

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 66 www.erpublication.org

Abstract— Network security has always been an important

issue for data communication. End users are vulnerable to virus

attacks, spam, and Trojan horses. Contemporary network

security applications generally require the ability to perform

powerful pattern matching to protect against attacks such as

viruses and spam.

Traditional hardware solutions are intended for

firewall routers. However, the solutions in the literature for

firewalls are not scalable, and they do not address the difficulty

of an antivirus with an ever-larger pattern set. Because the

firewall routers only focus on the application layer of the OSI

model and they require high transmission speed. To achieve the

high speed transmission, a pattern matching processor (also

called as virus detection processor) is developed.

The aim of the work is to provide a systematic virus

detection hardware solution for network security for embedded

systems. Instead of placing entire matching patterns on a chip,

the solution is a two-phase dictionary-based antivirus processor

that works by condensing as much of the important filtering

information as possible onto a chip and infrequently accessing

off-chip data to make the matching mechanism scalable to large

pattern sets.

In the first stage, the filtering engine can filter out the data

using a merged shift table and in the second stage the unsafe

datas can be filter out by the exact-matching engine. The

filtering engine has two algorithms: one is Wu-manber and

another one is Bloom filter. By using these two algorithms filter

rate can be increased and reduces the memory gap.

Index Terms— Virus, Pipeline, Network security, Memory

gap and Embedded System

I. INTRODUCTION

Network-on-Chip (NoC) is an approach to design the

communication subsystem between IP cores in a

System-on-chip (SoC). SoC refers to integrate all components

of a computer or other electronic system into a single IC and

IP core is a reusable unit of logic, cell, or chip layout design.

The main areas related to NoC are security, routing and

quality of service.

In the current scenario network security is the main cause in

NoC. The issues like network intrusion, spam, viruses, etc. are

a threat for the security of the networks in the internet.

A. Worm

A WORM is a program or algorithm that replicates itself

over a computer network and usually performs malicious

Manuscript received December 17, 2013.

P.Kokila, M.E. Student, Embedded System Technologies, Nandha

Engineering College, Erode, TamilNadu, India.

Dr.S.Kavitha, Professor, Nandha Engineering College, Erode,

TamilNadu, India.

actions, such as using up the computer’s resources and

possibly shutting the system down. It does not need to attach

itself to an existing program. Worms almost always cause at

least some harm to the network, even if only by consuming

bandwidth.

Worms spread by exploiting vulnerabilities in operating

systems. Vendors with security problems supply regular

security updates and if these are installed to a machine then

the majority of worms are unable to spread to it. If

vulnerability is disclosed before the security patch released by

the vendor, a zero-day attack is possible.

Users need to be wary of opening unexpected email and

should not run attached files or programs, or visit web sites

that are linked to such emails. However some of the worms

are increased with the growth and efficiency of phishing

attacks, it remains possible to trick the end-user into running

malicious code. Anti-virus and anti-spyware software are

helpful, but must be kept up-to-date with new pattern files at

least every few days.

B. Virus

A computer virus is a computer program that can replicate

itself and spread from one computer to another. The term

"virus" is also commonly used to refer other types of malware

but not limited to adware and spyware programs which do not

have a reproductive ability. Viruses are sometimes confused

with worms and Trojan horses, which are technically

different. Viruses may harm a computer system's data or

performance. Some viruses and other malware have

symptoms noticeable to the computer user. Some viruses do

nothing beyond reproducing themselves. The code for a virus

is hidden within an existing program and when that program is

launched, the virus inserts copies of itself into other programs

on the system to infect them.

C. C. Firewall router

When a new connection is established, the firewall router

scans the connection and forwards these packets to the host

after confirming that the connection is secure. Because

firewall routers focus on the application layer of the OSI

model, they must reassemble incoming packets to restore the

original connection and examine them through different

application parsers to guarantee a secure network

environment. For instance, suppose a user searches for

information on web pages and then tries to download a

compressed file from a web server. In this case, the firewall

router might initially deny some connections from the firewall

based on the target’s IP address and the connection port.

