

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-7, September 2013

 66



Abstract— In this paper comparison of array, booth radix-2

and booth radix-4 multipliers have been presented. Low power

consumption and smaller area are some of the most important

criteria for the fabrication of DSP systems and high performance

systems. Optimizing the speed and area of the multiplier is a

major design issue. In this paper we determine the best solution

to this problem by comparing a few multipliers. The proposed

architectures are synthesized using Xilinx tool and implemented

on FPGA. Based on the theoretical and experimental estimation,

analysis was carried on results such as the amount of hardware

resources and delay. Proposed multipliers can be used for high

performance applications like signal processing, image

processing.

Index Terms—Array multiplier, Booth multiplier, Xilinx,

FPGA

I. INTRODUCTION

 Multiplication is an important fundamental function in

arithmetic operations. Multiplication- based operations such

as Multiply and Accumulate (MAC) is used in many Digital

Signal Processing (DSP) applications such as convolution,

Fast Fourier Transform (FFT), filtering and in the arithmetic

and logic unit of microprocessors. Since multiplication

dominates the execution time of most DSP algorithms and

determines the speed of ALU, there is a need of high speed

multiplier. The power dissipation arises from the charging

and discharging of the circuit node capacitances found on the

output of every logic gate. Power management is the careful

planning of power budget for every subsystem of a VLSI

chip. This is especially important issue for today‘s complex

systems. The most important and successful use of power

management is to deactivate a portion of circuit when its

computation is not required. Every low-to-high logic

transition in a digital circuit incurs a change of voltage,

drawing energy from the power supply.

 In this paper, analysis is done on these multipliers and

they are compared in terms of number of gates, LUT‘s used

and power consumption. Among these multipliers, Booth

Multiplier is optimized in terms of power consumption

II. OBJECTIVES AND TOOLS EMPLOYED

A. Objective of the project

 The main objective of this paper is to compare various

Manuscript received September 20, 2013
 B Naga Venkata Satya Durga Jahnavi, Electronics and

Communication Engineering, VNR VJIET, Hyderabad, India.

Shivani Mupparaju, Electronics and Communication Engineering,
VNRVJIET, Hyderabad, India.

L.Padmasree, Electronics and Communication Engineering, VNR

VJIET, Hyderabad, India.

multipliers and determine the best among them in terms of

delay and power consumption with the help of Xilinx Timing

and Power Analyzers. Then they are targeted on FPGA

B. Tools Used

Simulation Software: ISE 10.1 for design and

implementation and Model Sim 6.1 is used for Modelling and

Simulation

C. Hardware Used

 Xilinx vertex 2p (Family), XC2VP30 (Device), FG

(Package) FPGA device.

III. TYPES OF MULTIPLIER ARCHITECTURES

A. Array multiplier

 A Binary multiplier is an electronic hardware device

used in digital electronics or a computer or other electronic

device to perform rapid multiplication of two numbers in

binary representation. It is built using binary adders.

 The rules for binary multiplication can be stated as

follows

1. If the multiplier digit is a 1, the multiplicand is simply

copied down and represents the product.

2. If the multiplier digit is a 0 the product is also 0.

 For designing a multiplier circuit we should have

circuitry to provide or do the following three things:

1. It should be capable identifying whether a bit 0 or 1 is.

2. It should be capable of shifting left partial products.

3. It should be able to add all the partial products to give

the products as sum of partial products.

4. It should examine the sign bits. If they are alike, the sign

of the product will be a positive, if the sign bits are opposite

product will be negative. The sign bit of the product stored

with above criteria should be displayed along with the

product.

 From the above discussion we observe that it is not

necessary to wait until all the partial products have been

formed before summing them. In fact the addition of partial

product can be carried out as soon as the partial product is

formed.

