline object:

 F = inline('1./(x.^3-2*x-5)');

 Q = quad(F,0,2);

 A function handle:

 Q = quad(@myfun,0,2);

 where myfun.m is an M-file:

 function y = myfun(x)

 y = 1./(x.^3-2*x-5);

Type in the Command window to demonstrate an inline object

:

>> F = inline('1./(x.^3-2*x-5)');

>> Q = quad(F,0,2)

Q = -0.4605

Or Type in the Command window to demonstrate a function

handle:

>> Q = quad(@myfun,0,2)

Q = -0.4605

B. QUADL

The differences between the built-in function QUADL and

QUAD is that it uses high order recursive adaptive

Lobatto quadrature and the function QUAD may be more

efficient with low accuracies or nonsmooth integrands .

Further QUADL can be executed similary as QUAD for FUN

 can be specified as inline or as a function handle.

Example 2.5 Approximate the integral by

using quadL function in Matlab

Type in the Command window to demonstrate an inline object

:

 >> F = inline('1./(x.^3-2*x-5)');

>> Q = quadl(F,0,2)

Q = -0.4605

Or Type in the Command window to demonstrate a function

handle:

>> Q = quadl(@myfun,0,2)

Q = -0.4605

C. DBLQUAD

 DBLQUAD Numerically evaluate double integral.

DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX) evaluates

the double integral of FUN(X,Y) over the rectangle XMIN

<= X <= XMAX, YMIN <= Y <= YMAX FUN(X,Y) should

accept a vector X and a scalar Y and return a vector of values

of the integrand .

 DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX,TOL)

uses a tolerance TOL instead of the default, which is 1.e-6 .

DBLQUAD(FUN,XMIN,XMAX,YMIN,YMAX,TOL,@

QUADL)

 uses quadrature function QUADL instead of the default

QUAD FUN can be an inline object or a function handle

Example 2.6 Approximate the integral

 by

using dblquad function in Matlab

Type in the Command window to demonstrate an inline object

:

 >> F = inline('y*sin(x)+x*cos(y)');

 >> Q = dblquad(F, pi, 2*pi, 0, pi)

Q = -9.8696

Or Type in the Command window to demonstrate a function

handle:

>> Q = dblquad(@integrnd, pi, 2*pi, 0, pi

Q =- -9.8696

Observe that integrnd.m is an M-file:

function f = integrnd(x, y)

f = y*sin(x)+x*cos(x);

D. TRIPLEQUAD

TRIPLEQUAD Numerically evaluate triple integral .

TRIPLEQUAD(FUN,XMIN,XMAX,YMIN,YMAX,ZMIN,

ZMAX) evaluates the triple integral of FUN(X,Y,Z) over the

three dimensional rectangular region XMIN <= X <=

XMAX, YMIN <= Y <= YMAX, ZMIN <= Z <= ZMAX

 FUN(X,Y,Z) should accept a vector X and scalar Y and

Z and return a vector of values of the integrand.

TRIPLEQUAD(FUN,XMIN,XMAX,YMIN,YMAX,ZMIN,

ZMAX,TOL) uses a tolerance TOL

instead of the default, which is 1.e-6

Example 2.7

Approximate the integral

by using triplequad function in Matlab

Type in the Command window to demonstrate an inline object

:

>> F = inline('y*sin(x)+z*cos(y)');

>> Q = triplequad(F, 0, pi, 0, 1, -1, 1)

Q = 2.0000

Or Type in the Command window to demonstrate a function

handle:

>> Q = triplequad(@integrnd, 0, pi, 0, 1, -1, 1)

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 22 www.erpublication.org

Q =- 2.0000

Observe that integrnd.m is an M-file:

function f = integrnd(x, y, z)

f = y*sin(x)+z*cos(x);

IV. MALAB SOFTWARE METHODS & ALGORITHMS

FOR NUMERICAL INTEGRATION

These techniques are a generalization of a small low-order

degree formula. The main interval is piece wisely divided

into small sub-intervals and the required rule is applied on

each ones. If we apply Simpson's rule on each subinterval it

is called Simpson’s composite rule as shown by Theorem

(4.2) while Trapezoidal composite rule by the following

Theorem (4.1)

