
 

International Journal of Engineering and Technical Research (IJETR) 

 ISSN: 2321-0869, Volume-1, Issue-2, April 2013   

 

                                                                                              8                                                         www.erpublication.org 

 

Abstract— The paper presents an overview on architectures 

for design implementations of VLSI architecture schemes as 

specified By standardization committees of the ITU and ISO. 

Implementation strategies are discussed and split into function 

specific and programmable architectures. As examples for the 

function oriented approach, alternative architectures will be 

evaluated. It is also dedicated decoder chips are included. 

Architectures are presented for reported design examples from 

the literature. Heterogeneous processors outperform 

homogeneous processors because of adaptation to the 

requirements of special subtasks by dedicated modules. 

Majority of heterogeneous process incorporate dedicated 

modules for high performance subtasks of high regularity By 

normalization to a fictive 1.0 pm CMOS process typical linear 

relationships between silicon area and through-put rate have 

been determined for the different architectural style. This 

relationship indicating a figure of merit for silicon efficiency. 

 

Index Terms— Central Processing Unit (CPU), CMOS, 

SIMD, MISD, Shared Memory (SM).  

 

I. INTRODUCTION 

  Before going on to the descriptions of the machines 

themselves, it is very important to consider some 

mechanisms that are or have been used to increase the 

performance. The architecture and hardware structure 

determines to a large extent what the possibilities and 

impossibilities are in speeding up a computer system beyond 

the performance of a single CPU. Another important factor 

which is considered in combination with the hardware is the 

capability of compilers to generate efficient code to be 

executed on the given hardware platform. In many cases it is 

hard to distinguish between hardware and software 

influences and one has to be careful in the interpretation of 

results when ascribing certain effects to hardware or software 

peculiarities. In this chapter we will give most accentuation 

to the hardware architecture.  

      This classification is based on the way of manipulating of 

instruction and data streams and comprises four main 

architectural points. We will first briefly sketch these classes 

and afterwards fill in some details when each of the classes is 

described separately 

 
Manuscript received April 19, 2013 

 

 Veni Madhav Sharma : is M.Tech. scholar from Rajasthan Technical 

University. 

 

Javed Ali Mansuri is Lecturer in Department of Electronics & 

communication Engineering at Pacific University, Udaipur, Rajasthan, India. 

 

Sunil Sharma is Working as Assistant professor in Electronics & 

communication Engineering  department at Pacific University, Udaipur, 

Rajasthan, India. 

II. ARCHITECTURAL CLASSES OF VLSI DESIGN  

 SISD machines: These are the conventional systems that 

contain one CPU and hence can accommodate one 

instruction stream that is executed serially. Now a days many 

large mainframes may have more than one CPU but each of 

these execute instruction streams that are unrelated. 

Therefore, such system should be regarded as (a couple of) 

SISD machines acting on different type of  data spaces. For 

examples of SISD machines are for instance most 

workstations like those of DEC, Hewlett-Packard, IBM and 

SGI. The definition of SISD machines is given here for 

completeness' sake. We will not discuss this type of machines 

in this report. SIMD machines: Such systems often have a 

large number of processing units, ranging between 1,024 to 

16,384 that all may execute the same instruction on different 

data in lock-step. 

    So, a single instruction manipulates many data items in 

parallel. For examples of SIMD machines in this class are the 

CPP DAP Gamma II and the Quadrics Ape mille which are 

not marketed anymore since about 2 years. Never the less, 

this concept is still interesting and it may be expected that 

this type of system will come up again or at least as a 

co-processor in large, heterogeneous HPC systems. 

Nevertheless, the concept is still interesting and it is 

recurring these days as a co-processor in HPC systems be it in 

a somewhat restricted form, for instance, a Graphical 

Processing Unit (GPU).  

   Another subclass of the SIMD systems are the vector 

processors. Vector processors act on arrays of similar data 

rather than on single data items using specially structured 

CPUs. When data can be manipulated by these vector units, 

results can be delivered with a rate of one, two and — in 

special cases — of three per clock cycle (a clock cycle being 

defined as the basic internal unit of time for this system). So, 

vector processors execute on their data in an almost parallel 

way but only when executing in vector mode. In this case they 

are minimum times faster than when executing in 
conventional scalar mode field. For the practical purposes 

vector processors are therefore mostly regarded as SIMD 

machines. An example of such a system is for instance  

SX-9B and the Cray X2. 