Notations:

 a – Multiplicand

 b – Multiplier

 p – Product

Design, Comparison and Implementation of

Multipliers on FPGA

B Naga Venkata Satya Durga Jahnavi, Shivani Mupparaju, Dr.L Padmasree

Design Comparison and Implementation of Multipliers on FPGA

67

Binary multiplication (eg n=4)

p=a×b

a: an−1 an−2….a1 a0

b:bn−1bn−2…..b1b0

p:p n−1 p n−2…..p1 p0

 x x x x a

 x x x x b

 x x x x b0a20

 x x x x b1a21

 x x x x b2a22

 x x x x b3a23

 x x x x x x x x p

Fig .1 Proposed Architecture of 4x4 array multiplier

B .Booth Multiplier

Major limitation of array multiplier is its size. As

operand sizes increase, arrays grow in size at a rate equal to

the square of the operand size hence speed of multiplier

reduces .In order to increase the speed of multiplier booth

algorithm is used. The Booth multiplier makes use of

Booth encoding algorithm in order to reduce the number of

partial products by considering two bits of the multiplier at a

time, thereby achieving a speed advantage over other

multiplier architectures. This algorithm is valid for both

signed and unsigned numbers. It accepts the number in 2's

complement form, based on radix-2 computation.

Booth algorithm gives a procedure for multiplying binary

integers in signed 2‘s complement representation. I will

illustrate the booth algorithm with the following example:

Example, 2 ten x (- 4) ten

0010 two * 1100 two

 Fig. 2 Block Diagram of Booth Multiplier

Booth Encoder

1) Making the Booth table:

I. From the two numbers, pick the number with the smallest

difference between a series of consecutive numbers, and

make it a multiplier.

i. i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to 0

another change, so there are two changes on this one.

ii. 1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0 no

change, so there is only one change on this one.

iii. Therefore, multiplication of 2 x (– 4), where 2 ten (0010

two) is the multiplicand and (– 4) ten (1100two) is the

multiplier.

II. Let X = 1100 (multiplier)

Let Y = 0010 (multiplicand)

Take the 2‘s complement of Y and call it –Y

–Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first least

significant bit of X.

V. Load 0 in U and V rows which will have the product of X

and Y at the end of operation.

VI .Make four rows for each cycle; this is because we are

multiplying four bits numbers.

Table 2.1. Step1 ofRadix-2 Booth multiplication

 2) Booth Algorithm

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-7, September 2013

 68

Booth algorithm requires examination of the multiplier bits,

and shifting of the partial product. Prior to the shifting, the

multiplicand may be added to partial product, subtracted

from the partial product, or left unchanged according to the

following rules:

Look at the first least significant bits of the multiplier ―X‖,

and the previous least significant bits of the multiplier ―X -

1‖.

I. 0 0 Shift only

II. 1 1 Shift only.

III. 0 1 Add Y to U, and shift

IV. 1 0 Subtract Y from U, and shift or add (-Y) to U and shift

V. Take U & V together and shift arithmetic right shift which

preserves the sign bit of 2‘s complement number. Thus a

positive number remains positive, and a negative number

remains negative.

VI. Shift X circular right shift because this will prevent us

from using two registers for the X value.

VII. Repeat the steps until four cycles are completed.

Table 2.2 Step3 in Radix-2 Booth Multiplication Process

Table 2.3 Step4 in Radix-2 Booth Multiplication Process and Final Result in

the Final Cycle

After finishing four cycles, so the answer is shown, in the last

rows of U and V which is: 11111000 two

NOTE: By the fourth cycle, the two algorithms have the

same values in the Product register.

Group of consecutive 0‘s in multiplier - no new partial

product - only shift partial product right one bit position for

every 0 Group of m consecutive 1's in multiplier - less than m

partial products generated

...01…110... = ...10...000... - ...00...010...

Using SD (signed-digit) notation =...100...010...

Example:

...011110... = ...100000... - ...000010... = ...100010...

(Decimal notation: 15=16-1)

Instead of generating all m partial products - only 2 partial

products generated First partial product added - second

subtracted-number of single-bit shift-right operations still m.

