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Abstract— The paper investigates pullback the attractors for
the Higher-order Kirchhoff-type equation with strong linear
damping:

Zt—zlj+(—A)” Zt—u+(oz+,b’||vmu||2)q (=A)"u+g(u) = f(x)+h(t,u,)-

Firstly, we do priori estimation for the equations to obtain the
existence and uniqueness of the solution

N uecC®(z—r,=);V)NC([z—r,o); H) by some
assumptions the Galerkin method. Then, we prove existence of

the pullback { ”/(t)}teR in

ueC°(r—r,©);VYNC*(z—r,x);H):

attractors
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I. INTRODUCTION

In this paper, we are concerned with the existence of
pullback attractors for the following nonlinear Higher-order
Kirchhoff-type equations:

T D fas ol ) s 0= 100+t
u(x,t)=g(x,t—7),xeQtelr-r,z],
%(X,t) :%ﬁ(x,t—r),x eQtelr-r,1],

u(x,t)zo,%zo,i =1...,m-1LxedQte[r-r,+x),

11
where m>1 is an integer constant, o >O,,B>O( are)z
constants and | is a real number, ¢ is the initial datum on the
interval [7 —r, 7] where r > 0. Moreover, QQis a bounded
domain in R" with the smooth boundary 6Q and V is the unit
outward normal on 02 . g(u) is a nonlinear function

specified later, and u is defined

for@ e[-r,0]asu, (8) =u(t+6).

It is known that Kirchhoff [1] first investigated the
following nonlinear vibration of an elastic string

foro=f =0:
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pha_u+56_u: pO+E_hIL[a—uj dx a—lj+f; 0<xL,t>0,
ot ot 2L 70\ ox X

. (1.2)
where U =U(X,t) is the lateral displacement at the space
coordinate X and the timet, o the mass density, h the
cross-section area, L the length, E the Young modulus, p,

the initial axial tension, o the resistance modulus, and f the

external force.
In [2], the existence of a pullback and forward attractors is
proved for a damped wave equation with delays:
o’'u ou
~+a——Au=f+h(t,u)t>r,
ot ot

ul.=0,t>7-r,
u(x,t)=o(x,t—7),xeQtel[r-r,r],

%J(x,t):aat—¢(x,t—r),XeQ,te[T—l’,TL

) (1.3)
where Q= R",n>1, be an open and bounded subset with

smooth boundary 0Q=T . f+h(t,u,) is the source
intensity which may depend on the history of the solution,
« is a positive constant, ¢ is the initial datum on the interval
[z—r,7] where r >0, and u, is defined for @ [—r,0]

as U, (@) =u(t+6).

In [3], Guoguang Lin, Fangfang Xia and Guigui Xu had
studied the global and pullback attractors for a strongly
damped wave equation with delays when the force term
belongs to different space:

2
8_121+a8_u_ﬂA6_u_Au+g(u) = f(x)+h(t,u) t>7.
ot ot ot
(1.4)
In [4], authors consider non-autonomous dynamical
behavior of wave-type evolutionary, on a bounded domain

Q in R®, with smooth boundary dQ:
u, +h(u,)—Au+ f (u,t) =g(xt),xeQ,
Uly=0,X €0,
u(x,0) =u,(x),u,(x,0) =Vv,(x), X € 0Q,
(1.5)
g(x.1) e L2 (R LX(Q) and
h(u,), f : R — Rand verify some of assumptions.

Authors establish a criterion for the existence of pullback
attractors. Moreover, they show that the pullback

where
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$k$-contraction is not equivalent to the pullback asymptotic
compactness, unless the cocycle mapping has a nested
bounded pullback absorbing set.

In [5], authors study existence of pullback attractors for the
following functional Navier-Stokes problem:

a Au+Zua—X—f(t Ut p(1)) =V + g (1), (6.1) € (7, +0) x 2,

divu =0,(x,t) € (r,+00) xQ,

u=0,(xt)e(r,+o)xT,

u(r +t,x) =g(t, x),t e[-h,0],x e Q,

) (1.6)
where Qc R? is an open bounded set with regular
boundary I',0 >0 is the kinemtic viscosity, U is the

velocity field of the fluid, P is the pressure, g, f are
external force term, o is an adequate given delay function.

