

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-1, Jan 2014

 57 www.erpublication.org

 Abstract— As we all know, Cargo services now-a-days

have been playing a really important role in our day-to-day

operations of business. Proper load weight distribution could

allow the transport to operate at peak efficiency which costs

less fuel consumption and less maintenance expenses and it

could also make the transport to be balanced during its

travelling. So, Load Distribution on a container such as a

ship/air cargo/or even trucks, has become a very interesting

study to many researchers.

In the standard load distribution problem, there are

64 identical size containers to be arranged in dimension 4x4x4.

We define level 1 as the set of containers that lay in the bottom

of the ship and level 4 as the set of containers that lay on top.

We specify 16 groups each of which contains 4 containers of the

same location but with 4 different levels. The weight of each

container is given.

 The objective is to apply Genetic Algorithms (G.A)

concepts and find a way to arrange these containers so that the

weight is evenly distributed among 16 groups and satisfy the

problem constraint that in each group the lighter packages

always lay on top of heavier packages.

This objective is obtained by minimizing the following

function:

F = (w1 – AV) 2 + (w2 – AV) 2 + … + (w16 – AV) 2

Where wi denotes average weight of stack i

 AV denotes the average weight of the 64 packages.

 The objective of this research study is to extend and

generalize the above standard Load Distribution Problem and

apply genetic algorithm techniques for finding the optimal

solution.

Index Terms—Fitness Function, Genetic Algorithms, Load

Distribution Problem, Mutation

I. INTRODUCTION

The extensions to the load distributor problem are defined as

follows:

Problem generalization: [container vs. package extension],

In the original problem, the number of packages was fixed to

64. As part of extension, now the number of packages can be

selected by the user. This is problem generalization (as part

of problem extension). So now, the number of packages can

be selected as X * Y * Z (denoting Container Length *

Breadth * Height).

Assumption: the size/shape of the packages is uniform.

Manuscript received Jan 09, 2014.

 Shriranga Kulkarni, M.tech - Knowledge Engineering, Institute of System

Sciences, National University of Singapore, Singapore, +65 84823354.

Fitness function/Constraint modeling: In this part of

problem extension, fitness functions are applied in 2 areas.

The 2 areas are stack-based distribution and layered

distribution. As shown in the following diagram, the

packages are arranged in a 3-D co-ordinate system.

The Fitness functions consist of both stack based and layer

based distribution. This serves as the extension to the given

problem. As part of extension, for analysis purposes, there

are 4 representations of fitness functions being used.

Choice of Different Selection methods: Currently there are 3

major choices of selection methods available. We can select

different selection methods and compare/analyze the results

obtained.

 Elite or elitist selection / Rank Selection / Roulette wheel

(as Wheel of Fortune)

Adaptive GA: To prevent premature convergence, the

mutation rate and crossover rates can be manipulated at

difference stages. We can provide varying values of mutation

rate and crossover rate at different intervals of time (during

the load convergence) and observe the convergence

distribution over the number of iterations (generations).

Application of Genetic Algorithms to Solve

Modified Load Distribution Problem

Shriranga Kulkarni, Sathasivaiyer Nadarajasarma, George Gao Yong, Wang Yingwei

Application of Genetic Algorithms to Solve Modified Load Distribution Problem

 58 www.erpublication.org

II. DESIGN AND KNOWLEDGE REPRESENTATION

Terminologies: Following are the problem modeling units

to represent the problem scenario and problem resolution in

Genetic Algorithm problem modeling paradigm.

Stack Distribution: It is the horizontal uniformity of all the

stacks in the container.

Layer Distribution: It is the vertical uniformity of all the

layers in the container.

Unloading Order: It is an order of integers from 1-K

assigned to each package which indicates the relative

unloading sequence of package inside a stack. The smaller

number indicates a higher priority of unloading.

Package: Each package is uniquely identified by an

integer ID. Each package has the properties of weight,

unloading order as well as its geometrical location on the

container.

Knowledge Representation – Problem Representation

based on Genetic Algorithms

Problem Data: The Package Id’s, Weight of packages, the

number of packages, the length, breadth, height of the

container.

Problem Solution: Package ID, Location of the Packages

(in a 3-D space), Weight of each package in the container.

Fitness Function: There are 3 components which

constitute the overall fitness function being used in

implementing the GA techniques for the Load Distributor

System.

 Stack Based Distribution (SBD): In the 3-D Block

diagram above, the distribution of packages along the Z-axis

(i.e., Horizontal distribution of packages).