Then, the firewall router would monitor the content of the web

pages to prevent the user from accessing any page that

Virus Detection Processor using Pipeline

Architecture for Embedded Network Security

P.Kokila, Dr.S.Kavitha

Virus Detection Processor using Pipeline Architecture for Embedded Network Security

 67 www.erpublication.org

connects to malware links or inappropriate content, based on

content filters. When the user wants to download a

compressed file, to ensure that the file is not infected, the

firewall router must decompress this file and check it using

anti-virus programs.

In summary, firewall routers require several

time-consuming steps to provide a secure connection.

However, even under numerous security constrictions,

firewall routers are still required to provide high-speed

transmission. Fortunately, most security-guaranteed programs

use rule-based designs. Therefore, in this project it is tried to

develop a pattern matching processor to accelerate the

detection speed. It is called as virus detection processor

because the database size it supports has reached the antivirus

software level and is far greater than those of previous works.

II. EXISTING METHOD – A LITERATURE SURVEY

A. Automata-based architecture

 Most automata-based approaches are based on the

algorithm proposed by Aho and Corasick in 1975 called AC

algorithm which describes a linear-time algorithm for

multi-pattern search with a large finite-state machine. Aho

and Corasick proposed an algorithm for concurrently

matching multiple strings. Aho–Corasick (AC) algorithm

used the structure of a finite automation that accepts all strings

in the set. The automation processes the input characters

individually and tracks partially matching patterns. The AC

algorithm has proven linear performance, making it suitable

for searching a large set of rule. Two different

implementations exist for Snort, implemented by Mike Fisk

and Marc Norton, respectively. This work tested both

implementations and employed the latter in the present

experiments because of its superior performance. However,

the Norton implementation requires considerably more. Its

performance is not affected by the size of a given pattern set

(the sum of all pattern lengths), but it requires a significant

amount of memory due to state explosion

B. Filtering based architecture

Filtering based approach is also known as heuristic based

approach which is mainly based on Boyer-Moore algorithm

and Bloom filters. The Boyer–Moore algorithm [Boyer and

Moore 1977] is widely used because of its efficiency in

single-pattern matching problems. This algorithm uses two

heuristics to reduce the number of character comparisons

required for pattern matching. Both heuristics are triggered by

mismatches. The first heuristic is commonly referred to as the

bad character heuristic, works as follows: if the search pattern

contains the mismatching character, the pattern is shifted so

that the mismatching character is aligned with the rightmost

position at which it appears in the pattern. Meanwhile, if the

mismatching character does not appear in the search pattern,

the pattern is shifted so that the first character in the pattern is

one position later than that of the mismatching character in the

given text. The second heuristic, commonly referred to as the

good suffixes heuristic, works as follows: if a mismatch is

found in the middle of the pattern, the search pattern is shifted

to the next occurrence of the suffix in the pattern. The

Boyer–Moore algorithm was designed for searching for a

single pattern from a given text and performs well in this role.

However, the current implementation of Boyer–Moore in

Snort is not efficient in seeking multiple patterns from given

payloads.

 In Sarang et al. (2004) presented a pattern-matching

processor based on Bloom filters. They used multiple Bloom

filters to check different-length prefixes of the pattern in

parallel. This design needs 32 memory read ports because it

uses 32 hash functions. However, most commonly used

memory modules only have two ports: a read port and a write

port. To lower the memory read port requirements, they

divided a bit vector into several smaller vectors implemented

by 140-block RAM of FPGA. The total memory size, then, is

70 kB for 10038 patterns. The design also includes an

analyzer that isolates false positives. The performance of this

design can reach 2.46 Gb/s.

C. Bit Split method

In 2005, Lin Tan introduced a bit-split method by splitting an

8-bit character into four 2-bit characters to construct the

automaton. Their state machines are smaller than the original,

and they have fewer fan-out states for each transaction.