Authors prove the existence of a unique pullback attractor in
higher regularity space for the multivalued process associated
with the nonautonomous 2D-Navier-Stokes model with
delays and without the uniqueness of solutions.

Some people have studied for equations of the form:

u'+ A(t)u(t) = F(t,u,),t >0,
u(t) =w(t),t e[-h,0].
1.7

For example, M.J.Garrido and J.Real of [5] had proved
some results on the existence and uniqueness of solution for a
class of evolution equations of second order in time,
containing some hereditary characteristics.

At present, most people had investigated global attractors,
exponential attractors and blow-up of Higher-order
Kirchhoff-type equations, and we can see [6-32]. Because

equations of the paper posses g(u): R — R and h(t,u,),

they increase difficulties for existence of solutions. We
establish pullback attractors omit [2].

In order to make these equations more normal, in section 2,
some assumptions, notations and the main lemmas are given.
In section 3, Under these assumptions, we prove the existence
and unigueness of solution for the problems (1.1). In section
4, we prove existence of the pullback attractor similar to [2].

Il. PRELIMINARIES

2.1 Assumptions and some of lemmas
In this section, we introduce material needed in the proof our

main result. We use the standard Lebesgue space L”(€2) and

Sobolev space H™ (€2) with their usual scalar products and
norms. Meanwhile we define:

HS’(Q):{UG Hm(Q):%=O,i =0,1,...,m—1]>’

and introduce the following abbreviations:
Eo = Hg (@)= (), E, = H* (@ NHF Q) x H (), H = L*(Q),V = H (),

A=-AlH

o = ey g =gy A= ey o[y =l

for any real number p>1, and A, is the first eigenvalue of

A.

(1.1) can be written as a second order differential equation in
H:

u+ (—A)’"u’+(a+,b’HVmuH2)q (~A)"u+g(u) = f(x)+h(t,u,),t>7,

u@)=¢(t-r),te[r-rl,
u@)=¢'(t—7),tefr-r].
(2.1)

In general, if (X ,||[]|)< ) is a Banach space, we denote by
C, the space CO([—r,O];X) with the sup-norm, i.e.
[¢lle, = sup #(6)], . for peC,

Oe[-r,0]

Banach space (Y||0||Y) such that the injection X Y is

. Given another

continuous, we denote by C,, the Banach space
C, N ct ([—r, O];Y) with the norm ||0||C defined by:
XY
6., =Nz, +lalz, T 9 Cx
22)

Accordlng to [2] and [8], we present some assumptions and
notations needed in the proof of our results. For this reason,

we assume nonlinear term g(u) € C'(QY) satisfies that:

(H,) setting G(s) = Jj g(r)dr, then

‘l‘m inf GS( ) >0; (2.3)
(H,) 1
lmsup|g| (| ) =0, (2.4)
where

0<r<+o(N<2mM),0<r<2(2m<n<2m+1),r =0(n>=2m+2).
(H,) There exist constant C, >0, such that

‘I‘im inf M >0
S| S
: (25)
(H,) There exist constant C, >0, such that
j9(s)| <, (1+s]"), (2.6)
lg'(s)|<C, (1+|s| p’l),
2.7)
where 1<p< n (n>2m) and
n —

1< p<+oo(N<2m).
Now, we make the following hypotheses on the function
h:RxC, > H:

(G) V&eC,,teR—>N(t,&)eH iscontinuous;
(G,) VteR,h(t,0)=0;
(G,) 3L, >0 suchthat Vte R, V&, neC,,
Ict, &)~ hem) < Ly J 7,
2.8)
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such that

G,) 3k, >0,C, >0
vk €[0,k,],7 <t,u,veC’ ([z'—l’,t]; H),

_[: e*|h(s,u,) - h(s,vs)||2 ds < Chz_[:_rekS Ju(s) —v(s)||2 ds.