Table 2.4. Radix-2 Booth Multiplier Logic

Recoding multiplier xn-1 xn- 2...x1 x0 in SD code.Recoded

multiplier yn-1 yn-2 ... y1 y0. xi, xi-1 of multiplier examined

to generate yi. Simple recoding is yi = xi-1 – xi.

Example: Multiplier 0011110011(0) recoded as 0100010101

- 4 instead of 6 add/subtracts.

Drawbacks Of Radix-2 Booth Multiplier

There is a problem of isolated one‘s. To overcome

this drawback, instead of comparing two bits at a time, we are

going for comparison three bits at a time

3) Modified Booth Encoder

Modified Booth encoding is most often used to avoid variable

size partial product arrays. Before designing a MBE, the

multiplier B has to be converted into a Radix-4 number by

dividing them into three digits respectively according to

Booth Encoder Table given afterwards. Prior to convert the

multiplier, a zero is appended into the Least Significant Bit

(LSB) of the multiplier. In this approach instead of eight

partial products being generated using conventional

multiplier only 4 partial products are generated. Table 4.2.

shows the truth table for a Booth encoder. The encoder takes

inputs YN+1, YN and YN-1 from the multiplier bus and

produces a 1 or a 0 for each operation: single, double,

negative(X, 2X and Neg).

Table:3.1 Truth table for Modified Booth Encoder

Design Comparison and Implementation of Multipliers on FPGA

69

This Booth multiplier technique is to increase speed by

reducing the number of partial products by half. The operand

that is booth encoded is called multiplier, and the other

operand is called multiplicand.

In most of the cases MBE scheme is used for generating

PP, because of its ability to reduce the number of PP by

half[7]. The truth table shows the function of booth encoder.

If a 3-bit binary input sequence is given at the input, and

perform the operation as mentioned in front of it, the partial

products will be generated.

Fig.3 Booth Encoder

IV. RESULTS AND ANALYSIS

A) SIMULATION

 The different multipliers are simulated using Xilinx 10.1

ISE simulator after writing the code.

 1) Simulated Output of Array Multiplier

Figure: 4.1 Simulation of Array Multiplier

Table: 4.1 Various identifiers used in the simulation of Array Multiplier

IDENTIFIER MODE TYPE NO OF

BITS

A In Std_logic_vector 8

B In Std_logic_vector 8

Prod Out Std_logic_vector 16

Description:

 As the Array Multiplier can handle only unsigned bits. From

the simulated wave form it is observed as below

Table: 4.2 Inputs and Outputs of the Array Multiplier

INPUT1(a)

INPUT2(b)

OUTPUT(prod)

00000001

00000011

0000000000000011

 2) Simulated Output of Radix-2 Booth Multiplier

 Booth Multiplier can handle both signed and unsigned

numbers. This algorithm is efficient in terms of reducing time

delay and power consumption. The reduction of time delay

and power consumption is possible only by reducing the

partial products. Finally it has been proved to be more

efficient when compared to all the multipliers in terms of

time delay and power consumption.

Figure: 4.2 Simulation Of Radix-2 Booth Multiplier

Table 4.3 Various Identifiers Used In the Radix-2 Booth Multiplier

Simulation

IDENTIFIER MODE TYPE NO OF

BITS

A In Std_logic_vector 8

B In Std_logic_vector 8

Mul Out Std_logic_vector 16

Description

Booth Multiplier can handle both signed and unsigned

numbers. From the simulated wave form it is observed.

Table: 4.4 Inputs And Outputs Applied To The Radix-2 Booth Multiplier

INPUT1(a) INPUT2(b) OUTPUT(mul)

00000100 00000011 0000000000001100

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-7, September 2013

 70

3)Simulated Output of Radix-4 Booth Multiplier

Figure: 4.3 Simulation Of Radix-4 Booth Multiplier

Table 4.5 Various Identifiers Used In The Radix-4 Booth Multiplier

Simulation

IDENTIFIER

MODE

 TYPE NO

OF

BITS

 A In Std_logic_vector 8

 B In Std_logic_vector 8

 Yout Out Std_logic_vector 16

Description

Booth Multiplier can handle both signed and unsigned

numbers. From the simulated wave form it is observed.

