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 

Abstract— In this paper we will prove five conjectures, one 

problem viz. 

1) Legendre Conjecture. 

2) Grimm’s Conjecture. 

3) Balanced Primes are infinite. 

4) Prime triplets are infinite. 

5) Polignac's conjecture. 

6) Can a prime p satisfy 2p − 1 ≡ 1 (mod p2) and 3p − 1 ≡ 1 

(mod p2) simultaneously? 

And 17 tips with proof to solve problems on number theory. 

 
Index Terms— Legendre Conjecture, Balanced Primes, 

Polignac's conjecture.  
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B. What is prime  

 

A number which is divisible by 1 and that number only is 

called a prime number. 

 

I suggest another definition of prime is : When we adorn odd 

numbers in increasing series in 
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natural number line starting with 1,2,3 there is gap of odd 

numbers. This gap numbers are 

filled with prime numbers. See the example below under 

―How primes generate‖ 

All odd composite number can be written in the form : 

ΠΠΠ...Π..(3^i*5^j*7^k......all prime 

numbers where i,j,k,..... runs from 0 to infinity. 

 

C. How primes generate  

 

Prime numbers are odd numbers (except 2). Let’s say 1,2,3 

only these 3 numbers are given 

and we are supposed to make natural numbers. 

1 2 3 2² 2*3 but 2² and 2*3 both even number. But between 

two even numbers there must be 

an odd number . We call it 5 a prime number because no other 

integer can give birth to this 

number. Prime number series generates in this way. 

 

II. LEGENDRE’S CONJECTURE  

Between 132 (=169) and 142 (=196) there are five primes 

(173, 179, 181, 191, and 193); 

between 302 (=900) and 312 (=961) there are eight primes 

(907, 911, 919, 929, 937, 941, 947, 

and 953); between 352 (=1225) and 362 (=1296) there are ten 

primes (1229, 1231, 1237, 

1249, 1259, 1277, 1279, 1283, 1289, and 1291). 

 

The problem is to prove Legendre's Conjecture, which states 

that there is at least one prime 

number between every pair of consecutive squares, or find a 

counter-example. 

Solution  

Let’s say n is even and (n+1) is odd. 

Let’s take n² + 1 = 3m (i.e. n² + 1 is divisible by 3  and (n+1)² 

- 2 = 3(m+r)  

Now, between 2 consecutive odd multiple of 3 there are 2 odd 

numbers. (e.g.  between 9 and 15 there 2 odd numbers 11 and 

13) 

So, there are r number of gaps between 3m and 3(m+r) 

So, in the gaps there are 2r odd numbers and (r+1) numbers 

are divisible by 3. 

 There are total 2r + (r+1) = 3r +1 number of odd 

numbers between n² and (n+1)² 

Now, (n+1)² - n² = 2n+1 

 There are (2n+1)-1 =2n numbers between n² and 

(n+1)² 
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 There are n odd numbers between n² and (n+1)² 

 Therefore, n = 3r + 1 

So, there is no multiple of numbers after (m+r) in between n² 

and (n+1)² because 3 is least odd number. 

Now, there are (m+r)/2 – 1 number of odd numbers before 

(m+r) 

Now, after 3 next odd number is 5. 

Now, if s is multiplied by 3 gives the number 3(m+r) and (s-2) 

multiplied by 5 gives the previous odd number of 3(m+r) and 

(s-4) multiplied by 7 gives 3(m+r) – 4 and so on.... then there 

are {5(s-2) – 3s} numbers do not produce any multiple 

between n² and (n+1)² because after 3 next odd number is 5. 

Similarly, there are {7(s-4 – 5(s-2)} number of numbers do 

not produce any multiple between n² and (n+1)² because after 

5 next odd number s 7. And so on. This is worst possible 

scenario because if we take more difference then  number of 

numbers which doesn’t produce any odd multiple between n² 

and (n+1)² will be more. But we are considering less. 

Now we will calculate the number of numbers which do not 

produce multiple between n² and (n+1)² and less than (m+r). 

The series is as foloows : 

{5(s-2) – 3(s-0)} = 2s – 5*2 + 3*0            

 {7(s-4) – 5(s-2)} = 2s – 7*4 + 5*2 

{9(s-6) – 7(s-4)} = 2s – 9*6 + 7*4 

... 

.. 

.. 

[(2n+3)(s-2n) – (2n+1){s-(2n-2)}] = 2s – (2n+3)*2n + 

(2n+1)(2n-2)                                                                    

---------------------------------------------------------------------------

--------- 

Adding we get, 2ns – 2n(2n+3)  ( s = m+r here) 

So, this is the number of numbers which doesn’t produce any 

multiple between n² and (n+1)². 

Now, when we multiply a number the quotient also a multiple 

of that number at the same time except the square numbers. 

Because square numbers have odd number of multiples. But 

between two consecutive square number there cannot be any 

square number. So, we are fine to take number of odd 

multiples before  (m+r) as (m+r)/2 – 1. 

So, number of numbers that produce multiple between n² and 

(n+1)² is : 

(m+r) -1  - {2n(m+r) – 2n(2n+3)} 

= (m+r) – 1 – 2n(m+r) + 2n(2n+3) 

Now, there are n numbers between n² and (n+1)² 

So, if we prove n – [(m+r) – 1 – 2n(m+r) + 2n(2n+3)] is 

positive then it means there are odd numbers between n² and 

(n+1)² which is not born by multiplying any number. 