A. Trapezoidal Rule

The composite Trapezoidal rule is given without proof in

Theorem 4.1

Theorem 4.1 Trapezoidal composite rule

If],[
2

baCf , there exists a],[ba for which

Trapezoidal composite rule over n subintervals of

],[ba can be expressed with the error term as

)([
2

)(af
h

dxxfb
a

)]()(
1

1

2 bfjf
n

j
x

)1.4()(''
12

)(2
f

ab h

Where a= x0 < x1 < x2 …..< xn 1 < xn =b ,

h=(b-a)/n, and

 For each j=0,1,2,….,n

Example 2.7 Here , We write a Matlab program to

approximate
6.1
1.1

dxex

using the Trapezoidal composite rule given by Eqn.(4.1).The

program is in Fig(4.1)

gives the exact value , the approximated value and the

approximated Error by printing values of Ie, Ir and Error

respectively

B. Simpson’s Rule

Theorem 4.2 Simpson’s composite rule If

],[
4

baCf , there exists a],[ba for

which Simpson's composite rule over n=2m

subintervals of],[ba can be expressed with the

error term as

)2(
1

1

2)([
3

)(x jf
m

j

af
h

dxxfb
a

)]()(

1

4 12 bff
m

j
x j

)2.4()()4(

180

4)(
f

hba

 Where a= x0 < x1 < x2 …..< x m 12 < x m2

=b , h=(b-a)/2m, and j=0,1,2,3,….,2m

Example 2.8

We compute
6.1
1.1

dxex using the

Simpson’s composite rule given by Eqn.(4.2).The program

in Fig(4.2) gives the exact value , the approximated value

and the approximated Error by printing the values of Ie, Ir

and Error respectively. Observe that Simpson’s rule in

Example 2.8 uses seven points because We must have

the number of points to be even and one must be cautious

about the factors 2&4 in theEqn.(4.2). This why some people

prefer to apply the trapezoidal rule in Eqn.(4.1) instead of

Simpson’s rule.

C. Gaussian quadrature

All the Newton-Cotes formulas or the formulas that we have

been given so farrequire that the values of the function whose

integral is to be approximated be known at evenly spaced

points, which might be the expected situation if tabulated data

for the function was being used. If the function is given

explicitly, however, the points of evaluating the function

could be chosen in another manner, which leads to increase

the accuracy of approximation.

Gaussian quadrature it chooses the points values for

x1 , x2 ……….., xn 1 , xn

in the interval [a ,b]and the constants

c1 ,c2 ……….. ,
 cn 1 ,

cn

in an optimal manner to minimize the error obtained in

performing the approximation given by Eqn.(4.3)

)3.4()()(
1

x j
j

j

b

a
f

n
dxxf c

Using the Legendre polynomials and their corresponding

roots , it can be shown quadrature rule is exact for any

polynomial P(x) (and has degree of precision at least

2n-1)given by

Eqn.(4.4) .

)4.4()(
1

1

1
)(x jp

n

j
c jdxxp

Computer Oriented Programs on Multi-Dimensional Numerical Integration

 23 www.erpublication.org

The roots of Legendre polynomials are the abscissa points

x1 , x2 , …., xn 1 , xn and the

coefficients c1 ,c2 ,

.. ,

 cn 1 ,
 cn , both

are given in Table 4.1 below
 Table 4.1 lists the values for these coefficients and

abscissa points for n=2,3,4. Other can be found in

Stroud and Secrest[18] or elsewhere .

 Since the simple linear transformation

t=[1/(b-a)](2x-a-b) will translate any interval [a, b]

into [-1, 1] provided b>a , the Legendre polynomials

Eqn.(4.4) can be used to approximate

dt
abatbab

f
n

j
j

c
b

a
dxxf

2

)(

2

)(

1
)(

 (4.5)

for any function that can be evaluated at the required points

Example 2.9 Approximate the integral

 5.1
1

2
dxxe

using Gaussian Quatrature

rules with n=2 and n=3 .The exact value to seven decimal

places is 0.1093643

Table 4.1 shows the coefficients and points for Gaussian rules

for n=2,3&4

Fig.(4.1) The Composite Trapezoidal Rule in file

compTrapezoidal.m & its command window for running it.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 24 www.erpublication.org

Fig.(4.3(b)) The command window for the file

quassianTable.m with the Gauss Table not passed as

parameters as in Fig.(4.3(b)) below

Fig.(4.3(b)) Guassian Quatrature rules in the file

quassianTable.m

V. CUBATURE’S RULES FOR 2-DIMENTIONAL INTEGRATION

 Cubature formulae are quadrature formulae that having

the minimum points to attain the required degree of accuracy

when evaluating a polynomial as an integrand .In a series of

papers rules for constructing cubature formulae have been

established as in STRUOD [4], SCHIMD [17],RADON[14]

andGISMALLA[6-8].