However, the bit-split method reads several memory blocks in

parallel when matching patterns. Thus, it can only be

implemented by on-chip memory because of its high memory

read port requirements. Piti Piyachon and Yan Luo extended

this concept to the Intel IXP2855 network processor. For

increasingly large pattern sets, an IBM team implemented an

optimized AC algorithm on the cell processor, and they

discovered that the memory gap was the bottleneck. As a

result, they modified the algorithm and used DMA to reduce

the effect on the memory system.

Some designs take advantage of field-programmable gate

array’s (FPGA’s) ability to be reconfigured to improve

performance. Some of the designs are even based on

non-deterministic finite automata (NFA) to handle complex

regular expressions. These methods provide high throughput,

but the maximum number of patterns they support is limited

by the FPGA comparators. The Xilinx Virtex2-8000 FPGAs

only support about 781 ClamAV rules. In 2004, to support an

unlimited pattern count, Cho presented the idea of a

two-phase architecture that implements a front-end filter with

an FPGA and stores its full pattern database in a large

memory.

Later, Sourdi implemented a perfect hashing function on an

FPGA to remove redundant memory accesses caused by

address collisions. Some designs have used

content-addressable memory (CAM) to improve engine

filtering rates and to store the entire pattern database in a large

external memory. Since then, pattern-matching designs have

tended to use a two-phase architecture, in which one phase

finds suspicious positions and the other phase precisely

identifies patterns.

All of these designs provide more than 1-Gb/s

performance, and some support even more than 10 Gb/s.

However, with increasing pattern sets, it becomes more

difficult to implement these designs in on-chip memory or

dedicated circuits. Some designs attempt to store pattern sets

in external memory, which is typically implemented by

SDRAM or DDR, for their space requirements. Although

DRAM technology has greatly improved over the last few

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 68 www.erpublication.org

decades, DRAM-based memories still require initial cycles

before pumping out their first non-consecutive data. The gain

only appears in consecutive readings of various sectors. A

non-consecutive read operation of DDR memory still

typically costs 25 - 40 ns, compared to the 1 - 3 ns working

cycle of existing processors. Unfortunately, most pattern

matching designs have irregular access to their memories.

Thus, even though the kernels of these works are well

designed, their performances are slowed dramatically by

these long memory access processes especially for

filtering-based designs. For this reason, improving the filter

rate and overlapping the access time are the two major trends.

Some designs try to use caches to overlap the access time.

III. PROPOSED METHOD

A. Two phase architecture

 The work has focused on algorithms and has even

developed specialized circuits to increase the scanning speed.

However, these works have not considered the interactions

between algorithms and memory hierarchy. Because the

number of attacks is increasing, pattern-matching processors

require external memory to support an unlimited pattern set.

This method makes the memory system the bottleneck.

However, when the pattern set is already intractably large, a

perfect solution is unattainable. A more realistic goal is to

provide high performance in most cases while still performing

reasonably well in the worst case. With an eye toward high

performance, updatability, unlimited pattern sets and low

memory requirements, it is to present a two-phase architecture

(Filtering Engine and Exact Matching Engine) that uses

off-chip memory to support a large pattern set.

The two-phase pattern-matching architecture mostly

comprising the filtering engine and the exact-matching

engine. The filtering engine is a front-end module responsible

for filtering out secure data efficiently and indicating to

candidate positions that patterns possibly exist at the first

stage. The overall performance depends on the filtering

engine. It has separate memory for storing significant

information. Here 32KB of on-chip memory is sed for the

ClamAV virus database, which contained more than 30,000

virus codes.

Initially, a pattern pointer is assigned to point to the start of

the given text at the filtering stage. Suppose the pattern

matching processor examines the text from left to right. The

filtering engine fetches a piece of text from the text buffer

according to the pattern pointer and checks it by a

shift-signature table. If the position indicated by the pattern

pointer is not a candidate position, then the filtering engine

skips this piece of text and shifts the pattern pointer right

multiple characters to continue to check the next position.

Filtering engine has two classical filtering algorithms for

pattern matching to improve the filter rate.