(Implying they are prime according to alternate definition). 

Now putting m = (n²+1)/3 and r = (n-1)3 from above and 

simplifying we get, 

(4n³ - 29n² - 17n +3)/12 

Which is greater than 0 for n >7. 

Upto n = 7 we can check manually that there is at least one 

prime between n² and (n+1)² 

Between 2² and 1²  there is 3 

Between 3² and 2² there is 5, 7 

Between 4² and 3² there is 11, 13 

Between 5² and 4² there is 17, 19, 23 

Between 6² and 5² there is 29, 31 

Between 7² and 6² there is 37, 41, 43, 47. 

 

Result  

1) So, we have seen manually upto n = 7 that there is at least 

one prime between n² and (n+1)²  

2) We have proved that there is at least one prime between n² 

and (n+1)²  for n > 7. 

 

Conclusion  

Legendre’s Conjecture is true. 

 

III. GRIMM’S CONJECTURE 

Grimm's conjecture states that to each element of a set of 

consecutive composite numbers one 

can assign a distinct prime that divides it. 

For example, for the range 242 to 250, one can assign distinct 

primes as follows: 

242: 11 243: 3 244: 61 245: 7 246: 41 247: 13 248: 31 249: 83 

250: 5 

 

The problem is to prove the conjecture, or find a 

counter-example. 

Solution  

Case 1 : 

If we can prove there is at least one prime between n^p and 

n^(p+1) then we can assign n, to 

both n^p and n^(p+1) as the image below says : 

 
Case 2 : 

If we can prove there is at least one prime between m*n^P and 

m*n^(p+2) then we can assign 

n to m*n^p , m to m*n(p+1) and again n or m to n^(p+2) as the 

below picture says : 

 
Now,  

1) Between 2 and 2² there is a prime 3 

2) Between 2² and 2³ there is prime 5, 7. 

3) Between 3 and 3² there is prime 5, 7. 

4) Onwards i.e. between 2³ and 2⁴ or 3² and 3³ .... there 

are consecutive square numbers. According to 

Legendre’s conjecture (which have been proved 

above) there is at least one prime. 

5) Now Case 2 is trivial from  Case 1. 



 

International Journal of Engineering and Technical Research (IJETR) 

                                                                                                             ISSN: 2321-0869, Volume-1, Issue-10, December 2013   

                                                                                              20                                                         www.erpublication.org 

So, Grimm’s conjecture is true. 

IV. BALANCED PRIME PROBLEM  

A balanced prime is a prime number that is equal to the 

arithmetic mean of the nearest primes above and below. Or to 

put it algebraically, given a prime number , where n is its 

index in the ordered set of prime numbers, 

 

The first few balanced primes are 

5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 

947, 977, 1103 (sequence A006562 in OEIS). 

For example, 53 is the sixteenth prime. The fifteenth and 

seventeenth primes, 47 and 59, add up to 106, half of which is 

53, thus 53 is a balanced prime. 

When 1 was considered a prime number, 2 would have 

correspondingly been considered the first balanced prime 

since 

 

It is conjectured that there are infinitely many balanced 

primes. 

Problem source : 

http://en.wikipedia.org/wiki/Balanced_prime 

 

Solution  

Let there are finite number of balanced primes. 

We are considering primes of the form p-12, p-6, p. 

Now let’s pn -6 be the last balanced prime. 

Now we form odd number table as below : 

Any one column is divisible by 3. Let the left most column is 

divisible by 3. Italic numbers are divisible by 5 and 

Underlined numbers are divisible by 7. 

 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

We see that pn +96 and pn +102 are composite and forming a 

balanced prime sets viz. pn +94, pn +100 and pn +106. 

Now according to our assumption one of this must be 

divisible by any prime before it i.e. one of them have to be 

composite. 

Now, we will find infinite number of balanced prime sets only 

by 5 and 7 and it will occur in a regular frequency i.e. after 

every 70 numbers and in a particular column it will occur after 

every 210 numbers. 

There are only finite number of primes before pn.  

 They cannot make every balanced prime set 

unbalanced by dividing any of three primes forming 

the balanced prime set. 

So, there needs to be born primes after pn so that every regular 

occurrence of balanced prime set by 5,7 can be made 

unbalanced by dividing with those primes at least one of the 

prime forming balanced set. 

But there is no regular occurrence of prime whereas 5,7 will 

be forming balanced set of primes in a regular manner. 

 There will be a shortcoming somewhere of primes to 

make each and every balanced pair formed by 5,7 in 

a regular manner. 

 There will be balanced prime after pn. 

Here is the contradiction. 

 Balanced primes are infinite. 

Proved.  

V. PRIME TRIPLET PROBLEM  

In mathematics, a prime triplet is a set of three prime 

numbers of the form (p, p + 2, p + 6) or (p, p + 4, p + 6). With 

the exceptions of (2, 3, 5) and (3, 5, 7), this is the closest 

possible grouping of three prime numbers, since every third 

odd number greater than 3 is divisible by 3, and hence not 

prime. 

