Odd Perfect Number

Shubhankar Paul

Abstract— A perfect number is a positive integer that is equal to the sum of its positive divisors, and can be represented by the equation $\sigma(n) = 2n$. Even perfect numbers have been discovered, and there is a search that continues for odd perfect number(s). A list of conditions for odd perfect numbers to exist has been compiled, and there has never been a proof against their existence.

Index Terms— positive divisors, Odd Perfect Number

I. INTRODUCTION

A number N is perfect if the sum of its divisors, including 1 but excluding itself, add up to N.

So, for example, 28 is perfect because 1 + 2 + 4 + 7 + 14 = 28.

The problem is to find an odd perfect number, or prove that no such number exists.

II. SOLUTION

Let's say the number is $(a^m)(b^n)(c^p)....(k^y)$ (where a, b, ...p are odd primes)

Now, sum of all factors of the number including itself is : $(1+a+a^2+a^3+...+a^n)(1+b+b^2+....+b^m)(1+c+c^2+c^3+...+c^p)....(1+k+k^2+k^3+....k^y)$

This should be equal to twice the number if odd perfect number exists.

The equation is $(1+a+a^2+a^3+...+a^n)(1+b+b^2+....+b^m)(1+c+c^2+c^3+...+c^p)....(1+k+k^2+k^3+...k^y) = 2(a^m)(b^n)(c^p).....(k^y)$ (A)

To hold the equality :

1) The number that is $\equiv 3(i.e. -1) \pmod{4}$ cannot have odd power. because otherwise the left hand side will be divisible by 4 but right side is divisible by 2.

2) The number that is $\equiv 1 \pmod{4}$ cannot have power of the

Manuscript received November 02, 2013.

Shubhankar Paul, Passed BE in Electrical Engineering from Jadavpur University in 2007. Worked at IBM as Manual Tester with designation Application Consultant for 3 years 4 months. Worked at IIT Bombay for 3 months as JRF.

form (2^n-1) . Because otherwise the left hand side will be divisible by 4 whereas right side is divisible by 2.

3) The number cannot have more than one odd power. otherwise the left hand side will be divisible by 4 whereas right side is divisible by 2.

4) Only one number can have odd power. If two numbers have odd power then left hand side will be divided by 4 whereas right hand side only by 2.

Now, let's say a has the odd power. Rest of the powers are even.

We will prove it for 2 primes. Let the number be N = $(a^n)^*(b^m)$ The equation to satisfy the condition of perfect number is, $(1+a+a^2+....+a^n)(1+b+b^2+....+b^m) = 2^*(a^n)(b^m)$ $\Rightarrow (1+a)(1+a^2+....+a^n(n-1))(1+b+b^2+....+b^m) = 2^*(a^n)(b^m)$ (A)

Let's say $(1+a) = 2*(b^k)$ Putting the value of (1+a) in equation (A) we get, $(1+a^2+...+a^n(n-1))(1+b+b^2+....+b^m) = (a^n)*b^n(m-k)$ Now, say, without loss of generality, $(1+b+b^2+....+b^m) = (a^k_1)(b^k_2)$ If we divide this equation by b then LHS $\equiv 1$ and RHS $\equiv 0$ (mod b) $\Rightarrow k_2 = 0$.

So, the equation becomes, $(1+b+b^2+...+b^n) = a^k_1$ (B) Putting value from equation (B) into equation (A) we get, $1+a^2+....+a^n(n-1) = \{a^n(n-k_1)\}\{b^n(m-k)\}$ Now, dividing both sides of this equation by a, we get, LHS $\equiv 1$ and RHS $\equiv 0$ $\Rightarrow n-k_1 = 0$ $\Rightarrow k_1 = n$

Putting $k_1 = n$ in equation (B) we get, $(1+b+b^2+....,b^m) = a^n \dots(C)$ Now, $a \equiv -1 \pmod{b}$ (as $a+1 = 2b^k$) $\Rightarrow a^n \equiv -1 \pmod{b}$ (as n is odd)

Now dividing both sides of the equation (C), we get, LHS $\equiv 1$ and RHS $\equiv -1$ Contradiction.