. 2.9)
For every ¥ >0, by (Hl) —(H3) and apply Poincare

inequality, there exist constants C(y) > 0, such that

I +7|[viuf +C()20,vue H" (@),
(2.10)

(g),u)—C,Iu)+ ;/||Vmu||2 +C(7)=0,vue H™(),
(2.11)

J(W) =], G 0<C, <37q+% s

where

independent of ¥ .

Lemma 2.1. (Young's Inequality)(See [26]) Forany & >0
and a,b>0, then
P
P 1
ab<—af+—,
P ge"

where l+1 =1L p>1q9g>1.
P qQ
Lemma 2.2. (Sobolev-Poincare inequality)(See [20]) Let S
be a number with

(2.12)

2<s<+oo,Nn<2m and 2<s< ,N>2m

n—2m
Then there is a constant K dependingon €2 and S such that
m
(-A)%u

Jul, <K VU e H'(Q).

(2.13)
[26])

If Vt €[t,, +0), y(t) = 0 and % + gy < h, such that

Lemma 2.3.(Gronwall's inequality)(See

y(t) < y(t,)e *“ ™ +E,t >t,,
g

. (2.14)
where g >0,h >0 are constants.
Lemma 2.4. (See [7]) Let i be an absolutely continuous

positive function on R™, which satisfies for some 0> 0 the
differential inequality

%(//(t) + 20y (t) < g(t)w(t) + h(t),t >0, (2.15)
where he L3, (R") and
J.tg(r)drﬁ(‘)(t—r)+m, for t>7>0, (2.16)

with some m > 0. Then

ISSN: 2321-0850, Volume-5, Issue-7, July 2017

w(t)<e" ((//(s)e“)“‘s) +[ ) e“"(“y)dy), V2520,

: (2.17)
2.2 Preliminaries on pullback attractors
We deal with the global attractors by semigroup S(t).
Instead of a family of the one-parameter semigroup or
processU (t, 7) on the complete metric space X,U (t, 7))y

denotes the solution at time T which was equal to the initial
value i/ attime 7.

The semigroup property is replaced by process composition
property:
U@, 2)U(z,r)=U(t,r), for all t>z>r,
. (2.18)
and obviously, the initial condition implies U (z,7) = Id .
Definition 2.1. (See [2]) Let U be the two-parameter
semigroup or process on the complete metric space X . A
family of compact set A(t),_ is said to be a pullback
attractor for U if for al 7eR . It
satisfies:(1) U (t, 7) A(7) = A(7) ,for allt > 7 ; (2

IimdiStX(U(t,t—S)D,A(t))zo for all bounded

DcX,andallteR.

Definition 2.2. (See [2]) If the family B(t),_ satisfying:
(1) pullback absorbing with respect to the processU ,if for
allt e Rand all bounded D — X there exists T, >0 such
thatU (t,t —s)D < B(t) for alls >T, (1) ;

(2) pullback attracting with respect to the processU , if for
allt e R, all bounded D < X, and all & >0, there exists
T, 5(t) >0 such that forall $>T, ,(t),

dist, (U (t,t—s)D, B(t)) <&;
. (2.19)
(3) pullback uniformly absorbing (respectively uniformly
attracting) if Ty (t) in pact (1) (respectively T, 5 (t) >0 in
part (2)) does not depend on timet .

Theorem 2.2. (See [2]) Let U (t,7) be a two-parameter
process, and suppose U (t,7): X — X is continuous for
all t>7 . If there exists a family of compact pullback
attracting sets B(t),_g, then there exists a pullback attractor

A(t), g, such that A(t) = B(t) for all t € R, and which
is given by

A= U Ay () where
DcX
At)=YJut-s)D. (2.20)
neN s>n

I1l. EXISTENCE AND UNIQUENESS OF THE SOLUTION

feH,peC,
and g (U ) satisfies(H, ) —(H; ), h satisfies(G, ) —(G;),

and

Lemma 3.1 Assume that

www.erpublication.org
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1
2c? E<mm qﬂi A 2-Codf +4(2+C, + A"} +161"
C, 2 4
(3.2)
Then, for any 7€ R, there exists a unique solution
u(@)=u(ir,@d) of the problem (1.1)-(1.4) and

C, >0 ,such that

ueC’([r—r,);V)NC'([r—r,0); H),
) (3.2)
and

© 2

m

["Vrus)ds<c;t=x.
(3.3
Proof. Stepl: existence of the solution
We take the scalar product in L* of equation (11)

withv=U"+¢&U

and
1
2 m
L qﬁl M 2-C, A y(24Co 4" +164"
C, 4
;I'hen

Vm

Y 2)q (—A)mu+g(u),vj: (F(0.)

