

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 87 www.erpublication.org



 Abstract— Real-Time System (RTS) is defined as a system in

which the time where the outputs are produced is significant. In

general, data in a real-time system is managed on individual

basis by every task within the system. However, with the

advancement of technology, many applications are requiring

large amounts of information to be handled and managed in a

timely manner. Therefore, in various application domains, data

can no longer be treated and managed on individual basis,

rather it is becoming a vital resource requiring an efficient data

management mechanism. In an attempt to achieve the

advantages of both systems, real-time and database, continuous

efforts are directed towards the integration of the two

technologies. Such an integration of the two technologies

resulted in combined systems known as Real-Time Database

Systems [16]. Many of these database systems are disk-resident

so disk accesses often dominate the execution time of a real-time

transaction. An effective disk scheduling algorithm is thus very

crucial for the system to attain a high performance. Since the

invention of movable head disks, several algorithms have been

developed to improve the disk I/O performance using intelligent

scheduling of disk accesses. Traditionally, disk IOs have been

thought of as nonpreemptible operations. However,

nonpreemptible IOs can be a stumbling block when designing

applications requiring short, interactive responses. One such

domain is that of real-time disk scheduling [12]. Blocking is

undesirable since it degrades the schedulability of real-time

tasks. Making disk IOs preemptible would reduce blocking and

improve the schedulability of real-time disk IOs. This paper

gives the survey of existing preemptive approaches that can be

used for real-time disk scheduling.

 Index Terms— Deadline, Preemption, Real-time disk

scheduling, Scheduling algorithms

I. INTRODUCTION

 The term real-time system has been used extensively in

many applications of computing and control systems. A

Real-Time System (RTS) is defined as a system in which the

time where the outputs are produced is significant. The

outputs must be produced within specified time bounds

referred to as deadlines. The correctness of a RTS depends

not only on the logical results produced, but also on the times

at which such results were produced.

In general, data in a real-time system is managed on

Manuscript received December 20, 2013.

Prof. S. Y. Amdani, Assoc. Professor and Head, Dept. of CSE B. N. C. O. E,

Pusad (India) 9764996786

Prof. S. A. Bhura, Assoc. Professor Dept. of CSE B. N. C. O. E, Pusad

(India) 9764996766

Miss. Ankita A. Mahamune M.E. Student, Dept. of CSE, B. N.C. O. E,

Pusad (India) 9552280398

individual basis by every task within the system. However,

with the advancement of technology, many applications are

requiring large amounts of information to be handled and

managed in a timely manner. Thus, a substantial number of

real-time applications are becoming more data-intensive.

Such lager amounts of information had produced an

interdependency relationship among real-time applications.

Therefore, in various application domains, data can no

longer be treated and managed on individual basis, rather it is

becoming a vital resource requiring an efficient data

management mechanism. Meanwhile, database management

systems are designed around such a concept; that is, with the

sole goal of managing data as a resource. Hence, the

principles and techniques of transaction management in

Database Management Systems need to be applied to

real-time applications for efficient storage and manipulation

of information [2].

In an attempt to achieve the advantages of both systems,

real-time and database, continuous efforts are directed

towards the integration of the two technologies. Such an

integration of the two technologies resulted in combined

systems known as Real-Time Database Systems [16].

Many real-time applications handle large amounts of data

and require the support of a real-time database system.

Examples include telephone switching, radar tracking, media

servers and computer-aided manufacturing. Many of these

database systems are disk-resident because the amount of data

they store is too large (and is too expensive) to be stored in

nonvolatile main memory. In these applications, disk

accesses often dominate the execution time of a real-time

transaction. An effective disk scheduling algorithm is thus

very crucial for the system to attain a high performance.

Comparing with CPU scheduling, disk scheduling is even

more difficult. The main reason is that disk seek time, which

accounts for a very significant fraction of disk access latency,

depends on the disk head movement. Hence, the servicing

order of disk requests and their service times exhibit an

intricate dependency.

In real-time system, the most important objective is to

satisfy the timing constraints (deadlines) of the transactions

that issue the disk I/O requests. Many real-time disk

scheduling algorithms are proposed for servicing such

transactions. The existing conventional algorithms are

FCFS, SSTF, SCAN, CSCAN, LOOK, CLOOK, etc. These

algorithms perform better while guaranteeing optimized

throughput but they do not consider the request’s deadline.

