

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-2, April 2013

 1 www.erpublication.org

Abstract— Paper describes an embedded System based on

the µC / OS II operating system using ARM7. It deals with the

porting of Micro C/OS-II kernel in ARM powered

microcontroller for the implementation of multitasking and

time scheduling. Here the real time kernel is the software that

manage the time of a micro controller to ensure that all

time critical events are processed as efficiently as possible.

Different type of interface modules of ARM7 microcontroller

like UART, ADC, DAC, KAYPAD, LCD, USB are used and

data acquired from these interfaces is tested using

µC/OS-II based real time operating system. It mainly

emphasizes on the porting o f µC/OS-II.

Index Terms— Embedded System Design, ARM7, Real Time

OS, µC/OS II..

I. INTRODUCTION

 In high end applications, sometimes devices may

malfunction or totally fail due to long duration of usage

or any technical problem which give fatal result. An

embedded monitoring system is always necessary for

continuously collecting data from onsite and later analyzing

that and eventually taking proper measures to solve the

problem. The system which is used today use non real time

operating systems based on mono-task mechanism that

hardly satisfies the current requirements. This paper is

focused on porting of µC/OS II in ARM7 controller that

performs multitasking and time scheduling. The µC / OS II

features porting to ARM7 are discussed. Finally it provides

an overview for design of embedded monitoring system

using µC/OS II as application software that helps in

building the total application.

II. ARM'S CORE FAMILIES

Advanced RISC Machine. First RISC microprocessor for

commercial use and a market-leader for low-power and

cost-sensitive embedded applications. It has the features like

architectural simplicity which allows very small

implementations result in very low power consumption. The

ARM7TDMI has a core based on the fourth version of the

ARM architecture. This implementation can use a three stage

pipeline a standard fetch-decode-execute organization. The

core is very successful mainly because of the extremely small

Manuscript received April 11, 2013.

 Indersain, Asst. Prof., Dept. of E&C, JNIT/ Jaipur/ Raj./ India, mobile no.

+91-9001848536.

 Neetika Sharma, M-tech. Scholar, KIET/ Jaipur/ Rajasthan/ India.

 Dushyant Singh, M-tech. Scholar, SKIT/ Jaipur/ Rajasthan/ India.

but high performance processor and having more than 70000

transistors with low power consumption.

 ARM cores use a 32-bit, Load-Store RISC architecture. It

means that the core cannot directly manipulate the memory

of system. All data manipulation must be done by loading

registers with information located in memory, performing

the data operation and then storing the value back to

memory. There are total 37 registers in the processor.

However, this number is split among 7 different processor

modes. These seven processor modes are used to run user

tasks, an operating system, and to efficiently handle

exceptions such as interrupts. Some of registers in the mode

are reserved for specific use by the processor core, while most

are available for general uses. The reserved registers that are

used by the processor core for specific functions are r13 is

commonly used for stack pointer (SP), r14 for link register

(LR), r15 for program counter (PC), the current program

status register (CPSR), and the saved program status register

(SPSR).The SPSR and the CPSR contain the status and

control bits specific to the properties the processor core is

operating under. These properties demarcate the operating

mode, ALU status flags, interrupt disable or enable flags and

whether the core is operating in 32-bit ARM or 16-bit Thumb

state.

Figure 1: ARM Architecture

II µC/OS II

µC/OS II (pronounced "Micro C O S 2") stands for

Design and Implementation of µc/Os II Based

Embedded System Using ARM Controller

Indersain, Neetika Sharma, Dushyant Singh

Design and Implementation of µc/Os II Based Embedded System Using ARM Controller

 2 www.erpublication.org

Microcontroller operating system version 2 and can be

termed as µC/OS-II or uC/OS-II). This is a very small

real-time kernel with memory footprint is about 20KB for a

kernel with full functions and source code is about 5400

lines, mostly in ANSI C. Its source is open but not free for

commercial usages. µC/OS-II is upward compatible but

provides many improvements than previous version, such as

the addition of a fixed-sized memory manager, user

definable callouts on task creation, task deletion, task switch,

and system tic, TCB extensions support, stack checking,

and much more.

A. µC/OS II using ARM

This real time kernel is a highly portable, ROMable,

scalable, pre-emptive real-time, multitasking kernel

(RTOS) for microprocessors and microcontrollers. This can

manage up to 250 application tasks. This RTOS runs on a

large number of processor architectures. The large number of

ports shows that µC/OS-II is truly very portable and thus will

most likely be ported to new processors as they become

available.

B. Choosing µC/OS-II

These are the features of µC/OS-II make it convenient to

port.

1) ROMable

 It is designed for embedded application. This means that if

you have the proper tool chain (i.e. C compiler, assembler

and linker/locater), you can embed Micro C/OS-II as

part of a product.

2) Portable

 µC/OS-II is written in highly portable ANSI C, with

target specific code written in assembly language.

Assembly language is kept to a minimum to take

µC/OS-II easy to port to other processors. µC/OS can be

ported to a large number of micro processors as long as the

microprocessors provides a stack pointer and the CPU

register can be pushed onto and popped from the stack.

Also, the C compiler should provided either in-line assembly

language extension that allows you to enable and disable

interrupt from C. µC / OS-II can be run on most 8, 16, 32 bit

or even 64 bit microcontrollers or microprocessors and

DSPs.