1. Wu-Manber Algorithm

2. Bloom Filter Algorithm

If both layers are missing their filter, the processor enters

the exact-matching phase. After an alarm caused by the

filtering engine, the exact-matching engine precisely verifies

this alarm by retrieving a trie structure. This structure divides

a pattern into multiple sub-patterns and systematically verifies

it. Only a few unsaved data need to be checked precisely by

the exact-matching engine in the second stage.

IV. VIRUS SIGNATURE AND DETECTION

TECHNIQUES

A. Pattern Sets

 A set of patterns, mostly used to include or exclude certain

files. The individual patterns support if and unless attributes

to specify that the element should only be used if or unless a

given condition is met. In the given set of k patterns, {P1,

P2… Pk}, If k=1, then it is a single-pattern matching problem.

When k>1, we have a multiple-pattern matching problem. In

this paper, k is usually a large number (e.g., thousands). Given

a packet of length n, the goal is to report all the matching

patterns in the packet. The two major types of attack in the

pattern sets are typical and extreme case attacks. The two

types of typical attacks are 1. Deep search attack and 2.

Sub-pattern attack.

B. Deep Search Attack

The Figure 4.1 shows the deep search attacks which is the

most common and the easiest to build. This type of attack’s

text is constructed by patterns in the given pattern set, and

therefore, these texts frequently cause the filtering engine to

launch alarms and require verification of the exact-matching

engine. Also it illustrates a typical attack text ―barrow‖ built

by the pattern set {bar, row, ed}.

Figure 4.1 Deep Search attack

candidate positions cause exact-matching to take a long time

to traverse its data structure. For the ClamAV, the average

pattern length is 64 characters; thus, attack texts constructed

with this method have a 1/64 chance of launching an exact

match for each examination.

C. Sub-Pattern Attack

 The Figure 4.2 shows the sub-pattern attacks which is

relatively rare, but it provides a higher-density attack text than

the first. If the given pattern set includes a pattern that

contains the prefix of another pattern, the attack texts built by

these patterns provide more candidate positions in the same

length. The patterns ―heat‖ and ―eat‖ in Figure 4.2 are an

example. For the same length, the text launches many more

alarms than the text in Figure 4.1

Virus Detection Processor using Pipeline Architecture for Embedded Network Security

 69 www.erpublication.org

Figure 4.2 Sub-Pattern attack

D. Extreme Case Attack

 The Figure 4.3 shows an extreme case that combines the

first and second types: a pattern is constituted by a serial of

characters ―a‖; the constitution of the attack text is also same

as the pattern but is longer. As a result, the attack text in figure

can be considered to constitute a multiple of this pattern. In

addition, this pattern contains the prefix of itself. Two of these

patterns can compose the third. Therefore, this attack text can

be considered to be a special case that combines by the first

and second types and causes exact-matching for every

position of itself. This extreme case dramatically lowers the

performance. Although it can be avoided by choosing the

pattern set well, the first type of attack text can still be built

easily if the pattern sets are known by the attackers. Thus, a

two-phase architecture is vulnerable to algorithmic attacks

. Pattern Set: {aaa}

Figure 4.3 Extreme case attacks

E. Virus Signatures

A signature is a characteristic byte-pattern that is part of a

certain virus or family of viruses. If a virus scanner finds such

a pattern in a file, it notifies the user that the file is infected.

The user can then delete, or (in some cases) "clean" or "heal"

the infected file. Some viruses employ techniques that make

detection by means of signatures difficult but probably not

impossible. These viruses modify their code on each

infection. That is, each infected file contains a different

variant of the virus. Most modern antivirus programs try to

find virus-patterns inside ordinary programs by scanning

them for so-called virus signatures.

F. Virus Detection

 The design considerations for a virus-detection engine in

mobile devices are analyzed as follow. The system throughput

should reach up to 1 Gbps for supporting real-time virus

detection. The scalability of handling more than ten thousands

patterns is required for versatile network protection. In

addition, the system must be highly flexible to accommodate

the rapidly increasing new virus patterns. Power consumption

is the most important design consideration for mobile devices.