So, for $N = (a^n)(b^m)$, N cannot be a perfect number.

Now we will prove for 3 primes. Let's say $N = (a^n)(b^m)(c^p)$ Where n is odd and m, p are even. To satisfy the condition of perfect number, the equation is , $(1+a+a^2+....+a^n)(1+b+b^2+....+b^m)(1+c+c^2+...+c^p) =$ $2^{(a^n)(b^m)(c^p)}$ \Rightarrow (1+a)(1+a²+...+a⁽ⁿ⁻¹⁾) $(1+b+b^2+....+b^m)(1+c+c^2+...+c^p) =$ 2*(a^n)(b^m)(c^p) Let's say $1+a = 2*(b^{k_1})(c^{k_2})$ The equation becomes, $(1+a)(1+a^2+...+a^{(n-1)})$ $(1+b+b^2+....+b^m)(1+c+c^2+...+c^p) =$ $(a^n){b^(m-k_1)}{c^(p-k_2)} \dots (A)$ Now, Let's say $(1+a^2+...a^{(n-1)}) = (b^k_3)(c^k_4)$ (a cannot be a factor otherwise dividing by a will give contradictory result.)(1) Now, $a^2 \equiv 1 \pmod{b}$ or c) Now, dividing equation (1) by b and c respectively, we get, $(n+1)/2 = bc(a^k_9)$ (RHS $\equiv 0$ and LHS $\equiv (n+1)/2$ in both cases mod(b) and mod(c))(2) Now, dividing equation (A) by b and c respectively, we get, $\{(n+1)/2\}(1+c+c^2+...+c^p) = b(c^k_5)(a^k_6)$ (as RHS $\equiv 0$ and LHS will become some multiple of b)....(3) $((n+1)/2)(1+b+b^2+....+b^m) = c(b^k_7)(a^k_8)$(4) Now multiplying both the above equations and putting value in equation (A) we get, $(1+a^2+....+a^{(n-1)}) =$ ${(n+1)/2}^2.[a^{n-(k_6+k_8)}]{b^{(m-k_1-k_7-1)}}{c^{(p-k_2-k_5-1)}}$ Dividing both sides by a we get LHS $\equiv 1 \pmod{a}$ & RHS $\equiv 0$. \Rightarrow n = k₆ + k₈ Now, putting value of (2) in (3) and (4) we get, $(1+c+c^2+\ldots+c^p) = \{c^{(k_5-1)}\}\{a^{(k_6-k_9)}\}\ldots(5)$ $(1+b+b^2+....+b^m) = \{b^{(k_7-1)}\}\{a^{(k_8-k_9)}\}.....(6)$ Now dividing both sides of equation (5) by c we get RHS $\equiv 0$ and LHS $\equiv 1 \implies k_5 = 1$ Similarly dividing both sides of equation (6) by b we get, $k_7 =$ 1. Now equation (5) is : $(1+c+...+c^{p}) = a^{k}(k_{6}-k_{9})$ Now equation (6) is : $(1+b+...+b^{m}) = a^{k_{8}}(k_{8}-k_{9})$ Putting this values in equation (A) we get, $k_9 = 0$ (as $k_6+k_8 = n$) Now equation(5) is : $(1+c+...+c^{p}) = a^{k_{6}}$(7) Now equation (6) is : $(1+b+...+b^{m}) = a^{k_{8}}....(8)$ Now, $k_6 + k_8 = n = odd$. \Rightarrow One of k₆ and k₈ is odd and another one is even. Let's say k_6 is odd. Now dividing both sides of equation (7) by c we get LHS $\equiv 1$ (mod c) and RHS \equiv -1 (mod c) [as a \equiv -1 (mod c) => a^k_6 \equiv -1 (mod c) as k_6 is odd] Here is the contradiction. Now when, $a+1 = 2(b^k)$ Equation (A) becomes, $(1+a^2+...+a^{(n-1)})(1+b+...+b^m)(1+c+...+c^p) =$ $(a^n){b^(m-k)}(c^p)$ Dividing both sides by b, ${(n+1)/2}(1+c+...+c^{p}) = b(c^{k_{1}})(a^{k_{2}})$ Now dividing this equation by c, $(n+1)/2 = c(b^{k_3})(a^{k_4})$ Putting the value of (n+1)/2 in above equation we get, ${b^{(k_3-1)}}(1+c+...+c^p) = {c^{(k_1-1)}}{a^{(k_2-k_4)}}$ \Rightarrow k₃ = 1(as a, b, c are primes)