So, they cannot be applied to the real time applications [20].

 [3]On the other hand the real-time scheduling

algorithms like EDF, SCAN-EDF, SSEDO,

SSEDV,P-SCAN,D-SCAN,FD-SCAN,DM-SCAN,RG-SCA

Real-Time Disk Scheduling using Preemptive and

Non-Preemptive Approach: A Survey

 SALIM Y. AMDANI, SOHEL A. BHURA, ANKITA A. MAHAMUNE

Real-Time Disk Scheduling using Preemptive and Non-Preemptive Approach: A Survey

 88 www.erpublication.org

N,G-EDF, GSR, etc. schedule the requests while guaranteeing

their respective deadlines. So, they can be used in real-time

applications.

Some of these existing techniques may not have considered

the preemption into consideration. However, nonpreemptible

IOs can be a stumbling block when designing applications

requiring short, interactive responses. Blocking is undesirable

since it degrades the schedulability of real-time tasks. Making

disk IOs preemptible would reduce blocking and improve the

schedulability of real-time disk IOs. This paper gives the

survey of existing preemptive approaches that can be used for

real-time disk scheduling.

II. BACKGROUND

A. Real-Time Database System

 A real-time database is a database system which

uses real-time processing to handle workloads whose

state is constantly changing. This differs from traditional

databases containing persistent data, mostly unaffected

by time. For example, a stock market changes very

rapidly and is dynamic. The graphs of the different

markets appear to be very unstable and yet a database has

to keep track of current values for all of the

markets. Real-time processing means that a transaction is

processed fast enough for the result to come back and be

acted on right away. Real-time databases are useful for

accounting, banking, law, medical records, multi-media,

process control, reservation systems, and scientific data

analysis.

B. Disk Scheduling and Disk Scheduling Problem

 The processor is much faster than the disk, so it’s

highly likely that there will be multiple outstanding disk

requests before the disk is ready to handle them. Because

disks have non-uniform access times, re-ordering disk

requests can greatly reduce the latency of disk requests.

The disk scheduling problem involves reordering the disk

requests in the disk queue so that the disk requests will be

serviced with the minimum mechanical motion by

employing seek optimization and latency optimization.

C. Real-Time Scheduling

 A hard real-time system must execute a set of

concurrent real-time tasks in a such a way that all

time-critical tasks meet their specified deadlines. Every

task needs computational and data resources to complete

the job. The scheduling problem is concerned with the

allocation of the resources to satisfy the timing

constraints. Figure 1 given below represents a taxonomy

of real-time scheduling algorithms.

Fig.1 A taxonomy of real-time scheduling algorithms

 Real-time database systems (RTDBS) have timing

constraints imposed on their transactional activities.

[14].Although significant research efforts have been made in

the real-time database area in last several years, they are

mainly focused on scheduling transactions in soft or firm real-

time applications. As their applications do not require

stringent timing constraints, most of their protocols adopt the

best-effort approach to scheduling transactions without a

guarantee of meeting transaction’s deadlines. On the other

hand, not much work has pursued to guarantee stringent

timing constraints of transactions in hard real-time

applications, i.e., their deadlines must be met. Guaranteeing

all hard deadlines of transactions is one of the most important

issues in hard RTDBS.

III. OVERVIEW OF EXISTING ALGORITHMS

 Since the invention of movable head disks, several

algorithms have been developed to improve the disk I/O

performance using intelligent scheduling of disk accesses.

These algorithms can be broadly divided into two classes

[20]:

A. Conventional Scheduling algorithms

-Disk scheduling algorithms optimized to service best-effort

requests:

The simplest among these is the FCFS (First Come First

Serve) algorithm that schedules the disk requests in the order

of their arrival time. Thus, FCFS can incur significant seek

time and rotational latency overhead, since the schedule that

will be derived using FCFS will be independent of the relative

positions of the requested data on the disks. This limitation

has been addressed by several disk scheduling algorithms,

such as shortest seek time first (SSTF), SCAN, LOOK, etc.

that schedules the requests to minimize the seek time and

rotational latency.