The first prime triplets (sequence A098420 in OEIS) are 

(5, 7, 11), (7, 11, 13), (11, 13, 17), (13, 17, 19), (17, 19, 23), 

(37, 41, 43), (41, 43, 47), (67, 71, 73), (97, 101, 103), (101, 

103, 107), (103, 107, 109), (107, 109, 113), (191, 193, 197), 

(193, 197, 199), (223, 227, 229), (227, 229, 233), (277, 281, 

283), (307, 311, 313), (311, 313, 317), (347, 349, 353), (457, 

461, 463), (461, 463, 467), (613, 617, 619), (641, 643, 647), 

(821, 823, 827), (823, 827, 829), (853, 857, 859), (857, 859, 

863), (877, 881, 883), (881, 883, 887) 

A prime triplet contains a pair of twin primes (p and p + 2, or 

p + 4 and p + 6), a pair of cousin primes (p and p + 4, or p + 2 

and p + 6), and a pair of sexy primes (p and p + 6). 

A prime can be a member of up to three prime triplets - for 

example, 103 is a member of (97, 101, 103), (101, 103, 107) 

and (103, 107, 109). When this happens, the five involved 

primes form a prime quintuplet. 

A prime quadruplet (p, p + 2, p + 6, p + 8) contains two 

overlapping prime triplets, (p, p + 2, p + 6) and (p + 2, p + 6, 

p + 8). 

http://en.wikipedia.org/wiki/Arithmetic_mean
http://en.wikipedia.org/wiki/5_%28number%29
http://en.wikipedia.org/wiki/53_%28number%29
http://en.wikipedia.org/wiki/173_%28number%29
http://en.wikipedia.org/wiki/257_%28number%29
http://oeis.org/A006562
http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/2_%28number%29
http://en.wikipedia.org/wiki/Balanced_prime
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://oeis.org/A098420
http://en.wikipedia.org/wiki/On-Line_Encyclopedia_of_Integer_Sequences
http://en.wikipedia.org/wiki/Twin_prime
http://en.wikipedia.org/wiki/Cousin_prime
http://en.wikipedia.org/wiki/Sexy_prime
http://en.wikipedia.org/wiki/Prime_quintuplet
http://en.wikipedia.org/wiki/Prime_quadruplet
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Similarly to the twin prime conjecture, it is conjectured that 

there are infinitely many prime triplets. The first known 

gigantic prime triplet was found in 2008 by Norman Luhn and 

François Morain. The primes are (p, p + 2, p + 6) with 

p = 2072644824759 × 2
33333

 − 1. As of May 2013 the largest 

known prime triplet contains primes with 16737 digits and 

was found by Peter Kaiser. The primes are (p, p + 4, p + 6) 

with p = 6521953289619 × 2
55555

 − 5. 

Problem source : http://en.wikipedia.org/wiki/Prime_triplet 

 

Solution  

One of the column is divisible by 3. Let the left most column 

is divisible by 3. We will mark other composite numbers by 

underline.  

Let’s say pn -6, pn -2 and pn form the last triplet prime set. We 

assume there is finite number of prime triplet set.  

After pn one of every triplet set should get divided by prime 

before it. 

 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

As we can see the primes occur in a regular manner if we mark 

the composite number as above. But primes don’t have any 

regular pattern to generate. 

Here is the contradiction. So this case cannot happen. 

Again we form the table as below : 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

As we can see the primes occur in a regular manner if we mark 

the composite number as above. But primes don’t have any 

regular pattern to generate. 

Here is the contradiction. So this case cannot happen. 

 The composite number should occur in an awkward 

pattern 

 More primes are necessary to make them composite as 

for each prime occurrence of the multiples of the 

primes are regular but primes don’t occur in regular 

pattern. 

Again we form the table as below : 

pn -10 pn -8 pn -6 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

 

Not to form any prime triplet after pn => there must be a 

composite number in each row. 

Now, before  pn the number of primes is less than pn . 

Now, after pn next multiple of pn will occur in the same 

column is 6pn .  

Between pn and 6pn there are pn number of rows. 

But before pn there are less than pn number of primes which 

can make composite one number of each row. 

 There will be primes left in a row. 

 Triplet prime set is there after pn . 

 Triplet prime set is infinite. 

Proved. 

VI. COROLLARY  

Twin primes are infinite as in the case of twin prime also each 

row should have at least one composite number. 

Polignac's conjecture : 

In number theory, Polignac's conjecture was made by 

Alphonse de Polignac in 1849 and states: 

For any positive even number n, there are infinitely 

many prime gaps of size n. In other words: There are 

infinitely many cases of two consecutive prime 

numbers with difference n.  

http://en.wikipedia.org/wiki/Twin_prime_conjecture
http://en.wikipedia.org/wiki/Gigantic_prime
http://en.wikipedia.org/wiki/Prime_triplet
http://en.wikipedia.org/wiki/Number_theory
http://en.wikipedia.org/wiki/Alphonse_de_Polignac
http://en.wikipedia.org/wiki/Parity_%28mathematics%29
http://en.wikipedia.org/wiki/Prime_gap
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Prime_number
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The conjecture has not yet been proven or disproven for a 

given value of n. In 2013 an important breakthrough was 

made by Zhang Yitang who proved that there are infinitely 

many prime gaps of size n for some value of n < 

70,000,000.[2] 

For n = 2, it is the twin prime conjecture. For n = 4, it says 

there are infinitely many cousin primes (p, p + 4). For n = 6, it 

says there are infinitely many sexy primes (p, p + 6) with no 

prime between p and p + 6. 