 $\Rightarrow (1+c+\ldots+c^{p}) = \{ c^{k_{1}-1} \} \{ a^{k_{2}-k_{4}} \}$ $\Rightarrow k_{1} = 1 \text{ (On dividing both sides by c)}$ $\Rightarrow (1+c+\ldots+c^{p}) = a^{k_{2}-k_{4}} \text{ (Drescond)}$ Now, putting this value on equation (A), $(1+a^{2}+\ldots+a^{n}(n-1))(1+b+\ldots+b^{m}) =$ $\{ a^{n}(n-k_{2}+k_{4}) \} \{ b^{n}(m-k) \} (c^{p}) \dots (B) \text{ (B)}$ Dividing both sides by a , we get, $1+b+\ldots+b^{m} = a(b^{k_{5}})(c^{k_{6}}) \dots (1)$ $\Rightarrow k_{5} = 0 \text{ (On dividing both sides by b)}$ $\Rightarrow 1+b+\ldots+b^{m} = a(c^{k_{6}}) \dots (4)$

Now, from (B), $1+a^2+...+a^{(n-1)} = {a^{(n-k_2+k_4-1)}}{b^{(m-k)}}{c^{(p-k_6)}}$ $\Rightarrow n-1 = k_2-k_4$ (Dividing both sides by a) $\Rightarrow 1+a^2+...+a^{(n-1)} = {b^{(m-k)}}{c^{(p-k_6)}}$

Dividing both sides of equation (4) by c we get, $1+b+...+b^{m} = c(b^{k_7})(a^{k_8})$ $\Rightarrow k_7 = 0$ (On dividing both sides by b) $\Rightarrow 1+b+...+b^{m} = c(a^{k_8})$ (2)

Now, equating RHS of equation (1) and (2) we get, $a(c^{k_{6}}) = c(a^{k_{8}})$ $\Rightarrow a^{k_{r-1}} = c^{k_{r-1}}$

 $\Rightarrow a^{(k_8-1)} = c^{(k_6-1)}$

This equation has solution only when $k_8 = 1$ & $k_6 = 1$ (as a, c both prime) Therefore, $1+b+\ldots+b^m = ac \ldots (C)$ Dividing both sides by b we get, $c \equiv -1 \pmod{b}$ Now $c = 2j(b^{i}) - 1$ (say) Now $ac = (2b^k - 1)(2jb^{i} - 1) = 4jb^{i}(k+i) - 2b^k - 2jb^{i} + 1$ Putting this in equation (C), we get, $1+b+\ldots+b^m = 4jb^{i}(k+i) - 2b^k - 2jb^{i} + 1$ $\Rightarrow b+b^2+\ldots+b^m = 4jb^{i}(k+i) - 2b^k - 2jb^{i}$ $\Rightarrow 1+b+\ldots+b^{i}(m-1) = 4jb^{i}(k+i-1) - 2b^{i}(k-1) - 2jb^{i}(i-1)$

Dividing both sides by b, LHS $\equiv 1$ and RHS $\equiv 0$. Here is the contradiction. So, when N = (a^n)(b^m)(c^p) then N is not a perfect number.

Now, we will prove for 4 primes raised to powers.

Let's say N = $(a^n)(b^m)(c^p)(d^q)$

To hold the equality for perfect number,

 $\begin{array}{l} (1 + a + a^2 + + a^n)(1 + b + + b^n)(1 + c + + c^p)(1 + d + ... + d^q \\) = 2^*(a^n)(b^n)(c^p)(d^q) \end{array}$

 $\Rightarrow (1+a)(1+a^{2}+...+a^{n}(n-1))$)(1+b+....+b^m)(1+c+....+c^p)(1+d+...+d^q) = 2*(a^m)(b^n)(c^p)(d^q)