Table: 4.6 Inputs And Outputs Applied To The Radix-4 Booth Multiplier

INPUT1(a) INPUT2(b) OUTPUT(yout)

00000001 00000011 0000000000000011

The MSB bit represents the signed bit. If it is ‗1‘, it

represents the negative number and if it is‘0‘, it represents the

positive number. It is mainly meant to reduce the time delay

by reducing the partial products and it is mainly

advantageous when there are group of 1‘s and finally it is

found to be efficient in terms of power consumption.

B) ANALYSIS REPORT

The Timing report of the multiplier is generated by

synthesis zing the given code, After synthesizing the given

code, we have to target this code on to the Field

Programmable Gate logic Array (FPGA).Initially, the

package pins are assigned to each port and after that we have

to configure the devices in Slave/Serial mode and finally we

have to dump the code in the FPGA and verify the outputs.

 Figure: 4.4 Design Summary of Array Multiplier

 .
Figure: 4.5 Design Summary of Radix-2 Booth Multiplier

Design Comparison and Implementation of Multipliers on FPGA

71

Figure: 4.6 Design Summary of Radix-4 Booth Multiplier

C) RTL AND TECHNOLOGY SCHEMATICS

RTL VIEW

 RTL View is a Register Transfer Level graphical

representation of your design. This representation (.ngr file

produced by Xilinx Synthesis Technology (XST)) is

generated by the synthesis tool at earlier stages of a synthesis

process when technology mapping is not yet completed. The

goal of this view is to be as close as possible to the original

HDL code. In the RTL view, the design is represented in

terms of macro blocks, such as adders, multipliers, and

registers. Standard combinatorial logic is mapped onto logic

gates, such as AND, NAND, and OR.

Technology schematic:

This schematic shows the representation of design in terms

of logic elements optimized to the target Xilinx device or

―technology‖ , for example, in terms of LUTS, carry logic,

IOB‘S and other technology specific components. Viewing

this schematic allows you to see a technology level

representation of your HDL optimized for a specific Xilinx

architecture, which may help you discover design issues early

in the design process.

1). ARRAY MULTIPLIER

 1.1. RTL SCHEMATIC

 1.2. TECHNOLOGY SCHEMATIC

 2.) BOOTH MULTIPLIER (RADIX-2)

 2.1. RTL SCHEMATIC

 2.2. TECHNOLOGY SCHEMATIC

 International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-7, September 2013

 72

5.3.) BOOTH MULTIPLIER (RADIX-4)

 3.1. RTL SCHEMATIC

 3.2. TECHNOLOGY SCHEMATIC

V. COMPARISON OF MULTIPLIERS

A. Time Delay Analysis of Various Multipliers

S.No Multiplier Time Delay

1 Array Multiplier 15.529 ns

2 Radix-2 Booth Multiplier 14.338 ns

3 Radix-4 Booth Multiplier 30.078 ns

B. Performance Comparison of Various Multipliers

Specifications Array

multipler

Radix-2

booth

multiplier

Radix-4

booth

multiplier

No. of slices 4% 8% 6%

No. of LUTs 4% 8% 6%

No. of bonded

IOBs

22% 22% 23%

VI. FPGA IMPLEMENTATION

We have used Spartan-3 FPGA kit to show the outputs of

the three multipliers, Array, Booth Radix-2 and Radix-4.The

following are the results obtained for 2-bit multiplication on

Spartan-3.

A. Array Multiplier

 Figure 6.1.Array Multiplier output

B. Booth Radix-2 Multiplier:

Figure 6.2.Booth Radix-2 Multiplier output

C. Booth radix-4 Multiplier:

Figure 6.3.Booth Radix-4 Multiplier output

Design Comparison and Implementation of Multipliers on FPGA

73

VII. CONCLUSION

This paper attempts to give a clear concept of different

multipliers and their comparison. We found that the parallel

multipliers are better than the serial multiplier. We concluded

this from the result of power consumption and the total area.