Problem source : 

http://en.wikipedia.org/wiki/Polignac%27s_conjecture  

Solution  

For twin prime see the corollary of Triplet Prime problem. 

(End of Solution of Triplet Prime) 

Now, we will prove there are infinitely many cousin primes. 

Let, the series of cousin primes is finite. 

Let, pn – 6 and pn -2 form the last cousin prime pair. 

Any one column is divisible by 3. Let the left most column is 

divisible by 3. We will mark other composite numbers by 

underline.  

Now we form the table as below : 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

The condition to satisfy that there is no cousin prime pair after 

pn  -2 is one of the two columns should be composite (except 

the column divisible by 3). 

 The primes occur in a regular fashion. 

 Here is the contradiction. 

Now, to deny the case there needs to be composite number in 

the middle column in an irregular fashion. 

Now, next pn -2 occurs in the middle column after pn -2 rows. 

 There are more than pn -2 composite numbers before 

next pn – 2 occurs in the table.  

 But before pn -2 there are less than pn -2 number of 

primes. 

 This case cannot happen. 

 There are infinite number of Cousin primes. 

Proved. 

The conclusion can be done in other way also : 

All the number of third column is composite. But there is at 

least difference of 2 between any consecutive prime. 

 There will be numbers left between the series of 

multiples of prime before pn -2.  

 There will be Cousin prime generated after pn -2. 

Here is the contradiction. 

 There are infinite number of Cousin primes. 

Proved. 

Now we will prove there are infinite number of sexy primes. 

Let, the series of sexy primes is finite. 

Let, pn – 8 and pn -2 form the last sexy prime pair. 

One of the column is divisible by 3. Let the left most column 

is divisible by 3. We will mark other composite numbers by 

underline.  

Now we form the table as below : 

pn -4 pn -2 pn  

pn +2 pn +4 pn +6 

pn +8 pn +10 pn +12 

pn +14 pn +16 pn +18 

pn +20 pn +22 pn +24 

pn +26 pn +28 pn +30 

pn +32 pn +34 pn +36 

pn +38 pn +40 pn +42 

pn +44 pn +46 pn +48 

pn +50 pn +52 pn +54 

pn +56 pn +58 pn +60 

pn +62 pn +64 pn +66 

pn +68 pn +70 pn +72 

pn +74 pn +76 pn +78 

pn +80 pn +82 pn +84 

pn +86 pn +88 pn +90 

pn +92 pn +94 pn +96 

pn +98 pn +100 pn +102 

pn +104 pn +106 pn +108 

The condition to satisfy that there is no sexy prime pair after 

pn  -2 is alternate number in each column should be composite 

(except the column divisible by 3). 

 The primes occur in a regular fashion. 

 Here is the contradiction. 

Now, to deny the case there needs to be more composite 

numbers. 

Now, next pn -2 occurs in the middle column after pn -2 rows. 

 There are more than pn -2 composite numbers before 

next pn – 2 occurs in the table.  

 But before pn -2 there are less than pn -2 number of 

primes. 

 This case cannot happen. 

 There are infinite number of Sexy primes. 

Proved. 

Problem  

Can a prime p satisfy 2
p − 1

 ≡ 1 (mod p
2
) and 3

p − 1
 ≡ 1 (mod p

2
) 

simultaneously? 

Solution  

Let p be the prime which simultaneously satisfy both the 

equation. 

 2^(p-1) – 1 = mp²  ...............(1) 

  3^(p-1) – 1 = np² ................(2) 

Now dividing both sides of equation (1) by 8 we get, 

2^(p-1) – 1 = (8m-1)p² ( as LHS ≡ -1 and p² ≡ 1 (mod 8) and 

putting m = 8m-1) ........ (3) 

http://en.wikipedia.org/wiki/Zhang_Yitang
http://en.wikipedia.org/wiki/Prime_gap
http://en.wikipedia.org/wiki/Polignac%27s_conjecture#cite_note-2
http://en.wikipedia.org/wiki/Twin_prime_conjecture
http://en.wikipedia.org/wiki/Cousin_prime
http://en.wikipedia.org/wiki/Sexy_prime
http://en.wikipedia.org/wiki/Polignac%27s_conjecture
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Now dividing both sides of equation (2) by 8 we get, 

3^(p-1) – 1 = 8np² ( as LHS ≡ 0 and p² ≡ 1 (mod 8) and putting 

n = 8n) .............(4) 

Now, dividing both sides of equation (3) by 3 we get, 

2^(p-1) – 1 = (24m+15)p² ( as LHS ≡ 0 and p² ≡ 1 (mod 3) so 

8m-1 must be ≡ 0 (mod 3), so putting m = 3m+2) ...............(5) 

Now dividing both sides of equation (4) by 3 we get, 

3^(p-1) – 1 = 8(3n+1)p² (as LHS ≡ -1 and p² ≡ 1 (mod 3), 8n 

must be ≡ -1 (mod 3), so putting 8n = 8(3n+1) ) 

........................(6) 

Now, dividing both sides of equation (6) by 16 we get, 

LHS ≡ 0 or 8 (mod 16)  

Case 1 : LHS ≡ 8 (mod 16) 

 p – 1 = 2k where k is odd. 

