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 

Abstract— A perfect number is a positive integer that is equal 

to the sum of its positive divisors, and can be represented by the 

equation (n)  2n. Even perfect numbers have been discovered, 

and there is a search that continues for odd perfect number(s). A 

list of conditions for odd perfect numbers to exist has been 

compiled, and there has never been a proof against their 

existence.  

 
Index Terms— positive divisors, Odd Perfect Number  

I. INTRODUCTION 

  A number N is perfect if the sum of its divisors, including 1 

but excluding itself, add up to N. 

So, for example, 28 is perfect because 1 + 2 + 4 + 7 + 14 = 28. 

The problem is to find an odd perfect number, or prove that 

no such number exists.  

II. SOLUTION 

Let’s say the number is (a^m)(b^n)(c^p)……(k^y) (where a, 

b, …p are odd primes) 

Now, sum of all factors of the number including itself is : 

(1+a+a^2+a^3+....+a^n)(1+b+b^2+......+b^m)(1+c+c^2+c^3

+…..+c^p)…..(1+k+k^2+k^3+….k^y) 

This should be equal to twice the number if odd perfect 

number exists. 

The equation is 

(1+a+a^2+a^3+....+a^n)(1+b+b^2+......+b^m)(1+c+c^2+c^3

+…..+c^p)…..(1+k+k^2+k^3+….k^y) = 

2(a^m)(b^n)(c^p)……(k^y)  .......(A) 

To hold the equality : 

 

1) The number that is ≡ 3(i.e. -1)(mod 4) cannot have odd 

power. because otherwise the left hand side will be divisible 

by 4 but right side is divisible by 2. 

 

2) The number that is ≡1(mod 4) cannot have power of the 
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form (2^n-1). Because otherwise the left hand side will be 

divisible by 4 whereas right side is divisible by 2. 

 

3) The number cannot have more than one odd power. 

otherwise the left hand side will be divisible by 4 whereas 

right side is divisible by 2. 

4) Only one number can have odd power. If two numbers have 

odd power then left hand side will be divided by 4 whereas 

right hand side only by 2. 

Now, let’s say a has the odd power. Rest of the powers are 

even. 

 

We will prove it for 2 primes. 

Let the number be N = (a^n)*(b^m) 

The equation to satisfy the condition of perfect number is, 

(1+a+a²+.....+a^n)(1+b+b²+....+b^m) = 2*(a^n)(b^m) 

 (1+a)(1+a²+....+a^(n-1))(1+b+b²+.....+b^m) = 

2*(a^n)(b^m)     ...... (A) 

Let’s say (1+a) = 2*(b^k) 

Putting the value of (1+a) in equation (A) we get, 

(1+a²+....+a^(n-1))(1+b+b²+......+b^m) = (a^n)*b^(m-k) 

Now, say, without loss of generality, (1+b+b²+....+b^m) = 

(a^k1)(b^k2) 

If we divide this equation by b then LHS ≡1 and RHS ≡ 0 

(mod b) 

 k₂ = 0. 

So, the equation becomes, (1+b+b²+....+b^m) = a^k1 ........(B) 

Putting value from equation (B) into equation (A) we get, 

1+a²+.....+a^(n-1) = {a^(n-k1)}{b^(m-k)} 

Now, dividing both sides of this equation by a, we get, 

LHS ≡ 1 and RHS ≡0 

 n-k₁ = 0 

  k₁ = n 

Putting k1 = n in equation (B) we get, 

(1+b+b²+.....b^m) = a^n  .......(C) 

Now, a ≡ -1 (mod b)  ( as a+1 = 2b^k) 

 a^n ≡ -1 (mod b) (as n is odd) 

Now dividing both sides of the equation (C), we get, 

LHS ≡ 1   and RHS ≡ -1 

Contradiction. 

 

So, for N = (a^n)(b^m) , N cannot be a perfect number. 

 

Now we will prove for 3 primes. 

Let’s say N = (a^n)(b^m)(c^p) 

Where n is odd and m, p are even. 