The increasing virus pattern will greatly increase the power

consumption and the cost of on-chip CAMs. The memory

design is critical for dealing with the increasingly large virus

database. For this purpose, special processor called virus

detection processor with two phase architecture is used.

G. Virus Detection Processor

 The virus-detection processor is to condense as much

information on-chip as possible. Most of input data can be

quickly scanned without further inspection. The entire virus

scanning is split into two phases: fast on-chip filtering by the

filtering engine, and the exactly- matching with some off-chip

memory accesses. The filtering engine screens Impossible

matches by consulting two TCAM lookup tables (named

no-plane and yes-plane), which are used to perform two steps

of the on-chip data scanning. There are six steps to be

followed for detecting the viruses in which first two steps

includes the Filtering Engine techniques and remaining steps

includes the Exact Matching Engine techniques as shown in

Figure 4.4.

Figure 4.4 Execution Flow for Processor

The filtering engine and the exact matching engine have six

steps for finding patterns. The six steps are as follows:

1. Search Window read.

2. Secure text filters.

3. Search window read.

4. Address generates.

5. Trie table read.

6. Sub-pattern compare.

Initially, a pattern pointer is assigned to point to the start of

the given text at the filtering stage. Suppose the pattern

matching processor examines the text from left to right. The

filtering engine fetches a piece of text from the text buffer

according to the pattern pointer and checks it by a

shift-signature table. If the position indicated by the pattern

pointer is not a candidate position, then the filtering engine

skips this piece of text and shifts the pattern pointer right

multiple characters to continue to check the next position.

The shift-signature table combines two data structures used

by two different filtering algorithms, the Wu-Manber

algorithm and the Bloom filter algorithm, and it provides

two-layer filtering. If both layers are missing their filter, the

processor enters the exact-matching phase. After an alarm

caused by the filtering engine, the exact-matching engine

precisely verifies this alarm by retrieving a trie structure. This

structure divides a pattern into multiple sub-patterns and

systematically verifies it. The exact-matching engine

generally has four steps for each check. First, the

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-10, December 2013

 70 www.erpublication.org

exact-matching engine gets a slice of the text and hashes it to

generate the trie address. Then, the exact-matching engine

fetches the trie node from memory. This step causes a long

latency due to the access time of the off-chip memory. Finally,

the exact-matching engine compares the trie node with this

slice. When this node is matched, the exact-matching engine

repeatedly executes the above steps until it matches or misses

a pattern. The pattern matching processor then backs out to

the filtering engine to search for the next candidate.

V. FILTERING ENGINE TECHNIQUES

 The filtering engine is a front-end module responsible for

filtering out secure data efficiently and indicating to candidate

positions that patterns possibly exist at the first stage. The

performance of the filtering engine of a two-phase

architecture can be ten times better than the exact-matching,

attackers can forge specific strings that trigger the architecture

to launch a large number of false alarms by its front-end

module, causing it to busy itself verifying these alarms

precisely by its back-end module. Designs that feature filters

indicate that the action behind these filters is costly and

necessary. In this work, the overall performance strongly

depends on the filtering engine. Providing a high filter rate

with limited space is the most important issue.

 Filter Engines have individual memories for storing

significant information. For cost reasons, only a small amount

of significant information regarding the patterns can be stored

in the filtering engine’s on-chip memory.

In this case, a 32-kB on-chip memory is used for the

ClamAV virus database, which contained more than 30000

virus codes and localized most of the computing inside the

chip. The filtering engine techniques contain two algorithms

as Wu-Manber algorithm and Bloom filter algorithm.

A. Wu-Manber Algorithm

 The Wu-Manber algorithm is a high-performance,

multi-pattern matching algorithm based on the Boyer-Moore

algorithm. It builds three tables in the preprocessing stage: a

shift table, a hash table and a prefix table.

The Wu-Manber algorithm is an exact-matching algorithm,

but its shift table is an efficient filtering structure. The shift

table is an extension of the bad-character concept in the

Boyer-Moore algorithm, but they are not identical. The

matching flow is shown in Figure 3.5.