 p – 1 = 2(2k+1) (putting 2k+1 in place of k as k is odd) 

 p = 4k+3 

 p² = 16k² + 24k + 9 

 8p² = 128k² + 192k + 72 

 8p² ≡ 8 (mod 16) 

 3n+1 must be ≡ 1 (mod 16) 

 n must be of the form 16n 

Equation (6) becomes, 3^(p-1) – 1 = 8(48n+1)p² 

..........................(7) 

Now, dividing both sides of equation (5) by 16 we get, 

LHS ≡ -1 (mod 16) 

p² ≡ 1 or 9 (mod 16) 

Case 1a : p² ≡ 1 (mod 16) 

Now, p² = 16k² + 24k + 9 

 k is odd as p² ≡ 1 (mod 16) 

 p² = 16(2k+1)² + 24(2k+1) + 9 (putting k = 2k+1 as k 

is odd) 

 p² = 64k² + 112k + 49 

 p = 8k + 7 

Now, 24m+15 must be ≡ -1 (mod 16) 

 m is even. 

Equation (5) becomes, 2^(p-1) – 1 = (48m+15)p² (putting 2m 

in place of m as m is even) ..........(8) 

Now, dividing both sides of equation (7) by 32, 

3^(p-1) – 1 = 3^(8k+7-1) – 1 = 3^(8k+6) – 1 = (3^8k)(3^6) – 

1 

Now, 3^8k ≡ 1 (mod 32) (as (any odd number)⁸  ≡ 1 (mod 

32)) 

3^6 ≡ 25 (mod 32) 

 LHS = (3^8k)(3^6) – 1 ≡ 1*25 – 1 ≡ 24 (mod 32) 

Now, we have, p² = 64k² + 112k + 49 

 8p² = 512k² + 896k + 392 

 8p² ≡ 8 (mod 32) 

Now, 48n+1 ≡ 1 (mod 32) if n is even   & 48n+1 ≡ 17 (mod 

32) if n is odd. 

When n is even, RHS ≡ 8*1 ≡ 8 (mod 32)  

When n is odd, RHS ≡ 17*8 ≡ 8 (mod 32) 

But LHS ≡ 24 (mod 32) 

Here is the contradiction. 

Case 1b : p² ≡ 9 (mod 16) 

Now, p² = 16k² + 24k + 9 

 k is even. 

 p² = 16(2k)² + 24(2k) + 9 (putting 2k in place of k as k 

is even) 

 p² = 64k² + 48k + 9 

 p = 8k + 3 

Now, dividing both sides of equation (5) by 16 we get, 

LHS ≡ -1 (mod 16) 

Now, 24m+15 ≡ 15 (mod 16) if m is even  &  24m+15 ≡ 7 

(mod 16) if m is odd 

When m is even, RHS = (24m+15)p² ≡ 15*9 ≡ 7 (mod 16) 

When m is odd, RHS = (24m+15)p² ≡ 7*9 ≡ -1 (mod 16) 

 m is odd. 

Equation (5) becomes, 2^(p-1) – 1 = (48m+39)p² (putting 

2m+1 in place of m as m is odd)...........(9) 

Now, dividing both sides of equation (7) by 32 we get, 

LHS = 3^(p-1) – 1 = 3^(8k+3-1) – 1 = (3^8k)(3²) – 1 ≡ 1*9 – 

1 ≡ 8 (mod 32) 

Now, we have, p² = 64k² + 48k + 9 

 8p² = 512k² + 384k + 72  

 8p² ≡ 8 (mod 32) 

 48n+1 must be ≡ 1 (mod 32) 

 n is even. 

Equation (7) becomes, 3^(p-1) – 1 = 8(96n+1)p² (putting 2n 

in place of n as n is even)  .......(10) 

Now, dividing both sides of equation (9) by 32 we get, 

LHS ≡ -1 (mod 32) 

p² ≡ 9 or 25 (mod 32) 

Case 1b(i) : p² ≡ 9 (mod 32) 

 k is even. 

 p² = 64(2k)² + 48(2k) + 9 (putting 2k in place of k as k 

is even) 

 p² = 256k² + 96k + 9 

 p = 16k+3 

Now, 48m + 39 ≡ 7 (mod 32) if m is even and ≡ 23 (mod 32) 

if m is odd. 

 m must be even. 

Equation (9) becomes, 2^(p-1) – 1 = (96m+39)p² (putting 2m 

in place of m as m is even).........(11) 

Now, dividing both sides of equation (10) by 64 we get, 

LHS = 3^(p-1) – 1 = 3^(16k+3-1) – 1 = (3^16k)(3²) – 1 ≡ 1*9 

– 1 ≡ 8 (mod 32) (as (any odd power)^16 ≡ 1 (mod 64)) 

We have, p² = 256k² + 96k + 9 

 8p² = 2048p² + 768p + 72  

 8p² ≡ 8 (mod 64) 

Now, 96n+1 must be ≡ 1 (mod 64) => n is even. 