To satisfy the condition of perfect number, the equation is , 
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(1+a+a²+.....+a^n)(1+b+b²+.....+b^m)(1+c+c²+....+c^p) = 

2*(a^n)(b^m)(c^p) 

 (1+a)(1+a²+....+a^(n-1)) 

(1+b+b²+.....+b^m)(1+c+c²+....+c^p) = 

2*(a^n)(b^m)(c^p) 

Let’s say 1+a = 2*(b^k1)(c^k2) 

The equation becomes,  

(1+a)(1+a²+....+a^(n-1)) 

(1+b+b²+.....+b^m)(1+c+c²+....+c^p) = 

(a^n){b^(m-k1)}{c^(p-k2)}  .....(A) 

Now, Let’s say (1+a²+....a^(n-1)) = (b^k3)(c^k4) (a cannot be 

a factor otherwise dividing by a will give contradictory 

result.) .......(1) 

Now, a² ≡ 1 (mod b or c) 

Now, dividing equation (1) by b and c respectively , we get, 

(n+1)/2 = bc(a^k9) (RHS ≡ 0 and LHS ≡ (n+1)/2 in both cases 

mod(b) and mod(c) ) ......(2) 

Now, dividing equation (A) by b and c respectively, we get, 

{(n+1)/2}(1+c+c²+....+c^p) = b(c^k5)(a^k6)  ( as RHS ≡ 0 and 

LHS will become some multiple of b).....(3) 

((n+1)/2}(1+b+b²+.....+b^m) = c(b^k7)(a^k8) ...........(4) 

Now multiplying both the above equations and putting value 

in equation (A) we get, 

(1+a²+.....+a^(n-1)) = 

{(n+1)/2}².[a^{n-(k6+k8)}]{b^(m-k1-k7-1)}{c^(p-k2-k5-1)} 

Dividing both sides by a we get LHS ≡ 1 (mod a)  &  RHS ≡ 0. 

 n = k₆ + k₈ 

Now, putting value of (2) in (3) and (4) we get, 

(1+c+c²+.....+c^p) = {c^(k5-1)}{a^(k6 –k9)} .........(5) 

(1+b+b²+.....+b^m) = {b^(k7-1)}{a^(k8-k9)}.......(6) 

Now dividing both sides of equation (5) by c we get RHS ≡ 0 

and LHS ≡ 1 =>  k5 = 1 

Similarly dividing both sides of equation (6) by b we get, k7= 

1. 

Now equation (5) is : (1+c+....+c^p) = a^(k6 – k9) 

Now equation (6) is : (1+b+....+b^m) = a^(k8-k9) 

Putting this values in equation (A) we get, k9 = 0 (as k6+k8 = n) 

Now equation(5) is : (1+c+....+c^p) = a^k6 .........(7) 

Now equation (6) is : (1+b+....+b^m) = a^k8.........(8) 

Now, k6 + k8 = n = odd. 

 One of k₆ and k₈ is odd and another one is even. 

Let’s say k6 is odd. 

Now dividing both sides of equation (7) by c we get LHS ≡ 1 

(mod c) and RHS ≡ -1 (mod c) [as a ≡ -1 (mod c) => a^k6 ≡ -1 

(mod c) as k6 is odd] 

Here is the contradiction. 

 

Now when, a+1 = 2(b^k) 

Equation (A) becomes, 

(1+a²+....+a^(n-1))(1+b+....+b^m)(1+c+...+c^p) = 

(a^n){b^(m-k)}(c^p) 

Dividing both sides by b,  

{(n+1)/2}(1+c+...+c^p) = b(c^k₁)(a^k₂) 
Now dividing this equation by c, 

(n+1)/2 = c(b^k₃)(a^k₄) 
Putting the value of (n+1)/2 in above equation we get, 

{b^(k₃-1)}(1+c+...+c^p) = {c^(k₁-1)}{a^(k₂-k₄)} 

 k₃ = 1(as a, b, c are primes) 