B. Real Time Scheduling algorithms

- Disk scheduling algorithms optimized to service requests

with real-time deadlines:

 Disk scheduling has been studied since 1960’s. However,

the conventional disk scheduling algorithms aim to optimize

the disk throughput. To meet time constraints,some

conventional real-time algorithms. The simplest of these

algorithms is EDF (Earliest Deadline First). EDF schedules

the requests in the order of their deadlines but ignores the

relative positions of the requested data on disk. This incurs

significant seek time and rotational latency overhead, thereby

throughput is relatively low. To keep a good tradeoff between

optimizing throughput and meeting time constraints, several

hybrid real-time scheduling algorithms were proposed

including PSCAN (Priority SCAN), DSCAN (Earliest

Deadline SCAN), FDSCAN (Feasible Deadline SCAN),

SCAN-EDF, Shortest Seek Earliest Deadline by Order/Value

(SSEDO/SSEDV), etc. These algorithms start from an EDF

schedule and reorder the requests so as to reduce the seek time

and rotational latency overhead without violating the request

deadlines.

C. Necessity of Preemptive Scheduling

 Traditionally, disk IOs have been thought of as

nonpreemptible operations. Once initiated, they cannot be

http://en.wikipedia.org/wiki/Real-time_computing
http://en.wikipedia.org/wiki/Medical_record
http://en.wikipedia.org/wiki/Multimedia

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 89 www.erpublication.org

stopped until completed. However, nonpreemptible IOs can

be a stumbling block when designing applications requiring

short, interactive responses. Different mechanisms have been

presented that can be used to enable IO preemption at the

disk-firmware level. The firmware-based implementation

would provide stronger real-time guarantees for

higher-priority requests compared to our software-based

prototype. In addition to high-throughput, short response time

is desirable and even required in certain application domains.

One such domain is that of real-time disk scheduling[12].In

real-time scheduling theory, blocking, or priority inversion, is

defined as the time spent when a higher-priority task is

prevented from running due to the nonpreemptibility of a

low-priority task (in this paper, we refer to blocking as the

waiting time). Blocking is undesirable since it degrades the

schedulability of real-time tasks. Making disk IOs

preemptible would reduce blocking and improve the

schedulability of real-time disk IOs.

D. Approaches related to Preemptive Scheduling

 [21]Preemptive scheduling problems are those in which

the processing of a job can be temporarily interrupted, and is

restarted at a later time [17] although a lot of researchers

studied preemptive scheduling, but a few of them considered

it in the context of JIT-scheduling problems [10]. However,

preemption seems to be disregarded in JIT-scheduling

problems with due date assignment.

 In Preemptive RAID Scheduling [11] investigated the

effectiveness of preemptive disk-scheduling algorithms to

achieve better quality of service (QoS) in RAID systems. It

showed when and how to preempt IOs to improve the overall

performance of the RAID system.

 In 2012, SukumarBabu Bandarupalli1,

NeelimaPriyankaNutulapati and Prof. Dr. P. Suresh

Varmaintroduced a new CPU algorithm called “A Novel CPU

Scheduling Algorithm–Preemptive & Non-Preemptive” in

Dec 2012. A Novel CPU Scheduling Algorithm acts as both

preemptive and non-preemptive in nature based on the arrival

time[5].

 This Novel CPU Scheduling algorithm is both

preemptive and non-preemptive in nature. In this algorithm a

new factor called condition factor (F) is calculated by the

addition of burst time and arrival time i.e., F = Burst Time +

Arrival Time. This factor F is assigned to each process and

on the basis of this factor processes are arranged in ascending

order in the ready queue. Process having shortest condition

factor (F) are executed first and process with next shortest

factor (F) value is executed next. By considering the arrival

time the new algorithms acts as preemptive or

non-preemptive. Proposed CPU scheduling algorithm

reduces waiting time, turnaround time and response time and

also increases CPU utilizationn and throughput.

 The working procedure of A Novel CPU Scheduling

Algorithm: Preemptive and Non Preemptive is as given

below:

1. Take the list of processes, their burst time and arrival time.

2. Find the condition factor F by adding arrival time and burst

time of processes.

3. First arrange the processes, burst time, condition factor

based on arrival time ascending order.

4. Iterate step a, b until burst time becomes zero.

a. If arrival time of first and second process are equal the

arrange them based on their condition factor f.

b. Decrement the burst time and increment arrival time by 1

5. When burst time becomes zero find the waiting time and

turnaround time of that process.