3) Scalable

µC/OS-II is designed such a way so that only the services

needed in the application can used. This means that a product

can be use just a few µC / OS-II services. Another product

may require the full set of features. This allows to reduce the

quantum of memory (both RAM and ROM) needed by

µC/OS-II on a per product basis. Scalability is accomplished

with the use of conditional complication.

4) Pre-emptive

µC/OS-II always runs the highest priority task that is ready

because this is a fully pre-emptive real time kernel.

5) Multitasking

Multitasking is the process of scheduling and switching the

CPU between several tasks. µC / OS-II can manage up to 64

tasks. Each task has a unique priority assigned to it, which

mean that µC / OS- II cannot do round robin. There are thus

64 priority levels.

6) Deterministic

Execution time of all µC / OS-II functions and services are

deterministic. This means that one can always know how

much time µC / OS-II will take to execute a function or

a service. Furthermore except for one service, execution

time all C / OS-II services do not depend on the number

of tasks running in the application.

C. µC/OS-II Starting

In any application µC / OS-II is started as shown in the

figure2. Initially the hardware and software are initialized.

The hardware is the ARM core and software is the µC /

OS-II. The resources are allocated for the tasks defined in the

application the scheduler is started then it schedules the tasks

in pre-emptive manner. All these are carried out using

specified functions defined in µC / OS-II.

 Figure 2: Starting µC/OS-II

D. Initializing µC/OS-II

International Journal of Engineering and Technical Research (IJETR)

 ISSN: 2321-0869, Volume-1, Issue-2, April 2013

 3 www.erpublication.org

Figure 3: Initializing µC/OS-II

µC / OS-II can be initialized as shown in the figure 3. The

detailed steps are shown in the figure. Below shows the

sample program for the steps shown in the figure.

Void main (void)

 {

 /* User initialization*/

OSInit(); /* kernel initialization */

 /* Start OS

 OSStart(); /* start multitasking */
 }

A. Task Creation

To make it ready for multitasking, the kernel needs to have

information about the task its starting address, top-of-stack

(TOS), priority, arguments passed to the task, some other

information about the task.

You can create a task by calling a service provider by

μC/OS-II.

OStaskCreate (void (*task) (void *parg),

Void *parg; // Address of Task

OS_STK *pstk; // Pointer to task’s Top

//Of Task

INT8U prio); // Priority of task (0--64)

You can create task before you start multitasking (at

initialization time) or during run time.

A. Implementation through μC/OS-II Task Creation

In embedded systems, a board support package (BSP) is

implementations specific support code for a given (device

motherboard) board. It is commonly built with a boot loader

that contains the minimal device support to load the

operating system and device drivers for all the devices on the

board. It can provide a root file system, a tool chain for

making programs to run on the embedded system (which

would be part of the architecture support package), and

configurations for the devices (while running).

Figure 3: The architecture of hardware and software when

using μC/OS II

III. SYSTEM ARCHITECTURE

The heart of the system is a real-time kernel that uses

pre-emptive scheduling to achieve multitasking on hardware

platform. In This research paper it deals with the

implementation of hardware and software.

Figure 4: Block diagram

In Micro C / OS-II maximum number of tasks is 64. In the

above shown figure4 the application have six tasks.

Depending on the required application the number of tasks

may vary. To perform a sample experiment to understand the

Design and Implementation of µc/Os II Based Embedded System Using ARM Controller

 4 www.erpublication.org

porting of μC / OS-II we can perform simple tasks like

Temperature sensor (i.e. ADC), Graphical LCD (i.e. degree

to graphical Fahrenheit), UART (i.e. digital data displaying),

LED toggle (i.e. 8-bit data flow control) buzzer (i.e. alarm

device). The ARM runs the Real time operating system to

collect information from the external world. Here RTOS is

used to achieve real time data acquisitions. μC / OS-II kernel

is ported in ARM powered microcontroller for the

implementation of multitasking and time scheduling. Keil

IDE is used for implementation.

 Keil IDE is a windows operating system software

program that runs on a PC to develop applications for ARM

microcontroller. It is also called Integrated Development

Environment or IDE because it provides a single integrated

environment to develop code for embedded microcontroller.

IV. CONCLUSION

In this paper the porting of μC / OS-II in ARM 7 is presented.

It mainly focuses on designing an embedded monitoring

system using ARM 7 and μC / OS-II RTOS. The steps

involved in porting the RTOS and final implementation

details are provided. This paper provides a detailed overview

for developing an embedded monitoring system using ARM

and μC / OS-II.

REFERENCES

[1] Liu Zhongyuan, Cui Lili, Ding Hong, “Design of Monitors Based on ARM7

and Micro C/OS-II”, College of Computer and Information, Shanghai Second

Polytechnic University, Shanghai, China, IEEE 2010.

[2] Tianmiao Wang The Design And Development of Embedded System Based

on ARM Micro System and IlC/OS-II Real-Time Operating System Tsinghua

University Press.

[3] Jean J Labrosse, MicroC/OS-II the Real-Time Kernel, Second Edition

Beijing University of Aeronautics and Astronautics Press

[4] Design of µC/ Os IIRTOS Based Scalable Cost Effective Monitoring

System Using Arm Powered Microcontroller, M. Venkateswara Rao, Dept. of

ECM, K L University, A.P, India