Now, Let's say $1+a = 2*(b^{k_1})(c^{k_2})(d^{k_3})$

Putting the value of (1+a) the equation becomes,

International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-1, Issue-9, November 2013

 $\begin{array}{l} (1+a^2+...+a^{(n-1)}) \\)(1+b+....+b^{m})(1+c+....+c^{p})(1+d+...+d^{q}) = \\ 2^{*}(a^{n})\{b^{(m-k_{1})}\}\{c^{(p-k_{2})}\}\{d^{(q-k_{3})}\} \(A) \end{array}$

Now without loss of generality we can write,

 $(1+a^2+\ldots+a^n(n-1))=(b^kk_4)(c^kk_5)(d^kk_6)$ (as a cannot be a multiple in right side)

Dividing both sides by b, c, d respectively we find RHS $\equiv 0$ and LHS $\equiv (n+1)/2$

So, we can write, $(n+1)/2 = bcd*a^k_7$ (1)

Dividing both sides of equation (A) by b we get,

RHS = 0 and LHS = $\{(n+1)/2\}(1+c+...+c^p)(1+d+....+d^q)$

We can write, $\{(n+1)/2\}(1+c+...+c^p)(1+d+....+d^q) = b^*(c^k_8)(d^k_9)(a^k_{10}) \dots(2)$

Now dividing this equation by c we get, $RHS \equiv 0$ and LHS should be multiple of c

 $\Rightarrow \{(n+1)/2\}(1+d+...+d^{n}q) = c^{*}(b^{k_{11}})(d^{k_{12}})(a^{k_{13}})$

Putting value of (n+1)/2 from equation (1) we get,

 $1+d+\ldots+d^{n}q = \{b^{n}(k_{11}-1)\}\{d^{n}(k_{12}-1)\{a^{n}(k_{13}-k_{7})\}$

Now dividing both sides by d gives LHS $\equiv 1$ & RHS $\equiv 0 \Rightarrow k_{12} = 1$

Equation becomes, $1+d+...+d^{q} = \{b^{k_{11}-1}\}\{a^{k_{13}-k_{7}}\}$(3)

Dividing equation (2) by d we get, RHS $\equiv 0$ and LHS $\equiv {(n+1)/2}(1+c+...+c^p)$

So, we can write, $\{(n+1)/2\}(1+c+...+c^p) = d^*(b^k_{14})(c^k_{15})(a^k_{16})$

Putting value of (n+1)/2 from equation (1) we get,

 $1 + c + \dots + c^{p} = \{b^{(k_{14}-1)}\}\{c^{(k_{15}-1)}\}\{a^{(k_{16}-k_{7})}\}$

Dividing both sides by c gives LHS $\equiv 1$ & RHS $\equiv 0 \implies k_{15} = 1$

Equation becomes, $1+c+....+c^p = \{b^{(k_{14}-1)}\}\{a^{(k_{16}-k_7)}\}$(4)

Dividing equation (A) by c we get,

 $\{(n+1)/2\}(1+b+...+b^{m})(1+d+...+d^{n}q) = c^{*}(b^{k}k_{17})(d^{k}k_{18})(a^{k}k_{19}) \dots (5)$

Dividing both side of equation (5) by d we get,

 $\{(n+1)/2\}(1+b+....+b^{n}m) = d^{*}(b^{k_{20}})(c^{k_{21}})(a^{k_{22}})$

Putting value of (n+1)/2 from equation (1) we get,

 $1 + b + \dots + b^{m} = \{b^{(k_{20}-1)}\}\{c^{(k_{21}-1)}\}\{a^{(k_{22}-k_{7})}\}$

Now dividing both side by b we get RHS $\equiv 0$ but LHS $\equiv 1 \Rightarrow k_{20} = 1$

Equation becomes, $1+b+...+b^{m} = {c^{k_{21}-1}}{a^{k_{22}-k_{7}}}.....(6)$

Now dividing both sides of equation (5) by b we get,

 $\{(n+1)/2\}(1+d+\ldots+d^{n}q) = b^{*}(d^{n}k_{24})(a^{n}k_{25})(c^{n}k_{26})$

Putting value of (n+1)/2 from equation (1) we get,

 $1 + d + \dots + d^{n}q = \{c^{n}(k_{26}-1)\}\{d^{n}(k_{24}-1)\}\{a^{n}(k_{25}-k_{7})\}$