6. Average waiting time is calculated by dividing total waiting

time with total number of processes.

7. Average turnaround time is calculated by dividing total

turnaround time by total number of processes.

 The question whether preemptive algorithms are better

than nonpreemptive ones for scheduling a set of real-time

tasks has been debated for a long time in the research

community. In fact, especially under fixed priority systems,

each approach has advantages and disadvantages. Recently,

limited preemption models have been proposed as a viable

alternative between the two extreme cases of fully preemptive

and nonpreemptive scheduling [8].

 Often, preemption is considered a prerequisite to meet

timing requirement in real-time system design; however, in

most cases, a fully preemptive scheduler produces many

unnecessary preemptions. Arbitrary preemptions can

introduce a significant runtime overhead and may cause high

fluctuations in task execution times, so degrading system

predictability.

 In particular, at least four different types of costs need to

be taken into account at each preemption. Scheduling cost

(for inserting the running task into the ready queue, switch the

context, and dispatch the new incoming task); Pipeline

cost(for flushing the processor pipeline when the task is

interrupted and refilling it when the task is resumed);

Cache-related cost(for reloading the cache lines evicted by

the preempting task); Bus-related cost(due to the extra bus

interference for accessing the RAM because of the additional

cache misses caused by preemption).

 To reduce the runtime overhead due to preemptions and

still preserve the schedulability of the task set, the following

approaches have been proposed in the literature.

• Preemption Thresholds Scheduling (PTS): This approach,

proposed by Wang and Saksena[22], allows a task to disable

preemption up to a specified priority level, called

preemptionthreshold. Thus, each task is assigned a regular

priority and a preemption threshold, and the preemption is

allowed to take place only when the priority of the arriving

task is higher than the threshold of the running task.

• Deferred Preemptions Scheduling (DPS): According to

this method, first introduced by Baruah[6] under Earliest

Deadline First (EDF), each task Ti specifies the longest

interval qi that can be executed nonpreemptively. Preemption

is postponed for a given amount of time, rather than moved to

a specific position in the code.

• Fixed Preemption Points (FPP):According to this

approach, proposed by Burns [7], a task implicitly executes in

nonpreemptive mode and preemption is allowed only at

predefined locations inside the task code, called

preemptionpoints.

EXAMPLE USED:

To better appreciate the importance of limited preemptive

scheduling and to better understand the difference among the

Real-Time Disk Scheduling using Preemptive and Non-Preemptive Approach: A Survey

 90 www.erpublication.org

limited preemptive approaches they have used the following

Table I that reports a sample task set as a common example:

 I: PARAMETERS OF A SAMPLE TASK SET

1] FULLY PREEMPTIVE MODE

 Following Fig. 2 illustrates the schedule produced by

Deadline Monotonic in fully preemptive mode.

Fig. 2. Schedule produced by Deadline Monotonic (in fully

preemptive mode) on the task set of Table I.

 As clear from the figure, the task set is not feasible, since

task T3 misses its deadline.

2] NONPREEMPTIVE MODE

 Fig. 3 illustrates the schedule generated by Deadline

Monotonic on the task set of Table I when preemptions are

disabled.

Fig. 3. Schedule produced by nonpreemptive deadline

monotonic on the taskset of Table I.

3] PREEMPTION THRESHOLDS SCHEDULING

(PTS)

 According to this model, proposed by Wang and Saksena

[15], each task is assigned a nominal priority Pi (used to

enqueue the task into the ready queue and to preempt) and a

preemption threshold Өi>=Pi (used for task execution). Then

Ti can be preempted by Th only if Ph>Өi. At the activation

time ri,k ,the priority of Ti is set to its nominal value Pi so it

can preempt all the tasks Tj with threshold Өj<Pi The

nominal priority is maintained as long as the task is kept in the

ready queue. During this interval, Ti can be delayed by all

tasks Th with priority Ph>Pi and by at most one lower priority

task Tl with threshold Өl>=Pi. When all such tasks complete

(at time si,k), Ti is dispatched for execution and its priority is

raised at its threshold level Өi until the task terminates (at time

fi,k) During this interval, Ti can be preempted by all tasks Th

with priority Ph>Өi. Notice that, when Ti is preempted, its

priority is kept to its threshold level.