Incase of parallel multipliers, the total area is much less than

that of serial multipliers. Hence the power consumption is

also less. This is clearly depicted in our results. This speeds

up the calculation and makes the system faster. While

comparing the radix 2 and the radix 4 booth multipliers we

found that radix 4consumes lesser power than that of radix 2.

This is because it uses almost half number of iteration and

adders when compared to radix 2.When all the three

multipliers were compared we found that array multipliers

are most power consuming. This is because it uses a large

number of adders. As a result it slows down the system

because the system has to perform more number of

calculations in case of array multiplier. Multipliers are one

the most important component of many systems. So we

always need to find a better solution in case of multipliers.

Preferably multipliers should always consume less power and

cover less area. So through our project we try to determine

which of the three algorithms works the best. In the end we

determine that radix 4 modified booth algorithm works the

best. Also the implementation using FPGA and the time

delay obtained concludes that same as stated above.

ACKNOWLEDGMENT

I would like to express my gratitude to the following

people for their support and guidance for the success ofthis

paper. I express my deep sense of gratitude to

Dr.L.Padmasree, Professor, ECE, VNRVJIET, Hyderabad,

India. I am deeply indebted to Dr.C.D Naidu,Principal,

VNRVJIET, Hyderabad, India

REFERENCES

[1] ―Modeling of Time Delay in VHDL-based Design of a Multiplier‖ Z. A

bid Electrical Engineering Department Pobox 800, King Saud

University, Riyadh 11421.

[2] ―A Two’s Complement Parallel Array multiplication Algorithm‖ By

Charles.R.Baugh and Bruce.A.Wooley.

[3] Computer System Architecture by ―Marris Mano‖.

[4] M. Miyamotoetal, ―High -Speed and Low-Power Interconnect
Technology for Sub-Quarter-Micron ASIC’s‖, IEEE Transaction on

Electron Devices, V. 44, No 2, 250, 1997.

[5] A. Bellaouar and M. I. Elmasry, ―Low-Power Digital VLSI Design‖,
Kluwer Academic Publishers, 1995..

[6] ―Low voltage, low power VLSI subsystems‖ By Kiat Seng Yeo,

Kaushik Roy
[7] ―Digital Design‖ By John.F.Wakerly.

[8] ―VHDL Premier and VHDL Synthesis‖ By V.J.Prasad.

[9] Marc Hunger and Daniel Marienfeld, ―New self checking booth
multiplier‖, Int J. Appl. Math, Comput. Sci.,Vol.18, No.3,

319–328,2008

[10] Fayed and M. Bayoumi, ―A merged multiplier-accumulator for
high speed signal processing application‖, Proc. ICASSP, vol. 3,

pp.3212–3215, 2002

[11] ―FPGA implementation of different architectures‖ by Laxman S,
Darshan, Dr Chirag Sharma., IJATAE, Volume2, Issue6.

B Naga Venkata Satya Durga Jahnavi was born in 1991,.She did her
Bachelors in Electronics and Communication Engineering from VNR

Vignana Jyothi Institute of Engineering and Technology affiliated to JNTU,

Hyderabad, India. Her interests include VLSI, Image Processing and
Embedded Systems.

 Shivani Mupparaju was born in 1992. She did her Bachelors in

Electronics and Communication Engineering from VNR Vignana Jyothi
Institute of Engineering and Technology affiliated to JNTU, Hyderabad,

India. Her interests include VLSI, Image Processing and Embedded

Systems.
 Dr.L.Padmasree was born in 1966. She did her B.Tech from Bapatla

Engineering College, India. She received PhD in 2010 from JNTU, India.

She is working as a professor in Electronics and Communication
Engineering department in VNR Vignana Jyothi Institute of Engineering and

Technology affiliated to JNTU, Hyderabad, India. Her research areas include

Image Processing, VLSI, Digital Systems and Neural Networks.