Now dividing both sides by d we get RHS $\equiv 0$ whereas LHS $\equiv 1 => k_{24} = 1$

Now the equation becomes, $1+d+....+d^q = {c^{(k_{26}-1)}}{a^{(k_{25}-k_7)}}.....(7)$

Now equating RHS of equation (3) and (7), we get

 $\{b^{\wedge}(k_{11}-1)\{a^{\wedge}(k_{13}-k_{7})\}=\{c^{\wedge}(k_{26}-1)\}\{a^{\wedge}(k_{25}-k_{7})\}$

 $\Rightarrow b^{(k_{11}-1)} = \{c^{(k_{26}-1)}\}\{a^{(k_{25}-k_{13})}\}$

As, a, b, c are all prime numbers this equation can only hold when,

 $k_{11} = 1, \ k_{26} = 1 \ and \ k_{25} = k_{13}$

Therefore, Equation (3) or (7) becomes,

 $1+d+....+d^q = a^{(k_{25}-k_7)}....(13)$

Now, Dividing equation (A) by d we get,

 $\{(n+1)/2\}(1+b+....+b^{n}m)(1+c+....c^{n}p) = d^{*}(b^{n}k_{23})(c^{n}k_{24})(a^{n}k_{25}) \dots (8)$

Now dividing both side by c we get,

 $\{(n+1)/2\}(1+b+....+b^{m}) = c^{*}(b^{k_{27}})(d^{k_{28}})(a^{k_{29}})$

Putting value of (n+1)/2 from equation (1) we get,

 $1+b+....+b^{m} = \{b^{(k_{27}-1)}\}\{d^{(k_{28}-1)}\}\{a^{(k_{29}-k_{7})}\}$

Dividing both sides by b RHS \equiv 0 whereas LHS \equiv 1 giving k₂₇ = 1.

Equation becomes, $1+b+....+b^m = {d^{(k_{28}-1)}}{a^{(k_{29}-k_7)}}.....(9)$

Now equating RHS of equation (6) and (9) we get,

 $\{c^{(k_{21}-1)}\}\{a^{(k_{22}-k_{7})}\} = \{d^{(k_{28}-1)}\}\{a^{(k_{29}-k_{7})}\}$

 $\Rightarrow c^{(k_{21}-1)} = \{d^{(k_{28}-1)}\}\{a^{(k_{29}-k_{22})}\}$

As c, d, a are prime this equation can only hold when,

 $k_{21} = 1$, $k_{28} = 1$ and $k_{29} = k_{22}$

So, (6) or (9) becomes, $1+b+...+b^m = a^{(k_{29}-k_7)}$(10)

Now, dividing equation (8) by b we get,

 $\{(n+1)/2\}(1+c+\ldots+c^{n}p) = b^{*}(c^{n}k_{\textbf{30}})(d^{n}k_{\textbf{31}})(a^{n}k_{\textbf{32}})$

Putting value of (n+1)/2 from equation (1) we get,

 $1 + c + \dots + c^{n}p = \{c^{n}(k_{30}-1)\}\{d^{n}(k_{31}-1)\}\{a^{n}(k_{32}-k_{7})\}$

Dividing both sides by c gives RHS $\equiv 0$ whereas LHS $\equiv 1$ giving $k_{30} = 1$

Equation becomes, $1+c+...+c^p = \{d^{(k_{31}-1)}\}\{a^{(k_{32}-k_7)}\}$(11)

Now, equating RHS of equation (4) and (11) we get,

 $\{b^{(k_{14}-1)}\}\{a^{(k_{16}-k_7)}\} = \{d^{(k_{31}-1)}\}\{a^{(k_{32}-k_7)}\}$

 $\Rightarrow b^{(k_{14}-1)} = \{d^{(k_{31}-1)}\}\{a^{(k_{32}-k_{16})}\}$

Now, as b, d, a all are primes, this equation can only hold when,

 $k_{14} = 1$, $k_{31} = 1$ and $k_{32} = k_{16}$

Equation, (4) or (11) becomes, $1+c+...+c^p = a^{(k_{32}-k_7)}$(12)