 

 MISD machines: Theoretically in these types of machines 

multiple instructions should act on a single stream of data. 

As yet no practical machine in this class have been 

constructed nor are such systems easily to conceive. We will 

disregard them in the following discussions.  

 
 MIMD machines: These machines execute several 

instruction streams in parallel on different data. The 

difference with the multi-processor SISD machines 

Study of Architectural Design of VLSI  

Veni Madhav Sharma, Javed Ali Mansuri, Sunil sharma        



      Study of Architectural Design of VLSI  

      

                                                                                              9                                                                     www.erpublication.org 

 

mentioned above lies in the fact that the instructions and data 

are related because they represent different parts of the same 

task to be executed. So, MIMD systems may run many 

sub-tasks in parallel in order to shorten the time-to-solution 

for the main task to be executed. There is a large variety of 

MIMD systems and especially in this class the Flynn 

taxonomy proves to be not fully adequate for the 

classification of systems. Systems that behave very 

differently like a four-processor NEC SX-8 and a thousand 

processor IBM p690 fall both in this class. In the following 

we will make another important distinction between classes 

of systems and treat them accordingly.  

 

 Shared memory systems: Shared memory systems have 

multiple CPUs all of which share the same address space. 

This means that the knowledge of where data is stored is of 

no concern to the user as there is only one memory accessed 

by all CPUs on an equal basis. Shared memory systems can 

be both SIMD and MIMD. Single-CPU vector processors can 

be easily regarded as an example of the former, while the 

multi - CPU models of these machines are examples of the 

latter. We will sometime  use the abbreviations SM-MIMD 

and SM-SIMD for the two subclasses.  

 

Distributed memory systems: In this case each CPU has its 

own associated memory. The CPU is connected by other 

network and may exchange data between their respective 

memories when required. In contrast to shared memory 

machines the user must be aware of the location of the data in 

the local memories and will have to move or distribute these 

data explicitly when needed. Now, distributed memory 

systems may be either MIMD or SIMD. The first class of 

SIMD systems mentioned which operate in lock step; all 

others have distributed memories associated to the 

processors. As we see, distributed-memory MIMD systems 

exhibit a large variety in the topology of their connecting 

network. The details of this topology are largely hidden from 

the user which is quite helpful with respect to portability of 

applications. For this distributed-memory systems we will 

sometimes use DM-SIMD and DM-MIMD to indicate the 

two subclasses.  

 

III. WHAT IS DESIGN FLOW 

 The Design flow is a Standardized design procedure 

for designing any of the    digital circuit. It Start 

from the design idea down to the actual 

implementation. 

This process encompasses many steps like 

  Specification 

  Synthesis 

  Simulation 

  Layout 

  Testability analysis and many more 

  

Digital Design Process:-   

 Since we know that the design complexity 

increasing rapidly and it also Increases the size and 

complexity of any digital circuit. So the various 

CAD tools are essential to reduce this complexity. 

Too many CAD tools can be choose from the present 

trend to standardize the design flow. 

 The CAD tools can be choose according to the 

demand of digital circuit. 

 It can be divided on the Based on Hardware 

Description Language (HDL). 

 The HDLs provides formats for representing the 

output of different types design steps. An HDL 

based CAD tool transforms from its HDL input into 

a HDL output which contains more hardware 

information. 

 

 The Behavioral level to register transfer level 

 Register transfer level to gate level 

 Gate level to transistor level 

 

 

IV. CONCLUSION 

This paper presents an overview on architectures for 

design implementations of VLSI architecture schemes as 

specified by standardization committees of the ITU and ISO. 

Heterogeneous processors outperform homogeneous 

processors because of adaptation to the requirements of 

special subtasks by dedicated modules. 

 

REFERENCES 

[1] Google book like Zainalabedin Navabi, Richards woods and some other 

also helps for preparing for this materials. 

 

[2]. R. Feynman, “Quantum Mechanical Computers”, Optc News, Vol. 11, pp. 

11-20, 1985. 

 

[3]. M. Miller, and G. W. Dueck, “Spectral Techniques for Reversible Logic 

Synthesis”, In 6
th
 International Symposium on Representations and 

Methodology of Future Computing Technologies, pp. 56-62, 2003. 

 

[4]. Md. Saiful Islam, "BSSSN: Bit String Swapping Sorting Network for 

Reversible Logic Synthesis", Journal of Computer Science, Vol. 1, No. 1, pp. 

94-99, 2007. 

 

 

 

 

 