 Weight of stack-based distribution (WSBD): This is the

input parameter (over the number of generations) which

decides the degree of stack based distribution (weight)

applied over number of generations.

 Layer-based distribution (LBD): In the 3-D Block

diagram above, the distribution of packages along the

X-axis(i.e., Vertical distribution of packages).

 Weight of layer-based distribution (WLBD) : This is the

input parameter selected by the user (over the number of

generations) which decides the degree of layer based

distribution (weight) applied over number of generations.

 Unloading disorder incurred penalty (UDIP): The

unloading dis-order parameter is basically the unloading

order of packages. Each package has an unloading rank

order, the unloading of the packages; occur based on the

ascending order of unloading rank.

 Weight of unloading disorder penalty (WUDP): The

input parameter, which signifies, the degree up to which, the

unloading dis-order penalty function influences the overall

distribution of packages (over the number of iterations).

All the above factors are used to calculate the overall

fitness function and following is the mathematical

representation of the fitness function.

Fitness Function = (SBD * WSBD) +

(LBD * WLBD) - (UDIP * WUDP)

 Both the Stack and Layer-based distributions are

applied using 4 different mathematical calculations:

1. Sum of Delta (∑|Xi-Xa|)

2. Logarithm of Sum of Delta (log(∑|Xi-Xa|))

3. Sum of Square of Delta(∑(|Xi-Xa|)2)

4. Standard

Deviation(Sqrt((∑(|Xi-Xa|)2)/N-1))

The constraint of ordered stack is silenced by repairing the

order from raw chromosome piece. The unloading disorder is

implemented as hard constraint as penalty.

III. RESULTS AND ANALYSIS

For the purpose of this experiment, the Elite selection

method is assumed,

Set the no. of iterations to 2000,

Population size of 100,

A crossover rate of 60% and

A mutation rate of 10%.

The screenshot below shows the results of the genetic

algorithm optimization. The 4 line graphs at the center

represent the fitness value of the best chromosome of a

generation versus the no. of generations. The 4 bar graphs to

the right show the final distribution of the stack weights. The

length of the bar represents the weight of a package, so the

longer the bar the heavier the package.

The results show that using any of the 4 fitness functions; the

best chromosome produces stacks that are uniformly

distributed. If you look at the diagram above, the fitness value

is much improved from the original value.

(1) Taking the example of fitness function one (Sum of

Delta), the initial sum of the differences between the

individual stack weights and the average stack weight is

about 6.394.

After optimization with Genetic Algorithms, the sum of

differences drops to 0.1352 which is a tremendous

improvement on the initial sum. This is what we are trying to

achieve as we want differences of weight between the stacks

to be as low as possible.

(2)We also observe that regardless of the fitness function, all

final stack weights are more uniformly distributed than the

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-2, Issue-1, Jan 2014

 59 www.erpublication.org

initial distribution, which goes to show the effectiveness of

Genetic Algorithm.

(3)Another observation that we can infer from the results is

that genetic algorithm allows us to obtain an optimal solution

at an efficient pace. The expectations were that the solution

should get better as the number of generations increase and

we can observe from the results above that this is the case.

(4)We can also notice that with the default crossover rate set

at 0.6 and mutation rate of 0.1, the solutions converge to a

maximum optimal fitness value within 2000 generations.

Comparing that to an exhaustive calculation of all possible

permutations which would take a very long time, the

implementation of genetic algorithm in solving this problem

is yielding very positive results.

(5) The decision to use 4 different formulae as the fitness

function is also giving us some insights about Genetic

Algorithm. We can say that using different representation of

the fitness functions such as using sum of differences or

standard deviation or the log of differences is giving us

different rates of convergence as well as different optimal

solutions. While we are unable to compare the absolute

optimal value of the 4 fitness functions as they are calculated

differently, it is interesting to note that the choice of our

fitness function actually has a vital impact to distinguish

good and relatively poor chromosomes to obtain the optimal

solution.

(6) One of the difficulties or problems faced during this

implementation is implementing the hard constraint of

having no heavier package on top of a lighter package within

a stack. To rectify this problem, a sorting repair algorithm

was used at the end to redistribute the package to the right

position in the stack. The results verify that , the sorting

repair method is working as you can see that there are no

longer bars above shorter bars in each of the 4 diagram

above. As a gain, we avoid the adverse effects of prematurely

rejecting good chromosomes that do not meet the criteria

should a hard constraint be applied instead.