(3.4)
By using Poincare's inequality and Young's inequality, after
a computation in (3.4), we have

[w+pﬁfuu{a+ﬂ

(u"v)=(v'—eu',v)

=5 g —etmen)
~1d
=M =2V +2* (u)
L e e
2 dt 2 27,
(3.5)
(A" V) =((-)"v=e(-4)"u,v)
= HV”“VH2 —g(Vmu, V'"v)
(12 o
2
SO
: (3.6)
withO<e<2.

]

11

((a+/3HV o) (—A)mu,vj
=3ty | v+ s{aspfoa] | o
~smarpal P gl |- sl |
: (3.7)
d

(Q(u),v) = I () +&(g(u), u). (38)

(F(),v)+(n(t,u),v) < If ” ”h(t u )” || P
8
3.9

Substituting (3.5)-(3.9) into (3.4), then
%|:HVH2 1 (a JrﬁHV’”uHZ)q+1 +2) (u)}[Zﬂl’” 7(2+/11m)57252]\vH2

B(a+1)
2 n 2 q+1
78(a+ﬂuv y )

20

22 gl _[Hfjuv uff +2(a)0)

2
2 2l

IA

6'2

(3.10)
Next, some of the items are estimated in (3.10). By Young's
inequality, we have

mall "y 2q+2 q
HV UH q+1HV FPS] (3.11)
4%
ﬁq m 2q+2 q(ﬂ‘lj
H H <mHV u +W, (3.12)
(a+/3||Vmu||) 2a(g+1)( +/3||Vmu|| )q1 (si)lq
| (3.13)
By (2.10)-(2.11), (3.11)-(3.13), we have
1 m q+1 a
ﬂ(q+1)((%+ﬂHV UHZ) +23(U)+C(7)+%
2 q
q+1va uff +2J(u)+C(y)+Oﬁl’_+ql
> AVl +23 )+ 2C ()
- %HWUHZ +23(u)+2C(y)
517
>0,
(3.14)
www.erpublication.org
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R L R B L e - (3.15)
B B " ) q/nilm ﬂqﬂlm £
2l pluf | 1[ o Zﬂ( el | - . f7[871\@“”2+25(g(u),u) where 0 < & <min R 7
2%(&+/J’“V""UHZ)M—[£+Z—;]HVMUH +25(g(u),u)—(20;)ﬁ 2 Since
1 2

% o 122 (2 22-C,-A"+[(2+C,+ A"} +164"

we o | L _[Hfm]Hv off +26,900)-2060)- 3 3 A" +(2+C,+ A") +164,
gl A v O<C2<Zq+1’0<g< ;
3¢ o 2| 26 \jom 12 (20)" ¢ 4“qs
Z@(aﬁ-ﬂHV uH) +[qg-FJHv U +26C,3(v) - 26C(y N and

Za) & 4“qg
B B
(3.14)-(3.15)are substituted into (3.10), then

(= 1yl )" + 20+ €02+ 28 e I +

2j—;(a+ﬂHV'“uHZ)M+25C2J(u)—25C() (2) ¢

ol
A(a+1) +1

(e vmlf)™ +23<u)+¢(y)+ﬂ—ﬂ+mo[uvu2+

%[HVHZ ’ ﬁ(q1+1) a+p|vrul )q+l +23(U)+C() + fﬂ}

ﬂ(ql 5 (a + ﬂvaqu)qﬂ +CO)+ ﬂ—qq} +2£C,3(u)

a+ﬁvaqu) a+ +2.](u)+C(;/)+ } [2/11 2+21 )g 2¢? :|HVH ﬂ(a+ﬂvauH )+ +2£C,J(u)