 For example, if priorities are assigned as P1=3,P2=2 and

P3=1,and thresholds as Ө1=3, Ө2=3 and Ө3=2, the task set

of Table I results to be schedulable, and the schedule

produced in the synchronous periodic arrival pattern is

illustrated in Fig. 4.

 Notice that, at t=6, T1 can preempt T3 since P1>Ө3.

However, at t=10, T2 cannot preempt T3 , being P2= Ө3.

Similarly, at t=12 ,T1 cannot preempt T2, being P1= Ө2.

Fig. 4. Schedule produced by Deadline Monotonic on the task

set in Table I with priorities P1=3, P2=2 and P3=1, and

thresholds Ө1=3, Ө2=3 and Ө3=2.

 The example illustrated in Fig. 4 shows that a task set

unfeasible under both preemptive and nonpreemptive

scheduling can be feasible under preemption thresholds, for a

suitable setting of threshold levels.

4] DEFERRED PREEMPTIONS SCHEDULING (DPS)

According to this method, each task Ti defines a maximum

interval of time qi in which it can execute nonpreemptively.

Preemption is enabled by a timer interrupt after exactly qi

units (unless the task completes earlier). For example,

considering the same task set of Table I, assigning q2=2 and

q3=1, the schedule produced by Deadline Monotonic with

deferred preemptions under the activation-triggered model is

feasible, as illustrated in Fig. 5.

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 91 www.erpublication.org

Fig. 5. Schedule produced by deadline monotonic with

deferred preemptions for the task set reported in Table I, with

q2=2 and q3=1

Dark regions represent nonpreemptive interval triggered by

the arrival of higher priority tasks.

5] FIXED PREEMPTION POINTS (FPP)

 According to this model, each task is split into mi

nonpreemptive chunks (subjobs), obtained by inserting

mi-1preemption points in the code. Thus, preemptions can

only occur at the subjobs boundaries. All the jobs generated

by one task have the same subjob division.

 For example, consider the same task set of Table I, and

suppose That T2 is split into two subjobs of 2 and 1 unit, and

T3 is split into two subjobs of 4 and 2 units. The schedule

produced by Deadline Monotonic with such a splitting is

feasible and it is illustrated in Fig. 6.

Fig. 6. Schedule produced by Deadline Monotonic for the

task set reported in Table II, when T2 is split into two subjobs

of 2 and 1 unit, and T3 is split into two subjobs of 4 and 2

units, respectively.

 Thus [8] have presented a survey of limited preemptive

schedulingalgorithms, as methods for increasing the

predictability and efficiency of real-time systems. The most

relevant result that clearly emerges from the experiments is

that, under fixed priority scheduling, any of the considered

algorithms dominates both fully preemptive and

nonpreemptive scheduling, even when preemption cost is

neglected.

IV. CONCLUSION

 In real-time system, the most important objective is to

satisfy the timing constraints (deadlines) of the transactions

that issue the disk I/O requests. Many real-time disk

scheduling algorithms are proposed for servicing such

transactions.

 Some of these existing techniques may not have

considered the preemption into consideration. However,

nonpreemptible IOs can be a stumbling block when designing

applications requiring short, interactive responses. Blocking

is undesirable since it degrades the schedulability of real-time

tasks. Making disk IOs preemptible would reduce blocking

and improve the schedulability of real-time disk IOs. Often,

preemption is considered a prerequisite to meet timing

requirement in real-time system design; however, in most

cases, a fully preemptive scheduler produces many

unnecessary preemptions. To reduce the runtime overhead

due to preemptions and still preserve the schedulability of the

task set different preemptive scheduling approaches have

been proposed. This paper gives the survey of existing

preemptive approaches that can be used for real-time disk

scheduling.

REFERENCES

[1] Abbott, Robert and Hector Garcia-Molina,"Scheduling Real-Time

Transactions: a Performance Evaluation," Proceedings of the 14th

VLDB Conference, pp. 1-12, 1988.

[2] Saud A. Aldarmi, ”Real-Time Database Systems:Concepts and

Design”, Department of Computer Science,The University of

York,April 1998.

[3] S.Y. Amdani, M.S. Ali, “An Overview of Real-Time Disk Scheduling

Algorithms”, International Journal on Emerging Technologies 2(1):

126-130(2011).