Equation (10) becomes, 3^(p-1) – 1 = 8(192n+1)p² (putting 

2n in place of n as n is even).......(12) 

Now, dividing both sides of equation (11) by 64 we get, 

LHS ≡ -1 (mod 64) 

p² ≡ 9 or 41 (mod 64) 

Case 1b(i)/(a) : p² ≡ 9 (mod 64) 

 k is even. 

 p² = 256(2k)² + 96(2k) + 9 (putting 2k in place of k as 

k is even) 

 p² = 1024k² + 192k + 9 

 p = 32k + 3 

96m+39 ≡ 7 if m is odd and ≡ 39 if m is even (mod 64) 

According to our case, 96m+39 must be ≡ 7 (mod 64) 

Because then, RHS ≡ 9*7 ≡-1 (mod 64) 
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Equation (11) becomes, 2^(p-1) – 1 = (192m+135)p² (putting 

2m+1 in place of m as m is odd)........(13) 

Now, dividing both sides of equation (12) by 128 we get, 

LHS = 3^(p-1) – 1 = 3^(32k+3-1) – 1 = (3^32k)(3²) – 1 ≡ 1*9 

– 1 ≡ 8 (mod 128) ( as (any odd number)^32 ≡ 1 (mod 128)) 

We have, p² = 1024k² + 192k + 9 

 8p² = 8192p² + 1536k + 72 

 8p² ≡ 72 (mod 128) 

Now, 192n+1 ≡ 1 if n is even and ≡ 65 if n is odd (mod 32) 

We see that in both the cases, RHS ≡ 72 (mod 128) 

Here is the contradiction. 

Case 1b(i)/(b) : p² ≡ 41 (mod 64) 

 p² = 256(2k+1)² + 96(2k+1) + 9 

 p² = 1024k²+ 1216k + 361 

 p = 32k+19 

Now, dividing both sides of equation (11) by 64 we get, 

LHS ≡ -1 (mod 64) 

p² ≡ 41 (mod 64) 

 96m+39 must be ≡ 39 (mod 64) ( as 41*39 ≡ -1 (mod 

32) 

 m is even. 

Equation (11) becomes, 2^(p-1) – 1 = (192m+39)p² ( putting 

2m in place of m as m is even) ..... (14) 

Now, dividing both sides of equation (12) by 128 we get, 

LHS = 3^(p-1) – 1 = 3^(32k+19-1) – 1 = (3^32k)(3^18) – 1 ≡ 

1*73 – 1 ≡ 72 (mod 128) 

We have, p² = 1024k²+ 1216k + 361 

 8p² = 8192k² + 9728k + 2888 

 8p² ≡ 72 (mod 128) 

 192n+1 must be ≡ 1 (mod 128) 

 n is even. 

Equation (12) becomes, 3^(p-1) – 1 = 8(384n+1)p² (putting 

2n in place of n as n is even) ......(15) 

Now, dividing both sides of equation (14) by 256 we get, 

LHS ≡ -1 (mod 256) 

We have p² = 1024k² + 1216k + 361 

 p² ≡ 169 or 233 or 297 (mod 256) 

Now, 192m+39 ≡ 231 or 167 or 103 (mod 256) 

We see that in this way the cases will go on increasing the 

problem giving ultimately no solution. So we can conclude 

that there is no prime p which satisfy 2
p − 1

 ≡ 1 (mod p
2
) and 3

p 

− 1
 ≡ 1 (mod p

2
) simultaneously. 

17 tips with proof to solve problems on number theory : 

1. (Any odd number)² ≡ 1 (mod 4) 

Proof : Let a be any odd number. 

 a = 2n±1 

 a² = (2n±1)² 

 a² = 4n² ± 4n + 1 

 a² = 4n(n±1) + 1 

 a² ≡ 1 (mod 4) 

Proved. 

2. (Any odd number)² ≡ 1 (mod 8) 

Proof : Let a be any odd number. 

 a = 2n±1 

 a² = (2n±1)² 

 a² = 4n² ± 4n + 1 

 a² = 4n(n±1) + 1 

Now if n is odd then (n±1) is even; if n is even then (n±1) is 

odd. 

 n(n±1) is divisible by 2. 

 4n(n±1) is divisible by 8 

 a² = 4n(n±1) + 1 ≡ 1 (mod 8) 

Proved. 

3. (Any odd number)² ≡ 1 or 9 (mod 16) 

We have already proved (any odd number)² ≡ 1 (mod 8) 

Let a be any odd number. 

Then a² = 8n+1 

If n is even then 8n is divisible by 16. 

 a² = 8n + 1 ≡ 1 (mod 16) 

If n is odd then 8n = 8(2n+1) = 16n + 8 (putting 2n +1 in place 

of n as n is odd) 

 8(2n+1) = 16n+8 ≡ 8 (mod 16) 

 a² ≡ 8(2n+1) + 1 ≡ 8 + 1 = 9 (mod 16) 

 a² ≡ 1 or 9 (mod 16) 

Proved. 

4. (Any odd number)⁴ ≡ 1 (mod 16) 

We have already proved, (any odd number)² ≡ 1 (mod 8) 

Let a be any odd number. 

 a² = 8n+1 

 a⁴ = (8n+1)²  

 a⁴ = 64n² + 16n + 1 

 a⁴ = 16(4n²+1) + 1 

 a⁴ ≡ 1 (mod 16) 

Proved. 

5. (Any odd number)² ≡ 1 or 9 or -7 or -15 (mod 32) 

We have already proved, (any odd number)² ≡ 1 or 9 (mod 16) 

Let a be any odd number. 

 a² = 16n+1 or 16m+9 

Taking a² = 16n+1. 

