

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-5, July 2013

 1 www.erpublication.org

Abstract— Software Reuse increases the productivity and

reduces the cost and improves the Quality of the software

development. Reusability is one of the most important

Quality Characteristic. Therefore it is necessary to measure

the reusability of the module in order to realize the reuse of

module effectively. By reuse the module of existing software

has increased in past recent year which impact more on the

software quality. Many measuring Reusability methods

have been proposed for estimating the reusability of

module.

Index Terms—Reusability, Modularity, Coupling, Cohesion,

Inheritance.

I. INTRODUCTION

Reusability is the degree to which existing module or

component used in Software system or new project. Software

Reuse reduces the cost, improves the quality and increases the

productivity of the software development. Reusability is one

of the quality characteristic. Therefore it is necessary to

measure the reusability of the module in order to realize the

reuse of module effectively. The practice of reuse of existing

software has increased in recent years which have a great

impact on the software quality.

Any Module can be reused in software development

process in two ways which are:

 Reuse the module without modification: it is the extent of

ease with which the existing module can be used in the new

development.

 Reuse the module with modification: it is the extent to

which some part of the module with modification can be

reused in the development.

If we reuse the oldest module which is already develop in

new system it increase the productivity because effort of the

programme is reduce and it correctness is also increase

because the exist system already tested..

Manuscript received June 28, 2013

 Nehil Rao Nirmal, Department of Computer Science & Engineering,

Raipur Institute of Technology, Raipur, India

Avinash Dhole, Department of Computer Science & Engineering,

Raipur Institute of Technology, Raipur, India

II. WHY REUSE IS IMPORTANT?

Many Organization and department, by increasing the level

of the software reuse, save the time and development cost

taken to develop the software. U.S. Department saved 300

million $ by increasing the 1% software reuse.[1] Reusability

measurement is providing the way to build and identify the

reusable modules from existing program. Existing programs

contain the knowledge and experience of the developers who

are expert in particular application domain. So if we extract

information from existing program which meet the needs of

the software organization then it is beneficial for the

organization.

These are the some example where reuse helps

 In Missile Systems Division (MSD) using the

software reuse concept it increased the 50%

productivity.[3]

 American Navy uses the reusable modules which

reduce 26 % of labor required to develop and

maintain the Restructured Naval Tactical Data

Systems (RNTDS).[4]

 Magnavox saw if we are using the reusable modules to

develop the Force Fusion System Prototype (FFSP),

it reduces the 20% of the development time of

estimated time for developing the new system.[3]

III. DEFINITION OF REUSE TYPES

Bieman et al‟s [9] defined the several types of reuse and

defined the three types of reuse in the three perspectives.

These are explained as follows:

A) Public Reuse: Fenton define the public reuses as “the

proportion of a product which was constructed externally

“[5].

Public reuse = length (E) / length (p);

E is the code developed externally. P is the new system

including E.

B) Private Reuse: Fenton defines private reuse (or perhaps

more appropriately internal reuse) as the “extent to which

modules within a product are reused within the same product”

[5]. Fenton uses the call graph which represents the flow

connection of the module .In these graphs node represents the

module and they are connected through edges. If one node

calls another node then edge displays the connection between

them. Fenton provides the formula for calculating the private

reuse in call graph as follows: [2]

R (G) = e – n + 1;

Method for Estimating Reusable Module in Object

Oriented Program

Nehil Rao Nirmal, Avinash Dhole,

Method for Estimating Reusable Module in Object Oriented Program

 2 www.erpublication.org

e is total no of edges in graph. And n is the number of the

nodes in graph.

C) Leveraged Reuse: In Leveraged reuse means a

modification of reuse is allowed. [6][8]

D) Verbatim Reuse: In Verbatim reuse means a modification

of reuse is not allowed.[6][8]

E) Direct Reuse: Direct reuse is reuse without using the

intermediate entity. One module directly calls another

module.

F) Indirect Reuse: Indirect reuse is reuse through an

intermediate entity. When first module calls second module

and second module calls the third module then first module

indirectly calls the third module.

Three Perspectives for reuse:

Bieman [9] provided the three perspective view for

identifying the reuse views. These are described as follows:

Server Perspective: perspective of the library component

known as a server perspective. Server reuse of the any class

will characterize how one class is using the other class.