 (1+c+....+c^p) = { c^(k₁-1)}{a^(k₂-k₄)} 

 k₁ =1 (On dividing both sides  by c) 

 (1+c+...+c^p) = a^(k₂-k₄) .......(5) 

Now, putting this value on equation (A), 

(1+a²+.....+a^(n-1))(1+b+....+b^m) = 

{a^(n-k₂+k₄)}{b^(m-k)}(c^p) .....(B) 

Dividing both sides by a , we get, 

1+b+....+b^m = a(b^k₅)(c^k₆) ...........(1) 

 k₅ = 0 ( On dividing both sides by b) 

 1+b+....+b^m = a(c^k₆) ........(4) 

Now, from (B), 1+a²+...+a^(n-1) = 

{a^(n-k₂+k₄-1)}{b^(m-k)}{c^(p-k₆)} 

 n-1 = k₂-k₄(Dividing both sides by a) 

 1+a²+....+a^(n-1) = {b^(m-k)}{c^(p-k₆)} 

Dividing both sides of equation (4) by c we get, 

1+b+...+b^m = c(b^k₇)(a^k₈) 
 k₇ = 0 (On dividing both sides by b) 

 1+b+...+b^m = c(a^k₈) ......(2) 

Now, equating RHS of equation (1) and (2) we get, 

a(c^k₆) = c(a^k₈) 
 a^(k₈-1) = c^(k₆-1) 

This equation has solution only when k₈ =1 & k₆ = 1 (as a, c 

both prime) 

Therefore, 1+b+.....+b^m = ac ....... (C) 

Dividing both sides by b we get, c ≡ -1 (mod b) 

Now c = 2j(b^i) -1 (say) 

Now ac = (2b^k – 1)(2jb^i – 1) = 4jb^(k+i) – 2b^k – 2jb^i + 1 

Putting this in equation (C), we get, 

1+b+....+b^m = 4jb^(k+i) – 2b^k – 2jb^i +1 

 b+b²+....+b^m = 4jb^(k+i) – 2b^k – 2jb^i 

 1+b+...+b^(m-1) = 4jb^(k+i-1) – 2b^(k-1) – 2jb^(i-1) 

Dividing both sides by b, LHS ≡ 1  and RHS ≡ 0. 

Here is the contradiction. 

So, when N = (a^n)(b^m)(c^p) then N is not a perfect number. 

 

Now, we will prove for 4 primes raised to powers. 

Let’s say N = (a^n)(b^m)(c^p)(d^q) 

To hold the equality for perfect number, 

(1+a+a²+....+a^n)(1+b+....+b^m)(1+c+....+c^p)(1+d+...+d^q

) = 2*(a^m)(b^n)(c^p)(d^q) 

 (1+a)(1+a²+...+a^(n-1)) 

)(1+b+....+b^m)(1+c+....+c^p)(1+d+...+d^q) = 

2*(a^m)(b^n)(c^p)(d^q) 

Now, Let’s say 1+a = 2*(b^k₁)(c^k₂)(d^k₃) 

Putting the value of (1+a) the equation becomes, 
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(1+a²+...+a^(n-1)) 

)(1+b+....+b^m)(1+c+....+c^p)(1+d+...+d^q) = 

2*(a^n){b^(m-k₁)}{c^(p-k₂)}{d^(q-k₃)} ...........(A) 

Now without loss of generality we can write, 

(1+a²+.....+a^(n-1)) = (b^k₄)(c^k₅)(d^k₆)  (as a cannot be a 

multiple in right side) 

Dividing both sides by b, c, d respectively we find RHS ≡ 0 

and LHS ≡ (n+1)/2 

So, we can write, (n+1)/2 = bcd*a^k₇   .........(1) 

Dividing both sides of equation (A) by b we get,  

RHS ≡ 0 and LHS ≡ {(n+1)/2}(1+c+....+c^p)(1+d+.....+d^q) 