A. Gismalla’s Rules

 Here , We are cited two rules from Gismalla[7] , where the

first one is a fourth degree using seven points to integrate an

integrand f(x,y) with weight function on the rectangle

region of integration

 .

The Rule is given by Eqn.(4.6) , where the

abscissas x(j) & y(j) and the coefficients c(j) for j=1(1)7 are

given inTable 4.2 . Similarly the second is a fifth degree rule

using seven points . The Rule is by Eqn.(4.6), where the

abscissas x(j) & y(j) and the coefficients c(j) for j=1(1)7 are

given in Table 4.3 .The Matlab Program for Gismalla fourth

degree Rule is given in by the file GismallaRule4.m in

Fig.(4.4) & for the fifth drgree Rule is by GismallaRule5.m in

Fig.(4.5)

B. Radon’s Rule

 Radon[14] has established a fifth degree formula where the

region of the integration is the square with the unity weight

function w(x)=1 and the formula is given by Eqn.(4.7)

Computer Oriented Programs on Multi-Dimensional Numerical Integration

 25 www.erpublication.org

Table 4.2 The abscissas x(j) & y(j) and the coefficients c(j)

for j=1(1)7 for the fourth degree

Table 4.3 The abscissas x(j) & y(j) and the coefficients c(j)

for j=1(1)7 for the fifth degree

Fig(4.5) The fifth degree GismallaRule5 with Matlab

Program

 GismallaRule5.m & its Command Window

 Where the abscissa and weight coefficient are in Table 4.4

and the Matlab Program for RadonRule.m is in the Fig.(4.6).

As in Gismalla[12] , the reader can test these the three

programs GismallaRule4.m, GismallaRule5.m and Radon

Rule 5.m for the three given integrals below with their exact

values

Table 4.4 The abscissas x(j) & y(j) and the coefficients c(j)

for j=1(1)7 for RadonRule5 in Eqn.(4.7) with Matlab

Program RadonRule5.m in Fig(4.6)

VI. LEVIN’S TRANSFORM RULE FOR HIGHER DIMENSIONAL

INTEGRATION

 Levin’s U-transform Method [12] has been shown and

used to efficiently compute certain types of multiple integrals

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 26 www.erpublication.org

to a high decimal places of accuracy using FORTARN

program languages . The Computing Machine was the main

FRAME computer applied with a FULL machine accuracy to

get high decimal places of accuracy. The Levin’s Method has

a drawback; it fails to compute certain types of series.

 Instead of FORTARN program language written for

Levin’s Method which cannot be available now or after , We

write it here instead using Matlab program. In contrast for

using FULL machine accuracy when using FORTAN

language, the command format long can be used instead in

the Matlab program to get high decimal places of accuracy .

Levin’s U-transform is defined in Eqn.(4.11) as

=

where is the partial sum of n terms of the convergent series

of positive terms as in Eqn.(4.12).

Here , our aim is to apply Levin’s U-transform Matlab

program to evaluate the three multiple integrals considered in

[12] using FORTARAN language . The three Lattice Green

functions are

Since cos(2x)=cos2(x)-1 and

 cos(2y)=cos2(y)-1 , it follows that

 where

 Now by expanding the integrand in G(000) , and in

Eqn.(4.13) ,Eqn.(4.18) and Eqn.(1.19) respectively and

applying Wallis’ formula , We get the integrals as

Computer Oriented Programs on Multi-Dimensional Numerical Integration

 27 www.erpublication.org

Fig(4.7) Matlab Program LevinTranfSum.m with its Two

Command Window

for G(000) and . The Output are in Table 4.5 &Table 4.6

where the coefficients terms a’s are given by

Now the Matlab Program to integrate G(000) , and in

Eqn.(4.20) ,Eqn.(4.21) and Eqn.(4.22) respectively is given in

Fig(4.7). The output

results from the command window program for G(000) ,

and are given in Table 4.5 , Table 4.6 and Table 4.7

respectively..

