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 Abstract—   As we all know, Cargo services now-a-days 

have been playing a really important role in our day-to-day 

operations of business. Proper load weight distribution could 

allow the transport to operate at peak efficiency which costs 

less fuel consumption and less maintenance expenses and it 

could also make the transport to be balanced during its 

travelling. So, Load Distribution on a container such as a 

ship/air cargo/or even trucks, has become a very interesting 

study to many researchers. 

In the standard load distribution problem, there are 

64 identical size containers to be arranged in dimension 4x4x4. 

We define level 1 as the set of containers that lay in the bottom 

of the ship and level 4 as the set of containers that lay on top. 

We specify 16 groups each of which contains 4 containers of the 

same location but with 4 different levels. The weight of each 

container is given.  

              The objective is to apply Genetic Algorithms (G.A) 

concepts and find a way to arrange these containers so that the 

weight is evenly distributed among 16 groups and satisfy the 

problem constraint that in each group the lighter packages 

always lay on top of heavier packages. 

This objective is obtained by minimizing the following 

function: 

F = (w1 – AV) 2 + (w2 – AV) 2 + … + (w16 – AV) 2  

Where wi denotes average weight of stack i  

           AV denotes the average weight of the 64 packages. 

 

          The objective of this research study is to extend and 

generalize the above standard Load Distribution Problem and 

apply genetic algorithm techniques for finding the optimal 

solution. 

 

Index Terms—Fitness Function, Genetic Algorithms, Load 

Distribution Problem, Mutation 

 

I. INTRODUCTION 

The extensions to the load distributor problem are defined as 

follows: 

Problem generalization: [container vs. package extension], 

In the original problem, the number of packages was fixed to 

64.  As part of extension, now the number of packages can be 

selected by the user.   This is problem generalization (as part 

of problem extension). So now, the number of packages can 

be selected as X * Y * Z (denoting Container Length * 

Breadth * Height).  

Assumption: the size/shape of the packages is uniform. 
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Fitness function/Constraint modeling: In this part of 

problem extension, fitness functions are applied in 2 areas. 

The 2 areas are stack-based distribution and layered 

distribution. As shown in the following diagram, the 

packages are arranged in a 3-D co-ordinate system. 

 
 

 

The Fitness functions consist of both stack based and layer 

based distribution. This serves as the extension to the given 

problem. As part of extension, for analysis purposes, there 

are 4 representations of fitness functions being used. 

 

Choice of Different Selection methods:  Currently there are 3 

major choices of selection methods available.  We can select 

different selection methods and compare/analyze the results 

obtained.  

   Elite or elitist selection / Rank Selection / Roulette wheel 

(as Wheel of Fortune) 

Adaptive GA: To prevent premature convergence, the 

mutation rate and crossover rates can be manipulated at 

difference stages. We can provide varying values of mutation 

rate and crossover rate at different intervals of time (during 

the load convergence) and observe the convergence 

distribution over the number of iterations (generations). 

 

 

Application of Genetic Algorithms to Solve 

Modified Load Distribution Problem 
 

Shriranga Kulkarni, Sathasivaiyer Nadarajasarma, George Gao Yong, Wang Yingwei 

 



Application of Genetic Algorithms to Solve Modified Load Distribution Problem 

 

                                                                                              58                                                         www.erpublication.org 

II. DESIGN AND KNOWLEDGE REPRESENTATION 

 

Terminologies:  Following are the problem modeling units 

to represent the problem scenario and problem resolution in 

Genetic Algorithm problem modeling paradigm. 

Stack Distribution: It is the horizontal uniformity of all the 

stacks in the container. 

Layer Distribution: It is the vertical uniformity of all the 

layers in the container. 

Unloading Order: It is an order of integers from 1-K 

assigned to each package which indicates the relative 

unloading sequence of package inside a stack. The smaller 

number indicates a higher priority of unloading. 

Package: Each package is uniquely identified by an 

integer ID. Each package has the properties of weight, 

unloading order as well as its geometrical location on the 

container.  

 

Knowledge Representation – Problem Representation 

based on Genetic Algorithms 

Problem Data: The Package Id’s, Weight of packages, the 

number of packages, the length, breadth, height of the 

container.  

Problem Solution: Package ID, Location of the Packages 

(in a 3-D space), Weight of each package in the container. 

Fitness Function:  There are 3 components which 

constitute the overall fitness function being used in 

implementing the GA techniques for the Load Distributor 

System.  

  Stack Based Distribution (SBD): In the 3-D Block 

diagram above, the distribution of packages along the Z-axis 

(i.e., Horizontal distribution of packages). 

 Weight of stack-based distribution (WSBD): This is the 

input parameter  (over the number of generations) which 

decides the degree of stack based distribution (weight) 

applied over number of generations.  

 Layer-based distribution (LBD): In the 3-D Block 

diagram above, the distribution of packages along the 

X-axis(i.e., Vertical distribution of packages). 

 Weight of layer-based distribution (WLBD) : This is the 

input parameter selected by the user (over the number of 

generations) which decides the degree of layer based 

distribution (weight) applied over number of generations. 

       Unloading disorder incurred penalty (UDIP): The 

unloading dis-order parameter is basically the unloading 

order of packages. Each package has an unloading rank 

order, the unloading of the packages; occur based on the 

ascending order of unloading rank.  

     Weight of unloading disorder penalty (WUDP): The 

input parameter, which signifies, the degree up to which, the 

unloading dis-order penalty function influences the overall 

distribution of packages (over the number of iterations).  

All the above factors are used to calculate the overall 

fitness function and following is the mathematical 

representation of the fitness function. 