Client Perspective: Client perspective means how one

particular entity is using the other entity i.e. how the new

system using the existing system.

System Perspective: it is the combination of the both server

perspective and client Perspective.

IV. APPROACH FOR IDENTIFICATION OF REUSABLE MODULE

For identification of reusable module consist following

step and these are: Analyzing the source code and calculating

the all metrics and displaying the result. These steps are

shown in figure 1

Figure-1

V. PARAMETERS FOR CALCULATING REUSABILITY

A. D.I.T. (Depth of Inheritance)

This metric is used for measuring the inheritance

complexity for the programs, when programmer uses the

inheritance in his program then this Metric can be used. DIT is

the Maximum depth from the root node of tree to particular

node. Here class is represented as a node. Deeper node in the

tree has more no of the methods because they inherit the more

classes in the tree and it makes the class more complex.

Figure-2 shows the algorithm for D.I.T Calculator.

B. Weighted Method per Class (W.M.C.)

This metrics is used for calculating the structure complexity

of the programs. WMC is sum of complexity of the all

methods which is implemented in class. And method

complexity is measured by using Cyclomatic Complexity.
Suppose class is having the methods (m1, m2, and m3…mn)

and complexity of the methods are (c1, c2, and c3…cn) then

WMC = c1+c2+c3+…. +cn;

Cyclomatic Complexity has foundation of the graph theory

and is computed in one of the 3 ways. [8]

Number of regions in flow graph. Cyclomatic Complexity

defined in flow graph as follow

C (G) = E – N +2;

Where E is the no. of the edge in the graph and N is the no. of

the nodes in graph. Cyclomatic Complexity defined in flow

graph as follow

C (G) = P+1;

Where „P‟ is number of predicate nodes in the graph.

Statement where we are taking some decision are called

predicate node. An algorithm is given in figure-3.

Figure-2 Algorithm for D.I.T. calculator

C. Number of Children (N.O.C.)

NOC is defined as Number of the Sub- Classes of the

Particular class in hierarchy of the class. If class has more

children then it requires more testing because subclass may

misuse the super class.

DIT = 0

Get the Super class

of the all class in the

package

Make a tree based

on that information

Find the Maximum

Depth (Max)

DIT = Max

Source

Code
Extract

the Code

Displaying

Source Code

is Reusable

or Not

Calculating

Metrics

Displaying

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-5, July 2013

 3 www.erpublication.org

D. Lines of Code (L.O.C.)

This metrics used for measuring the size of the program by

counting the no of line in program. Lines of Code (LOC)

counts all lines like as source line and the number of

statements, the number of blank lines, and the number of

comment lines.

E. Comment Percentage (C.P.)

CP is calculated by number of comment line divided by Line

of Code. High value of the CP increases the understandability

and maintainability.

 CP = Comment Line / LOC;

F. Public Interface Size (P.I.S.)

Public interface size is defined as a number of the public

method present in the class. Which describe how much other

class is using that class‟ method?

Figure-3 Algorithm for WMC Calculator

G. Module Coupling

Coupling can occur if

 A method of one class is invoked from another class

 An attribute of one class is modified / used by a

method of another class

 An attribute is defined in terms of something defined

in another class

We are using the Coupling Metrics for determine Coupling

between the classes. This metrics is also determining the

indirect Coupling between the classes. Suppose system

having the Set of class C = {C1, C2, C3….Cn} and Mj = {M1,

M2, M3 ….Mk} is the set of the methods which is having in

class Cj.And Ri,j is defined as no of the method and instance

variable in class Cj which is called by class Ci. [9]

We define Direct Coupling between class I to class j

CoupD (i,j), as ratio of number of methods of class j called by

class I to total no of the methods in the class i.Measure the

coupling of the class is defined as

H. Module Cohesion

We use the Cohesion Metrics for determining Cohesiveness

of the class. This metrics also determines the indirect

cohesion between the methods.