IV. ADAPTATION

To prevent premature convergence, manipulation of the

mutation rate and crossover rate was done at difference

stages. The user can provide varying values of mutation rate

and crossover rate at different intervals of time (during the

load convergence) and observe the convergence distribution

over the number of iterations (generations).

Please find below the different cases for illustrating the

adaptation.

GA Stage Parameters Case

1

Case

2

Case

3

Initialization Mutation Rate 0.1 0.1 0.1

Cross Over Rate 0.6 0.6 0.85

Adapted at

Pre-converge

Mutation Rate 0.1 0.25 0.1

Crossover Rate 0.6 0.3 0.85

Generations

before

Converging

Σ(|Xi - Xa|) ~800 ~700 ~500

Log(Σ(|Xi - Xa|)

)

~400 ~400 ~600

Σ(|Xi - Xa|)² ~600 ~600 ~500

Standard

Deviation

~600 ~700 ~700

Optimum of

Fitness

Σ(|Xi - Xa|) 0.38 0.45 0.33

Log(Σ(|Xi - Xa|)

)

0.84 0.67 0.58

Σ(|Xi - Xa|)² 0.78 0.78 0.86

Standard

Deviation

0.94 0.96 0.96

Case 1:

Case 2:

Case 3:

Application of Genetic Algorithms to Solve Modified Load Distribution Problem

 60 www.erpublication.org

 We could come up with the following findings as

per the analysis/observations of above results:

1. Higher crossover rate at the beginning helps quick

convergence but the fitness value may be stuck with

a local optimum.

2. Medium crossover rate at the beginning tends to take

more generations to converge.

3. Decreasing the crossover rate and increasing the

mutation rate at the pre-converge stage tends to

produce fitness optimum.

V. FURTHER EXTENSION

 Automate Adaptation: Based on the progress of

evolvement, the genetic algorithm should have the

ability to change the Mutation rate and crossover

rate in order to maximize the fitness value instead of

manual adjustment.

 Optimize the weight of the components in the fitness

calculation.

 Currently the weights are hard coded based on the

heuristic. In the future it can be fine-tuned by using

other AI technologies such as Neural Network.

 Extend the system to handle packages of different

shape and size thus utilize the space efficiently

REFERENCES

[1] Akbari, Ziarati (2010). "A multilevel evolutionary algorithm for

optimizing numerical functions" IJIEC 2 (2011): 419–430[1]W.-K.

Chen, Linear Networks and Systems (Book style). Belmont, CA:

Wadsworth, 1993, pp. 123–135.

[2] Eiben, A. E. et al (1994). "Genetic algorithms with multi-parent

recombination". PPSN III: Proceedings of the International Conference

on Evolutionary Computation. The Third Conference on Parallel Problem

Solving from Nature:

[3] An Introduction to Genetic Algorithms (Complex Adaptive Systems)

- Melanie Mitchell

[4] Genetic Algorithms - Goldberg

[5] http://en.wikipedia.org/wiki/Genetic_algorithm

[6] http://www.geneticprogramming.com/ga/index.htm

[7] http://ai.iit.nrc.ca/subjects/Evolutionary.html

[8] http://www.aforgenet.com/framework/features/genetic_algorithms.html

Shriranga Kulkarni is currently pursuing his part time Master’s degree in

Knowledge Engineering at Institute of System Sciences, National University of

Singapore. Shriranga is a member of Singapore Computer Society, IEEE

Singapore chapter and also a member of association of statisticians and

historians of cricket, England.

 Sathasivaiyer Nadarajasarma is currently pursuing his part time Master’s

degree in Knowledge Engineering at Institute of System Sciences, National

University of Singapore.

George Gao Yong is currently pursuing his part time Master’s degree in

Knowledge Engineering at Institute of System Sciences, National University of

Singapore.

Wang Yingwei is currently pursuing his part time Master’s degree in

Knowledge Engineering at Institute of System Sciences, National University of

Singapore.

http://growingscience.com/ijiec/Vol2/IJIEC_2010_11.pdf
http://www.amazon.com/Melanie-Mitchell/e/B001H6OO62/ref=ntt_athr_dp_pel_1/177-1165145-4973948
http://en.wikipedia.org/wiki/Genetic_algorithm
http://www.geneticprogramming.com/ga/index.htm
http://ai.iit.nrc.ca/subjects/Evolutionary.html
http://www.aforgenet.com/framework/features/genetic_algorithms.html