Figure 5.1 Matching Flow of Wu – Manber algorithm

The matching flow matches patterns from the tail of the

minimum pattern in the pattern set, and it takes a block of

characters from the text instead of taking them one-by-one.

The shift table gives a shift value that skips several characters

without comparing after a mismatch. After the shift table finds

a candidate position, the Wu-Manber algorithm enters the

exact-matching phase and is accelerated by the hash table and

the prefix table.

Therefore, its best performance is O(BN/m) for the given

text with length N and the pattern set, which has a minimum

length of m. The performance of the Wu-Manber algorithm is

not proportional to the size of the pattern set directly, but it is

strongly dependent on the minimum length of the pattern in

the pattern set. The minimum length of the pattern dominates

the maximum shift distance (m-B+1) in its shift table.

However, the Wu-Manber algorithm is still one of the

algorithms with the best performance in the average case.

B. Matching Process

For the pattern set {erst, ever, there} the maximum shift

value is three characters for B=2 and m=4. The Wu-Manber

algorithm scans patterns from the head of a text, but it

compares the tails of the shortest patterns. In step 1, the arrow

indicates to a candidate position that a wanted pattern

probably exists, but the search window (gray bar) is actually

the character it fetches for comparison. According to shift

[ev] = 2, the arrow and search window are shifted right by two

characters. Then, the Wu-Manber algorithm finds a candidate

position in step 2 due to shift [er] = 0. Consequently, it checks

the prefix table and hash table to perform an exact-matching

and then outputs the ―ever‖ in step 3. After completing the

exact match, the Wu-Manber algorithm returns to the shifting

phase, and it shifts the search window to the right by one

character to find the next candidate position in step 4. The

algorithm keeps shifting the search window until touching the

end of the string in step 6.

C. Bloom filter Algorithm

A Bloom filter is a space-efficient data structure used to test

whether an element exists in a given set. This algorithm is

com- posed of different hash functions and a long vector of

bits. Initially, all bits are set to 0 at the preprocessing stage. To

add an element, the Bloom filter hashes the element by these

hash functions and gets positions of its vector. The Bloom filter

then sets the bits at these positions to 1. The value of a vector

that only contains an element is called the signature of an

element. To check the membership of a particular element, the

Bloom filter hashes this element by the same hash functions at

run time, and it also generates positions of the vector. If all of

these bits are set to 1, this query is claimed to be positive,

otherwise it is claimed to be negative. The output of the Bloom

filter can be a false positive but never a false negative.

Therefore, some pat-tern matching algorithms based on the

Bloom filter must operate with an extra exact-matching

algorithm. However, the Bloom filter still features the

following advantages:

1) It is a space-efficient data structure;

2) The computing time of the Bloom filter is scaled linearly with

the number of patterns; and

3) The Bloom filter is independent of its pattern length.

Virus Detection Processor using Pipeline Architecture for Embedded Network Security

 71 www.erpublication.org

VI. SIMULATION RESULTS

 The Filtering Engine architecture is designed using Verilog

HDL and simulation is done by using ModelSim6.2 is shown

in Figure 6.1 and 6.2. The output detects the virus data ―ever‖

from the given set of input by using proposed

algorithm.

Figure 6.1 Simulated output of Wu-Manber Algorithm

The performance of the Wu-Manber algorithm does not

increase with table size but rather remains almost unchanged.

The experiment indicates that only 1.3 to1.7 characters can be

shifted for each check during the run. However, the filtering

engine based on the Wu-Manber algorithm still has fewer

checks than the bloom filter because of its shifting feature and

also because of the long access time of the external memory.

Figure 6.2 Simulated output of Bloom Filter Algorithm

VII. CONCLUSION

Many previous designs have claimed to provide high

performance, but the memory gap created by using external

memory decreases performance because of the increasing size

of virus databases. Furthermore, limited resources restrict the

practicality of these algorithms for embedded network security

systems. Two-phase heuristic algorithms are a solution with a

tradeoff between performance and cost due to an efficient filter

table existing in internal memory; however, their performance

is easily threatened by malicious attacks. This work analyzes

two scenarios of malicious attacks and provides two methods

for keeping performance within a reasonable range. First, the

design re-encoded the shift table to make it provide a

bad-character heuristic feature and high filter rates for large

pattern sets at the same time.