Now, let's say $k_{\tt 32}\hbox{-}k_{\tt 7}=k_{\tt 33},\ k_{\tt 29}\hbox{-}k_{\tt 7}=k_{\tt 34}$, $\ k_{\tt 25}\hbox{-}k_{\tt 7}=k_{\tt 35}$

Equation (10) => $1+b+...+b^{m} = a^{k_{34}}$ (14)

Equation (12) => $1+c+...+c^{p} = a^{k_{33}}$ (15)

Equation (13) => 1+d+.....+ $d^q = a^k_{35}$ (16)

Putting these values in equation (A) we get,

 $\begin{array}{l} (1 + a^2 + + a^{(n-1)}) = \\ \{a^{(n-k_{33}-k_{34}-k_{35})} \{b^{(m-k_1)}\} \{c^{(p-k_2)}\} \{d^{(q-k_3)}\} \end{array}$

Dividing both side by a, we get, $n = k_{33}+k_{34}+k_{35} = odd$

⇒ One of k₃₃, k₃₄, k₃₅ must be odd. (because the combination can be (odd+even+even) or (odd+odd+odd))

Let's say k₃₃ is odd.

Now, dividing equation (15) by c LHS $\equiv 1$ and RHS $\equiv -1$ (as $a\equiv -1 \pmod{c}$)

Here is the contradiction.

Similarly we can prove when $(1+a) = 2^*(b^k_1)(c^k_2)$ or $2^*(b^k_1)$ as we have proved for $N = (a^n)(b^m)(c^p)$.

So, when $N=(a^n)(b^m)(c^p)(d^q)$ then also N is not perfect number.

In this way we can also prove for $N = (a^n)(b^m)....(k^y)$

So, Odd perfect number doesn't exist.

P.S. Numbers which are of the form $(2^n-1)*2^n(n-1)$ where (2^n-1) is a prime are perfect number.

REFERENCES

- Wolfgang Crayaufm"uller. Table of aliquot sequences. accessed, Nov 20, 2007.
- [2] John Derbyshire. Prime obsession. Plume, New York, 2004. Bernhard Riemann and the greatest unsolved problem in mathematics, Reprint of the 2003 original [J. Henry Press,Washington, DC; MR1968857].
- [3] L.E. Dickson. History of the theory of numbers.Vol. I:Divisibility and primality. Chelsea Publishing Co., New York, 1966.
- [4] J. Sandor Dragoslav S. Mitrinovic and B. Crstici. Handbook of Number Theory. Springer, 1996. Mathematics and Applications.
- [5] Steven Gimbel and John H. Jaroma. Sylvester: ushering in the modern era of research on odd perfect numbers. Integers. Electronic Journal of Combinatorial Number Theory, 3, 2003.
- [6] Jay R. Goldman. The Queen of Mathematics, a historically motivated guide to number theory. A.K. Peters, Wellesley, Massachusetts, 1998.
- [7] R. Guy and J.L. Selfridge. What drives an aliquot sequence. Mathematics of Computation, 29:101–107, 1975.
- [8] Richard Guy. The strong law of small numbers. Amer. Math. Monthly, 95:697–712, 1988.
- [9] Richard K. Guy. Unsolved Problems in Number Theory. Springer, Berlin, 3 edition, 2004.
- [10] P. Hagis. A lower bound for the set of odd perfect numbers. 27, 1973.
- [11] Judy A. Holdener. A theorem of Touchard on the form of odd perfect numbers. Amer. Math. Monthly, 109(7):661–663, 2002.
- [12] M. Kishore. Odd integers n with five distinct prime factors for which $2 10-12 < \sigma(n)/n < 2 + 10-12$. 32, 1978. V. Klee and S.Wagon. Old and new Unsolved prob

Shubhankar Paul, Passed BE in Electrical Engineering from Jadavpur University in 2007. Worked at IBM as Manual Tester with designation Application Consultant for 3 years 4 months. Worked at IIT Bombay for 3 months as JRF. Published 2 papers at International Journal.