If n is even then 16n is divisible by 32. 

 a² = 16n+1 ≡ 1 (mod 32) 

If n is odd then a² = 16(2n+1) +1 (putting 2n+1 in place of n as 

n is odd) 

 a² = 32n + 17 

 a² ≡ 17 (mod 32) 

 a² ≡ 32 -15 (mod 32) 

 a² ≡ -15 (mod 32) 

Taking a² = 16m+9 

If m is even, then 16m is divisible by 32. 

 a² = 16m+9 ≡ 9 (mod 32) 

If m is odd then a² = 16(2m+1) +9 (putting 2m+1 in place of m 

as m is odd) 

 a² = 32m + 25 

 a² ≡ 25 (mod 32) 

 a² ≡ 32 – 7 (mod 32) 

 a² ≡ -7 (mod 32) 

So, a² ≡ 1 or 9 or -7 or -15 
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Proved. 

6. (Any odd number)⁴ ≡ 1 or -15 (mod 32 

We have already proved, (any odd number)
4
 ≡ 1 (mod 16) 

Let a be any odd number. 

Then a
4
 = 16n+1 

If n is even then 16n+1 is divisible by 32. 

 a⁴ = 16n+1 ≡ 1 (mod 32) 

If n is odd then a
4 
= 16(2n+1)+1 (putting 2n+1 in place of n as 

n is odd) 

 a⁴ = 32n+17 

 a⁴ ≡ 17 (mod 32) 

 a⁴ ≡ 32 -15 (mod 32) 

 a⁴ ≡ -15 (mod 32) 

So, a
4
 ≡ 1 or -15 (mod 32) 

Proved. 

7. (Any odd number)⁸ ≡ 1 (mod 32) 

We have already proved (any odd number)⁴  ≡ 1 (mod 16) 

Let a be any odd number. 

 a⁴ = 16n+1 

 a⁸ = (16n+1)² 

 a⁸ = 256n² + 32n + 1 

 a⁸ = 32n(8n+1) + 1 

 a⁸ ≡ 1 (mod 32) 

Proved. 

8. (Any odd number)² ≡ 1 or 9 or 25 or -15 or 17 or 

-7 or -23 or -31 (mod 64) 

We have already proved, (any odd number)² ≡ 1 or 9 or -7 or 

-15 (mod 32) 

 a² = 32n+1 or 32m+9 or 32p-7 or 32q -15. 

Taking a² = 32n+1 

If n is even then a² = 32(2n) + 1 (putting 2n in place of n as n 

is even) 

 a² = 64n + 1  

 a² ≡ 1 (mod 32) 

If n is odd then a² = 32(2n+1) +1 (putting 2n+1 in place of n as 

n is odd) 

 a² = 64n + 33 (mod 64) 

 a² ≡ 33 (mod 64) 

 a² ≡ 64 – 31 (mod 64) 

 a² ≡ -31 (mod 64) 

Taking a² = 32m+9 

If m is even then a² = 32(2m)+9 (putting 2m in place of m as m 

is even) 

 a² = 64m + 9 

 a² ≡ 9 (mod 64) 

If m is odd then a² = 32(2m+1) + 9 (putting 2m+1 in place of 

m as m is odd) 

 a² = 64m + 41 

 a² ≡ 41 (mod 64) 

 a² ≡ 64 – 23 (mod 64) 

 a² ≡ -23 (mod 64) 

Taking a² = 32p -7  

If p is even then a² = 32(2p) – 7 (putting 2p in place of p as p 

is even) 

 a² = 64p – 7  

 a² ≡ - 7 (mod 64) 

If p is odd then a² = 32(2p+1) – 7 (putting 2p+1 in place of p 

as p is odd) 

 a² = 64p + 25 

 a² ≡ 25 (mod 64) 

Taking a² = 32q – 15  

If q is even then a² = 32(2q) – 15 

 a² = 64q – 15  

 a² ≡ -15 (mod 64) 

If q is odd then a² = 32(2q+1) – 15 (putting 2q+1 in place of q 

as q is odd) 

 a² = 64q + 17 

 a² ≡ 17 (mod 64) 

So, a² ≡ 1 or 9 or 25 or -15 or 17 or -7 or -23 or -31 (mod 64)  

Proved. 

9. (Any odd number)⁴ ≡ 1 or 17 or -31 or -15 (mod 

64) 

We have already proved (any odd number)
4
 ≡ 1 or -15 (mod 

32) 

Let a be any odd number. 

 a⁴ = 32n+1 or 32m-15. 

Taking, a
4
 = 32n+1 

If n is even then a
4
 = 32(2n)+1 (putting 2n in place of n as n is 

even) 

 a⁴ = 64n+1 

 a⁴ ≡ 1 (mod 64) 

If n is odd then a
4
 = 32(2n+1)+1 (putting 2n+1 in place of n as 

n is odd) 

 a⁴ = 64n + 33 (mod 64) 

 a⁴ ≡ 33 (mod 64) 

 a⁴ ≡ 64 – 31 (mod 64) 

 a⁴ ≡ -31 (mod 64) 

Taking, a
4 
= 32m – 15  

If m is even then a
4
 = 32(2m) – 15 ( putting 2m in place of m 

as m is even) 

 a⁴ = 64m – 15  33 

 a⁴ ≡ - 15 (mod 64) 

If m is odd then a
4
 ≡ 32(2m+1) – 15 (putting 2m+1 in place of 

m as m is odd) 

 a⁴ ≡ 64m + 17  

 a⁴ ≡ 17 (mod 64) 

So, a
4
 ≡ 1 or 17 or -31 or -15 (mod 64)  

Proved. 