REFERENCES

[1] Chieh-Jen Cheng, ―A Scalable high-performance virus detection

processor ssagainst a Large Pattern Set for Embedded Network Security‖,

vol. 20, No. 5, May 2012.

[2] Fredkin.E, ―Trie memory,‖ Commun. ACM, vol. 3, pp. 490-499, 1960.

[3] Bloom B.H, ―Space/time trade-offs in hash coding with allowable errors,‖

Commun. ACM, vol. 13, pp. 422-426, 1970.

[4] Aho A.V and M. J. Corasick, ―Efficient string matching: An aid to

bibliographic search,‖ Commun. ACM, vol. 18, pp. 333-340, 1975.

[5] Boyer R.S and J. S. Moore, ―A fast string searching algorithm,‖

Commun. ACM, vol. 20, pp. 762-772, 1977.

[6] Wu .S and U. Manber, ―A fast algorithm for multi-pattern searching,‖ Univ.

Arizona, Tucson, Report TR-94-17, 1994.

[7] Sidhu R. and V. K. Prasanna, ―Fast regular expression matching using

FPGAs,‖ in Proc. 9th Annu. IEEE Symp. Field-Program. Custom

Comput. March, 2001, pp. 227-238.

[8] Cho Y. H., S. Navab, and W. H. Mangione-Smith, ―Specialized hard- ware

for deep network packet filtering,‖ in Proc. Reconfig. Comput.Going

Mainstream, 12th Int. Conf. Field-Program. Logic Appl., 2002, pp. 452-461.

[9] Memik G., S. O. Memik, and W. H. Mangione-Smith, ―Design and

analysis of a layer seven network processor accelerator using reconfig- urable

logic,‖ in Proc. 10th Annu. IEEE Symp. Field-Program. Custom Comput.

Mach., 2002, pp. 131-140.

[10] Micron Technology, Inc., Boise, ID, ―256 MB DDR2 SDRAM

datasheet,‖ 2003.

[11] Clark C. R and D. E. Schimmel, ―Scalable pattern matching for high

speed networks,‖ in Proc. 12th Annu. IEEE Symp. Field-Program. Custom

Comput. Mach., 2004, pp. 249-257.

[12] Dharmapurikar S, P. Krishnamurthy, and T. S. Sproull, ―Deep packet

inspection using parallel bloom filters,‖ IEEE Micro, vol. 24, no. 1, pp. 52-61,

Jan. 2004.

[13] Liu R.-T., N.-F. Huang, C.-N. Kao, and C.-H. Chen, ―A fast

string-matching algorithm for network processor-based intrusion detection

system,‖ ACM Trans. Embed. Comput. Syst., vol. 3, pp. 614-633, 2004.

[14] Sourdis I. And D. Pnevmatikatos, ―Pre-decoded CAMs for efficient and

high-speed NIDS pattern matching,‖ in Proc. 12th Annu. IEEE

Symp.Field-Program. Custom Comput. Mach., 2004, pp. 258-267.

[15] Yu F, R. H. Katz, and T. V. Lakshman, ―Gigabit rate packet pattern-

matching using TCAM,‖ in Proc. 12th IEEE Int. Conf. Netw. Protocols,2004, pp.

174-183.

[16] Piyachon P. and Y. Luo, ―Efficient memory utilization on network pro-

cessors for deep packet inspection,‖ presented at the ACM/IEEE Symp. Arch. for

Netw. Commun. Syst., San Jose, CA, 2006.

[17] Yi. S, B.-K. Kim, J. Oh, J. Jang, G. Kesidis, and C. R. Das,

―Memory-efficient content filtering hardware for high-speed intrusion

detection systems,‖ presented at the ACM Symp. Appl. Comput., Seoul, Korea,

2007.