Suppose class have a set of methods M = {M1, M2, M3…

Mn} and Vj = {V1, V2, V3… Vm} is the set of instance

variable used by method Mj. [9]

We calculate the direct similarity of two methods Mi and Mj

by using this formula.

 jiji VVVVjiSimD /,

The cohesion of the class is defined as

VI. REUSABILITY METRICS

Identify the reusable module is one of the difficult task. We

already explain factor on which reusability depend. Most

important factor on which reusability depends are coupling

and complexity. If the coupling is high of module and

reusability of that module is low. And if the complexity of the

module is high then reusability of that module is low. [6]

Formula for calculating the reusability of objected oriented

program is described below.

CDIMusability 25.025.025.025.0Re

Where, M is Modularity of system

I is Interface Size of system

C is Complexity of system

D is Documentation of system

There are some software attributes which affect the reuse. The

relationship between these attribute and the reusability are

explained as follows:

 Class size: if the size of the class is large then it is

hard to understand and difficult to reuse.

 WMC=0

Obtain the list of

method in class (n)

Select the method one

by one from list

Find the predicate node

(P) in the method

WMC = WMC + CC

N > 0

Cyclo Comp = p+1

Class Coup = ∑ Coup (i,j) / (m*m-m);

 m)-m*(m / j) (i, SimClassCoh

Method for Estimating Reusable Module in Object Oriented Program

 4 www.erpublication.org

 Complexity : if the complexity of the class is high or

for developing the class developer uses a

complicated structure then that type of class is

difficult to understand and difficult to reuse.

 Dependencies: Dependency of the one module to

several modules may also make reuse more difficult

 Complexity of interface: Complicated interface

make reuse difficult.

VII. CONCLUSION

The Purpose of this method is finding the approach and

way to calculate reusability of object oriented programs.

Reusability is one of the quality attribute and it is of prime

importance in object oriented software development as

reusability leads to increase in developer productivity, reduce

development cost as well as reduce time to market.

REFERENCES

[1] Anthes, Gary I I., “Software Reuse Plans

BringPaybacks,” Computeworld, Vol. 27, KO. 49,

pp.73-76.

[2] [BB81] J.W. Bailey and V.R. Basili. “A meta-model

for software development resource expenditures”.

Proc. Fifth Int. Conf. Software

Engineering.Pages107-116. 1981.

[3] [CDS86] S.D. Conte, H.E. Dunsmore, and V.Y.

Shen, “Software Engineering Metrics and Models”.

Benjamin"Cummings, Menlo Park, California 1986.

[4] [Boe81] B. W. Boehm. “Software Engineering

Economics” .Prenntice Hall, Englewood Cliffs, NJ,

1981.

[5] [Fen91] Norman Fenton. “Software Metrics A

Rigorous Approach” .Chapman & Hall, London,

1991.

[6] [Sel89] Richard W. Selby. “Quantitative studies of

software reuse”. In Ted J. Biggersta and Alan J.

Perlis, editors,

[7] Software Reusability Vol II Applications and

Experiences, Addison Wesley, 1989.

[8] http://www.indiawebdevelopers.com/articles/reusabil

ity.asp

[9] [CK93] Shyam R. Chidamber, Chris F. Kemerer, “A

metrics suit for object oriented design”,1993

AUTHOR PROFILE

Nehil Rao Nirmal received the B.E.

degree in Information Technology

Engineering from Pt.Ravi Shanker Shukla

University Raipur in 2007. During

2007-2008, he stayed in State Wide Area

Network Laboratory, in N.I.C. Raipur. In

2008 he joined as an assistant professor of Department of

Information Technology in Raipur Institute of Technology.

He is now pursuing Master of Technology in Computer

Science & Engineering at Chhattisgarh Swami Vivekananda

Technical University, Bhilai. He is also a research scholar/

Student of M.Tech in R.I.T., Raipur. Presently he is working

on the principles of Software Engineering Metrics.

Avinash Dhole is The Head of Computer

Science & Engineering Department in

Raipur Institute of Technology, Raipur. He

received his B.E. degree in Computer

Science from Government Engineering

College, Bilaspur. He joined as an assistant

professor at Raipur Institute of Technology

in 2005. During this period he obtained Master of Technology

degree from C.S.V.T University, Bhilai in 2009. He has

worked on various researches such as automata theory,

software engineering and neural networks.