10. (Any odd number)⁸ ≡ 1 or -31 (mod 64) 

We have already proved (any odd number)
8
 ≡ 1 (mod 32) 

Let a be any odd number. 

 a⁸ = 32n+1 

If n is even then a
8
 = 32(2n)+1 (putting 2n in place of n as n is 

even) 
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 a⁸ = 64n+1 

 a⁸ ≡ 1 (mod 64) 

If n is odd then a
8
 = 32(2n+1)+1 (putting 2n+1 in place of n as 

n is odd) 

 a⁸ = 64n+33 

 a⁸ ≡ 33 (mod 64) 

 a⁸ ≡ 64 – 31 (mod 64) 

 a⁸ ≡ - 31 (mod 64) 

So, a
8 
≡ 1 or -31 (mod 64) 

Proved. 

11. (Any odd number)^16 ≡ 1 (mod 64) 

We have already proved, (any odd number)
8
 ≡ 1 (mod 32) 

Let a be any odd number. 

Then a
8
 = 32n+1 

 a^16 = (32n+1)² 

 a^16 = 1024n²+64n+1 

 a^16 = 64n(16n+1)+1 

 a^16 ≡ 1 (mod 16) 

Proved. 

12. The square of any odd integer can be written as 

difference of square of two consecutive integers. 

The consecutive integers are of the form 2n(n-1) 

and 2n(n-1)+1 where n is nth odd integer. 

 

For example, 11 is 6th odd integer. 

Now, 2n(n-1) = 2*6*(6-1) = 60 

Therefore, 11^2 = 61^2 - 60^2 

or, 11^2 + 60^2 = 61^2. 

 

13. The square of any even integer can be written as 

either difference of two consecutive odd 

integers or two consecutive even integers. The 

consecutive odd/even integers are of the form 

n^2-1 and n^2+1 where n is n-th even integer 

considering 2 as first even integer. 

 

For example, 8 is 4th even integer. 

Now n^2-1 = 4^2-1 = 15 and n^2+1 = 17 

Therefore, 8^2 = 17^2 - 15^2 

or, 8^2 + 15^2 = 17^2. 

 

14. How to find Pythagorian triplet ? 

 

1. Choose a composite number. 

2. Now square it. 

3. Now factorize it. 

4. Now divide it in two factors such that both factors 

are either even or both are odd. 

5. Now, find the middle number between the two. 

6. Now find the difference betweem the two factors 

and divide it by 2. 

7. Now, (original number)^2 + (number found in 

step 6)^2 = (middle number found in step 5)^2 

 

For example : 

1. Lets take 14. 

2. 196 

3. 2*2*7*7 

4. 98*2 

5. 50 

6. (98-2)/2 = 48 

7. 14^2 + 48^2 = 50^2 

 

15. Generalization of Pythagorean triplet finding 

method for equation : A₁²+A₂²+....+An² = B². 

We have,  14² + 48² = 50² from previous example. 

 14² + 48² + 120² = 50² + 120² = 130² 

So, we have, 14² + 48² + 120² = 130² 

With this process continuing I am sure one can find the 

solution  of  

a² + b² + c² = d² 

And  hence... 

.. 

.. 

.. 

A1² + A2² + ..... + An² = B². 

16. Only square numbers have odd number of 

factors. 

Proof : Whenever a number divides a number a quotient 

appears.  

 There is always an even number of factor for any 

number. 

What if the quotient is same as the divider. 

This case appears only in case of square numbers. 

Let a be any number. 

Now if we divide a² by a then the quotient is also a. 

 In case of divider is a the number of factor is 1. 

Rest all appears as two numbers : one is divider and another is 

quotient. 

 There is even number of factors + 1 (for a) 

 There is always odd number of factors of any square 

number. 

Proved. 

17. The odd number table to handle problems on 

prime number. 

Let p be any odd number. 

We will form a table of column 3 and infinite rows of odd 

numbers as below : 

p p+2 p+4 

p+6 p+8 p+10 

p+12 p+14 p+16 

p+18 p+20 p+22 

p+24 p+26 p+28 

p+30 p+32 p+34 

p+36 p+38 p+40 

p+42 p+44 p+46 

p+48 p+50 p+52 

p+54 p+56 p+58 

p+60 p+62 p+64 

p+66 p+68 p+70 

p+72 p+74 p+76 

p+78 p+80 p+82 

p+84 p+86 p+88 

p+90 p+92 p+94 

p+96 p+98 p+100 

..... 
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..... 

Properties of this table : 

1) All the numbers of any one column is divisible by 3. 

2) The numbers which are divisible by q(q is prime) 

occurs in any column after q numbers in that column. 

For example if q is 5. Then the numbers which are 

divisible by 5 occurs after 5 rows in the same 

column. For example, if p+50 is divisible by 5 then 

p+80 will be the next number, in the same column, 

which is divisible by 5. 

Conjecture 

If a problem can be understood with knowledge set A then it 

can be solved with knowledge set A, where A is any subset of 

a given subject. 
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