We can write, {(n+1)/2}(1+c+....+c^p)(1+d+.....+d^q) = 

b*(c^k₈)(d^k₉)(a^k₁₀) .....(2) 

Now dividing this equation by c we get, RHS ≡ 0 and LHS 

should be multiple of c 

 {(n+1)/2}(1+d+....+d^q) = c*(b^k₁₁)(d^k₁₂)(a^k₁₃) 

Putting value of (n+1)/2 from equation (1) we get, 

1+d+...+d^q = {b^(k₁₁-1)}{d^(k₁₂-1){a^(k₁₃-k₇)}  

Now dividing both sides by d gives LHS ≡ 1 &  RHS ≡ 0 => 

k₁₂ = 1 

Equation becomes, 1+d+....+d^q = {b^(k₁₁-1}{a^( k₁₃-k₇)} 

........(3) 

Dividing equation (2) by d we get, RHS ≡ 0  and LHS ≡ 

{(n+1)/2}(1+c+....+c^p) 

So, we can write, {(n+1)/2}(1+c+....+c^p) = 

d*(b^k₁₄)(c^k₁₅)(a^k₁₆) 

Putting value of (n+1)/2 from equation (1) we get,  

1+c+.....+c^p = {b^(k₁₄-1)}{c^(k₁₅-1)}{a^(k₁₆-k₇)}     

Dividing both sides by c gives LHS ≡ 1  & RHS ≡ 0  => k₁₅ = 

1 

Equation becomes, 1+c+.....+c^p = {b^(k₁₄-1)}{a^(k₁₆-k₇)} 

........(4) 

Dividing equation (A) by c we get, 

{(n+1)/2}(1+b+....+b^m)(1+d+...+d^q) = 

c*(b^k₁₇)(d^k₁₈)(a^k₁₉) .....(5) 

Dividing both side of equation (5) by d we get, 

{(n+1)/2}(1+b+....+b^m) = d*(b^k₂₀)(c^k₂₁)(a^k₂₂) 

Putting value of (n+1)/2 from equation (1) we get, 

1+b+....+b^m = {b^(k₂₀-1)}{c^(k₂₁-1)}{a^(k₂₂-k₇)} 

Now dividing both side by b we get RHS ≡ 0 but LHS ≡ 1 => 

k₂₀ = 1 

Equation becomes, 1+b+....+b^m =  

{c^(k₂₁-1)}{a^(k₂₂-k₇)}........... (6) 

Now dividing both sides of equation (5) by b we get, 

{(n+1)/2}(1+d+....+d^q) = b*(d^k₂₄)(a^k₂₅)(c^k₂₆) 

Putting value of (n+1)/2 from equation (1) we get, 

1+d+.....+d^q = {c^(k₂₆-1)}{d^(k₂₄-1)}{a^(k₂₅-k₇)} 

Now dividing both sides by d we get RHS ≡ 0 whereas LHS ≡ 

1 => k₂₄ = 1 

Now the equation becomes, 1+d+.....+d^q = 

{c^(k₂₆-1)}{a^(k₂₅-k₇)} ...... (7) 

Now equating RHS of equation (3) and (7), we get 

{b^(k₁₁-1}{a^( k₁₃-k₇)} = {c^(k₂₆-1)}{a^(k₂₅-k₇)} 

 b^(k₁₁-1) = {c^(k₂₆-1)}{ a^(k₂₅-k₁₃)} 

As, a, b, c are all prime numbers this equation can only hold 

when, 

k₁₁ = 1,  k₂₆ = 1  and k₂₅ = k₁₃ 

Therefore, Equation (3) or (7) becomes, 

1+d+.....+d^q = a^(k₂₅-k₇) ..............(13) 

Now, Dividing equation (A) by d we get, 

{(n+1)/2}(1+b+.....+b^m)(1+c+....c^p) = 

d*(b^k₂₃)(c^k₂₄)(a^k₂₅) .....(8) 

Now dividing both side by c we get, 

{(n+1)/2}(1+b+.....+b^m) = c*(b^k₂₇)(d^k₂₈)(a^k₂₉) 

Putting value of (n+1)/2 from equation (1) we get, 

1+b+.....+b^m = {b^(k₂₇-1)}{d^(k₂₈-1)}{a^(k₂₉-k₇)} 

Dividing both sides by b RHS ≡ 0 whereas LHS ≡ 1 giving k₂₇ 
= 1. 