 Observe that to compute the integral I5 ,

We need to replace the generating ratio function

and the initial term a0 by

f=inline(' ((2*s-1)/(2*s))*((2*s+1)/(2*s+2))^2');

and a0=0.25 ; in the command window program for

LevinTranfSum.m given in Fig.(4.7) .

 Hence the values for the integral G(100) in Eqn.(4.16)

and G(110) in Eqn.(4.17) can be

evaluated up to eight decimal places of

accuracy as in Eqn.(4.24) where

G(110)=0.229599014

 and G(100)=0.29091226 (4.24)

VII. CONCLUSION

The reader must know all types of Programs Built-in as

ROUTINES SOFTWARE

 are inflexible programs to suit and solve any particular types

of problems while the others are flexible programs. This can

be seen if someone attempts to run the routine DBLQUAD on

MALAB for the integral

 an ERROR will be occurred. This

because DBLQUAD on MATLAB for interval [0,1] which

runs on variable x will be transformed for a different one by

the inside QUAD quadrature used by DBLQUAD . Even if

one doesn’t submit the parameters a=0 and b=1 in the

MATLAB program GismallRule4.m or GismaleRule5.m an

ERROR will be occurred due to the fact that any

transformation to the interval [0,1] will effect to translate the

corresponding weight function to a

different weight function and so the abscissas’ and

coefficients will be different from their corresponding in the

given rule in Eqn.(4.6)

 However, the program RadonRule5.m can run these

integrals efficiently without any errors provided the integrand

function must be submitted as

integrands given by Eqn.(4.18) , Eqn.(19) and Eqn.(20).

 Levin’s Transform in Eqn.(4.11) written as functions

or subroutines using FORTRAN languages , even on

main-frames computers will compute the integrals G(000) ,

and in Eqn.(4.20) ,Eqn.(4.21) and Eqn.(4.22) respectively

only to five or sixth decimal places at most. In Gismalla[12]

these integrals were computed to a very high decimal places

up to 12 decimals places using the same Levin’s Transform in

Eqn.(4.11) . The cost is very very too expensive , the

technique Levin’s Transform must be phrased and

unexpressed as function or procedures each times when it is

called with SOME SPECIAL COMMAND WITTEN ON

THE FIRST TOP LINES to generate the FULL MACHINE

ACCRACCY which are unavailable unless given by the

advisory of the main-frame

computers. The computational remarks with

Levin’s Transform as a function written in FORTRAN

language can found in gismalla[12].

 On the contrary, the LevinTrasfSum.m given in Fig.(4.7)

computes these integrals neatly

up to eight digits of accuracy exactly without a great

complexity and efforts using the symbolic languages

MATLAB and even the program is SHORT.

ACKNOWLEDGMENT

First, I would like to thank the department of Mathematics,

Tabuk University Saudi Arabia to allow me teach the Course

of Mathematica 2010 that give me the KNOWLEDGE of

what the symbolic languages are .

 Second, I would like to thank the department of

athematics, Gezira University Sudan to allow me teach the

Course of Numerical Analysis applied with Matlab Language

during the years 2011 & 2012 that give me the

KNOWLEDGE to differentiate between the symbolic

languages and the processing languages.

 Further , Taif ,University , SUDAI ARABIA for the

encouragement to Staff Member to establish research work .

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-2, February 2014

 28 www.erpublication.org

REFERENCES

[1] Richard L. Burden, J. Douglas Faires, Numerical Analysis

Prindle, Weber & Schmidt, Boston 1985

[2] Milton Abramowitz and Irene A. Stegun,Handbook of

Mathematical of Mathematical Functions, Dover Publications,

Inc., New York, USA 1972

[3] Carl-Erik Froberg, Numerical Mathematics Theory and Computer

Applications, the Benjamin/Cummings Company, Inc.,

California USA 1985

[4] D.A.Gismalla , Lynne D. Jenkins and A.M.Cohen Acceleration of

Convergence of Series for Certain Multiple Integrals , I.J.C.M,

Vol. 24, pp 55-68, 1987.

[5] D.A.Gismalla, Summation Method for Some Special Series

Exactly The International Journal of Mathematics, Science,

Technology and Management (ISSN : 2319-8125) , Vol. 1 Issue

2, India, 2012

[6] A.M.Cohen and D.A.Gismalla, Integration Formulae for

symmetric Functions of Two Variables. I.J .C.M, Vol. 19, 1986,

pp. 37-48.