[4] S.Y.Amdani, M.S.Ali and S.M.Mundada, “ Mathematical Model for

Real Time Disk Scheduling Problem”,Proceedings published in

International Journal of Computer Applications® (IJCA),2012.

[5] SukumarBabu Bandarupalli, NeelimaPriyankaNutulapati and Prof. Dr.

P.SureshVarma,” A Novel CPU Scheduling Algorithm–Preemptive &

Non-Preemptive”, International Journal of Modern Engineering

Research (IJMER), Vol.2, Issue.6, Nov- pp-4484-4490, Dec. 2012.

[6] S. Baruah, “The limited-preemption uniprocessor scheduling of

sporadic task systems,” in Proc. 17th Euromicro Conf. Real-Time Syst.

(ECRTS’05), Palma de Mallorca, Balearic Islands, Spain, Jul. 6–8,

2005, pp. 137–144.

[7] A. Burns, S. Son, Ed., “Preemptive priority based scheduling. An

appropriate engineering approach,” Adv. Real-Time Syst., pp.

225–248,1994.

[8] Giorgio C. Buttazzo, Marko Bertogna and Gang Yao,” Limited

Preemptive Scheduling for Real-Time Systems. A Survey”, IEEE

transactions on Industrial Informatics, vol. 9, no. 1, Feb 2013.

[9] M. J. Carey, R. Jauhari and M. Livny, “Priority in DBMS Resource

Scheduling”, in Proceedings of the Fifteenth International

Conference on Very Large Data Bases, Amsterdam, Netherland, pp.

397-410, August 1989.

[10] T.C.EdwinCheng,Y.MikhailKovalyov, “Batch scheduling and

common due-date assignment on a single machine”, Discrete Applied

Mathematics 70(1996)231–245,1996.

[11] ZoranDimitrijevic,RajuRangaswami and Edward Chang, “Preemptive

RAID Scheduling”

[12] ZoranDimitrijevic, RajuRangaswami and Edward Y. Chang,

“Systems Support for Preemptive Disk Scheduling”, IEEE

TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 10, OCTOBER

2005.

[13] E.D. Jensen, C.D. Locke, and H. Toduda, “A Time-Driven Scheduling

Model for Real-Time OperatingSystems”, Proceedings of Real-Time

Systems Symposium, pp. 112-122, 1985.

[14] Kwok-Wa Lam, Sang H. Son, Sheung-Lun Hung, and Zhiwei Wang,

“Scheduling Transactions with Stringent real-time

Constraints”,Information Systems Vol. 25, No. 6, pp. 431–452, 2000.

[15] Shuhui Li, ShangpingRen,Yue Yu, Xing Wang, Li Wang, and Gang

Quan, “Profit and Penalty Aware Scheduling for Real-Time Online

Services”, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS,

VOL. 8, NO. 1, FEBRUARY 2012.

[16] Lindtrom, “Real Time Database Systems”, Jan Lindstrom Solid,an

IBM Company It¨alahdenkatu 22 B 00210 Helsinki, Finland March

25, 2008.

Real-Time Disk Scheduling using Preemptive and Non-Preemptive Approach: A Survey

 92 www.erpublication.org

[17] A.B Zhaohui Liu and T.C. Edwin Cheng, “Scheduling with job release

dates, delivery times and preemption penalties”, Information

Processing Letters 82(2002)107–111.

[18] C. L. Liu and James W. Layland “Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment” Journal of the

ACM, volume 20, issue 1, pp. 46-61, January 1973.

[19] Reddy ALN, Wyllie J. "Disk Scheduling in Multimedia I/O system. In:

Proceedings of ACM multimedia’93, Anaheim, CA, August 1993. p.

225–34

[20] PrashantShenoy,Harrick M.Vin,”Cello:A Disk Scheduling Framework

for Next Generation Operating Systems”, in Proceedings of the ACM

SIGMETRICS’98,2002.

[21] NeelamTyagi,MehdiAbedi and Ram GopalVarshney,“A preemptive

scheduling and due date assignment for single-machine in batch

delivery system”, Conference on Advances in Communication and

Control Systems 2013 (CAC2S 2013.)

[22] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with

pre-emption threshold,” in Proc. 6th IEEE Int. Conf. Real-Time

Comput. Syst. Appl. (RTCSA’99), Hong Kong, China, Dec. 13–15,

1999, pp. 328–335.