Equation becomes, 1+b+.....+b^m = 

{d^(k₂₈-1)}{a^(k₂₉-k₇)}..........(9) 

Now equating RHS of equation (6) and (9) we get, 

{c^(k₂₁-1)}{a^(k₂₂-k₇)} = {d^(k₂₈-1)}{a^(k₂₉-k₇)} 

 c^(k₂₁-1) = = {d^(k₂₈-1)}{a^(k₂₉-k₂₂)} 

As c, d, a are prime this equation can only hold when, 

k₂₁ = 1,  k₂₈ = 1  and   k₂₉ = k₂₂ 

So, (6) or (9) becomes, 1+b+...+b^m = a^(k₂₉-k₇) ........... (10) 
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Now, dividing equation (8) by b we get, 

{(n+1)/2}(1+c+....+c^p) = b*(c^k₃₀)(d^k₃₁)(a^k₃₂) 

Putting value of (n+1)/2 from equation (1) we get, 

1+c+....+c^p = {c^(k₃₀-1)}{d^(k₃₁-1)}{a^(k₃₂-k₇)} 

Dividing both sides by c gives RHS ≡ 0 whereas LHS ≡ 1 

giving k₃₀ = 1 

Equation becomes, 1+c+...+c^p = {d^(k₃₁-1)}{a^(k₃₂-k₇)} 

.......(11) 

Now, equating RHS of equation (4) and (11) we get, 

{b^(k₁₄-1)}{a^(k₁₆-k₇)} = {d^(k₃₁-1)}{a^(k₃₂-k₇)} 

 b^(k₁₄-1) = {d^(k₃₁-1)}{a^(k₃₂-k₁₆)} 

Now, as b, d, a all are primes, this equation can only hold 

when, 

k₁₄ = 1,  k₃₁ = 1   and   k₃₂ = k₁₆ 

Equation, (4) or (11) becomes, 1+c+...+c^p =  a^(k₃₂-k₇) 
.......(12) 

Now, let’s say k₃₂-k₇ = k₃₃,  k₂₉-k₇ = k₃₄  ,   k₂₅-k₇ = k₃₅ 

Equation (10) => 1+b+...+b^m = a^k₃₄    .......(14) 

Equation (12) => 1+c+...+c^p =  a^k₃₃   .........(15) 

Equation (13) => 1+d+.....+d^q = a^k₃₅   ........(16) 

Putting these values in equation (A) we get, 

(1+a²+....+a^(n-1)) = 

{a^(n-k₃₃-k₃₄-k₃₅)}{b^(m-k₁)}{c^(p-k₂)}{d^(q-k₃)} 

Dividing both side by a, we get, n = k₃₃+k₃₄+k₃₅ = odd 

 One of k₃₃, k₃₄, k₃₅ must be odd. (because the 

combination can be (odd+even+even) or 

(odd+odd+odd)) 

Let’s say k₃₃ is odd. 

Now, dividing equation (15) by c LHS ≡ 1   and RHS ≡ -1 (as 

a≡-1(mod c)) 

Here is the contradiction. 

Similarly we can prove when (1+a) = 2*(b^k₁)(c^k₂)  or 

2*(b^k₁) as we have proved for N= (a^n)(b^m)(c^p). 

So, when N=(a^n)(b^m)(c^p)(d^q) then also N is not perfect 

number. 

In this way we can also prove for N = (a^n)(b^m).....(k^y) 

So, Odd perfect number doesn’t exist. 

P.S. Numbers which are of the form (2^n-1)*2^(n-1) where 

(2^n-1) is a prime are perfect number. 
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