 

Fitness Function = (SBD * WSBD) +                                                                                                      

(LBD * WLBD) - (UDIP * WUDP)  

 

 

  Both the Stack and Layer-based distributions are 

applied using 4 different mathematical calculations: 

1. Sum of Delta (∑|Xi-Xa|) 

2. Logarithm of Sum of Delta (log(∑|Xi-Xa|)) 

3. Sum of Square of Delta(∑(|Xi-Xa|)2) 

4. Standard 

Deviation(Sqrt((∑(|Xi-Xa|)2)/N-1)) 

 

The constraint of ordered stack is silenced by repairing the 

order from raw chromosome piece. The unloading disorder is 

implemented as hard constraint as penalty. 

 

III. RESULTS AND ANALYSIS 

For the purpose of this experiment, the Elite selection 

method is assumed,   

Set the no. of iterations to 2000,  

Population size of 100,  

A crossover rate of 60% and 

A mutation rate of 10%.  

The screenshot below shows the results of   the genetic 

algorithm optimization. The 4 line graphs at the center 

represent the fitness value of the best chromosome of   a 

generation versus the no. of generations. The 4 bar graphs to 

the right show the final distribution of the stack weights. The 

length of the bar represents the weight of a package, so the 

longer the bar the heavier the package. 

 

 
 

The results show that using any of the 4 fitness functions; the 

best chromosome produces stacks that are uniformly 

distributed. If you look at the diagram above, the fitness value 

is much improved from the original value.  

(1) Taking the example of fitness function one (Sum of 

Delta), the initial sum of the differences between the 

individual stack weights and the average stack weight is 

about 6.394.  

After optimization with Genetic Algorithms, the sum of 

differences drops to 0.1352 which is a tremendous 

improvement on the initial sum. This is what we are trying to 

achieve as we want differences of weight between the stacks 

to be as low as possible.  

(2)We also observe that regardless of the fitness function, all 

final stack weights are more uniformly distributed than the 
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initial distribution, which goes to show the effectiveness of 

Genetic Algorithm. 

(3)Another observation that we can infer from the results is 

that genetic algorithm allows us to obtain an optimal solution 

at an efficient pace. The expectations were that the solution 

should get better as the number of generations increase and 

we can observe from the results above that this is the case.  

(4)We can also notice that with the default crossover rate set 

at 0.6 and mutation rate of 0.1, the solutions converge to a 

maximum optimal fitness value within 2000 generations. 

Comparing that to an exhaustive calculation of all possible 

permutations which would take a very long time, the 

implementation of genetic algorithm in solving this problem 

is yielding very positive results. 

(5) The decision to use 4 different formulae as the fitness 

function is also giving us some insights about Genetic 

Algorithm. We can say that using different representation of 

the fitness functions such as using sum of differences or 

standard deviation or the log of differences is giving us 

different rates of convergence as well as different optimal 

solutions. While we are unable to compare the absolute 

optimal value of the 4 fitness functions as they are calculated 

differently, it is interesting to note that the choice of our 

fitness function actually has a vital impact to distinguish 

good and relatively poor chromosomes to obtain the optimal 

solution.  

(6) One of the difficulties or problems faced during this 

implementation is implementing the hard constraint of 

having no heavier package on top of a lighter package within 

a stack. To rectify this problem, a sorting repair algorithm 

was used at the end to redistribute the package to the right 

position in the stack. The results verify that , the sorting 

repair method is working as you can see that there are no 

longer bars above shorter bars in each of the 4 diagram 

above. As a gain, we avoid the adverse effects of prematurely 

rejecting good chromosomes that do not meet the criteria 

should a hard constraint be applied instead. 

IV. ADAPTATION 

To prevent premature convergence, manipulation of the 

mutation rate and crossover rate was done at difference 

stages. The user can provide varying values of mutation rate 

and crossover rate at different intervals of time (during the 

load convergence) and observe the convergence distribution 

over the number of iterations (generations).  

Please find below the different cases for illustrating the 

adaptation.  

   

GA Stage   Parameters Case 

1 

Case 

2 

Case 

3 

Initialization Mutation Rate 0.1 0.1 0.1 

Cross Over Rate 0.6 0.6 0.85 

Adapted at 

Pre-converge 

Mutation Rate 0.1 0.25 0.1 

Crossover Rate 0.6 0.3 0.85 

Generations 

before 

Converging 

Σ(|Xi - Xa|) ~800 ~700 ~500 

Log(Σ(|Xi - Xa|)

) 

~400 ~400 ~600 

Σ(|Xi - Xa|)² ~600 ~600 ~500 

Standard 

Deviation 

~600 ~700 ~700 

Optimum of 

Fitness 

Σ(|Xi - Xa|) 0.38 0.45 0.33 

Log(Σ(|Xi - Xa|)

) 

0.84 0.67 0.58 

Σ(|Xi - Xa|)² 0.78 0.78 0.86 

Standard 

Deviation 

0.94 0.96 0.96 

Case 1: 

    

 
 

 

Case 2: 

 
 

Case 3: 
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 We could come up with the following findings as 

per the analysis/observations of above results: 

1. Higher crossover rate at the beginning helps quick 

convergence but the fitness value may be stuck with 

a local optimum. 

2. Medium crossover rate at the beginning tends to take 

more generations to converge.  

3. Decreasing the crossover rate and increasing the 

mutation rate at the pre-converge stage tends to 

produce fitness optimum. 

V. FURTHER EXTENSION 

 Automate Adaptation: Based on the progress of 

evolvement, the genetic algorithm should have the 

ability to change the Mutation rate and crossover 

rate in order to maximize the fitness value instead of 

manual adjustment. 

 Optimize the weight of the components in the fitness 

calculation. 

 Currently the weights are hard coded based on the 

heuristic. In the future it can be fine-tuned by using 

other AI technologies such as Neural Network. 

 Extend the system to handle packages of different 

shape and size thus utilize the space efficiently 
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