[7] D.A.Gismalla, Quadrature Formulae with the weight

Function x . I.J.C.M. Vol. 26, pp 57-67, 1987.

[8] D.A.Gismalla, Schmidt’s Approach on Cubature Formulae.

I.J.C.M. Vol. 32, pp 75-85, 1988.

[9] D.A.Gismalla, Chebyshev Approximation for COS (½ חX4) &SIN

 Proceedings of the International Conference on (X4ח ½)

Computing, pp.37, ICC 2010, INDIA

[10] D. A. Gismalla, MATLAB programs for some Numerical

Methods and Algorithms, International Journal of Algorithms,

Computing and Mathematics, Vol. 5 Number 1, pp.58, Feb. 2012

[11] D. A. Gismalla, Inversion Methods for Toeplitz Matrices, (a

dissertation for the M.Sc. , the Software was written using

Aglow & FORTRAN Languages), University of Wales, U.K.

1982.

[12] D. A. Gismalla, Methods for theEvaluations of N-dimensional

Integrals, (a Thesis for the Ph.D. , Software was written using

FORTRAN Language with Full Machine Accuracy) ,

University of Wales, U.K. 1984

[13] T. Hahn , Cuba – a library for multidimensional numerical

integration http://www.feynarts.de/cuba Max-Planck-Institut fur

Physik Fohringer Ring 6, D–80805 Munich, Germany January

26, 2005

[14] J.Radon, Zur Mechanische Kubature, Monatsh, Math.52(19480,

268-300.

[15] A.H.Stroud, Approximate Calculations of Multiple Integrals ,

Prentice-Hall ,Inc, Englewood Cliff, N.J.(1971)

[16] STROUD Numerical Integration in M Dimension

file:///C:/Documents%20a

nd%20Settings/math/Desktop/STROUD%20-

%20Numerical%20Integration.htm

[18] Arthur Stroud , Approximate Calculation of Multiple Integrals,

Prentice Hall, 1971, ISBN: 0130438936, LC: QA311.S85.

[19] Arthur Stroud, Don Secrest, Gaussian Quadrature Formulas,

Prentice Hall, 1966, LC: QA299.4G3S7.

[20] Stephen Wandzura, Hong Xia ,Symmetric Quadrature Rules on a

Triangle,Computers and Mathematics with

Applications,Volume 45, 2003, pages 1829-1840.

[21] Stephen Wolfram, The Mathematica Book, Fourth Edition,

Cambridge University Press, 1999, ISBN: 0-521-64314-7,

[22] James Lyness, Dennis Jespersen, Moderate Degree Symmetric

Quadrature Rules for the Triangle, Journal of the Institute of

Mathematics and its Applications, Volume 15,

Number 1, February 1975, pages 19-32.

[23] Hermann Engels, Numerical Quadrature and Cubature,

Academic Press, 1980, ISBN: 012238850X, LC: QA299.3E5.

[24] H.M.Moller , Kubatureformulen mit minimaler kontenazhl,

Numer.Math.,25(1976),185-200

[25] Hans Joachim Schmid ,on cubature formulae with a minimal

number of knots. Number.Math.31(1978) ,28-297

D.A.GISMALLA, Dept. of Mathematics , College of Arts and Sciences,

Ranyah Branch, TAIF University ,Ranyah(Zip Code :21975) ,TAIF ,

KINDOM OF SAUDI ARAIBA Moblie No. 00966 551593472

Dr. F. M. DAWALBAIT, Dept. of Mathematics , College of Arts and

Sciences, Ranyah Branch, TAIF University ,Ranyah(Zip Code :21975)

,TAIF , KINDOM OF SAUDI ARAIBA Moblie No. 00966 551593472

http://www.feynarts.de/cuba
file:///C:\Documents%20a%20nd%20Settings\math\Desktop\STROUD%20-%20%0d%20Numerical%20Integration.htm
file:///C:\Documents%20a%20nd%20Settings\math\Desktop\STROUD%20-%20%0d%20Numerical%20Integration.htm
file:///C:\Documents%20a%20nd%20Settings\math\Desktop\STROUD%20-%20%0d%20Numerical%20Integration.htm