d 2 1

= E[M RVICEEY
d 2 1

< sl M

1
2 2 q+1 a
Z20f] +2Hh(t,2ut)H +280(7/)+(2a) £, 4% (C(y)+ﬂj

&? £ as yij q+1
. (3.16)
with m, =min{2/11m—(2+21”‘)g—232,W}.
We set
2 )\ B
y(©) =V /i'(q+1)( a+p|vrul) +23W+CeI+ AT,
(3.17)
< (20)" s 4%qs Bq _ (3.18)
C=2sC(p)+ ap 5 C(7)+q+1
So, from (3.16) we get
2| 2|ptu) <
FIPSTAETI /% g
dt £ &g
(3.19)
2
As our assumption ensure that —C,e+——<0 , we can then choose K €(0,k,) small enough such that
2
k—C,e+ 2C3h < 0. For this choice, we have
&
d kt kt kt d
d—[e y(t) | =ke“y(t) +e Fral0] (3.20)
d
" —[ey(t) |<(k-C,e)e" y(t)+—ekt I +—ek‘ [nct,u,)| +Ce*. (3.21)
For (3.21), by integrating over the interval [z' t], we deduce
e”y(t)Se“y(r)+(k—C25)j (o)ds+ 1\ ) al H( ) 22 j:eksHh(t,us)szHéj:e“ds
2|t H (e e ) 262" 3 (3.22)

sek’y(r)+(k—ng).[:eksy(s)ds+ I j:_re“

&

Vmu(s)szs +%(e” -e")

V'"u(s)H2 ds)+%(ekt -).

=ek’y(r)+(k—C2(s)Ll s)ds + 2f H( ) gz m(]t_,ek

By (3.14), we have

: Vmu(s)H2 ds+j:ekS

12 www.erpublication.org
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29 -m 2
Zchg—jiLtr el u(s)”2 ds < %Ltr e*y(s)ds. (3.23)

Therefore, we have

2||f||2(ek‘-ek’)+2c 2

o i J't eksy(s)ds+%(ekt —e). (324)
P —r
By ¢€C, ,, letD < C,  beabounded set, i.e. there exists d > O such that
2 2 2
Ill, + o, <d%, (3.25)
y(p(t)<d>. (3.26)

From (3.25)-(3.26) and he integral value theorem, we obtain

2|f|° (e-ev)

. 2C% ) ¢t e 2C% 7 C .
ety (t) <e* y(r)+(k—ng+g—3“j _[Tek y(s)ds + e + 8; jﬂek y(s)ds+E(e"‘—e")

ety(t) <ey(z)+(k —czg)j:e“y(s)ds +

2 (akt  Ake
Sek’d2+—2"f" (¢ ~¢") (k ~C,e +2 ]I e (S)ds+ Fekrg? 1 k( t-e*)

k2 (3.27)
26,71 ) oz 20 (€4 —€°) 26,7\t 4o €l e
=[1+8—"3jek d2+k—82+ k—C2,9+5—3h Lek y(s)ds+I(e“‘—ek )
2C.2r 2||f||2(ekt_ekr) é
s[1+—g]ekfd2+—2+—(e“—e”).
P ke k
Therefore, we have
2 k(z—t) ~
2 2Ch2r 2_k(z—t) 2”f” (1_e ) C K(r—t)
<y(t) S(l-i- T}d ekl = +I(l—e ). (3.28)
Further, we get
m |2 2 P02 A 212 K(r-t)
[vrul + v STt pyde Y vz (3.29)
S m 4 f 2 ,m m 2 m
where p,> = 24 + il 3/11 Py = Al—+—2Ch Zﬂl
ke ke £ £
Then (3.29) yields that
[Vuctiz.o)| + Loy p2d%e D i1, (3.30)
and, in particular,
va oy p02d2 Vt>7, (3.31)

Moreover, asU(t; 7,¢) = @p(t —7) andu (t, 7,9) =¢'(t—7)fort €[z —r,7], then (3.30) holds true fort > 7—r .

By Galerkin method, we getU € C°([z —r,00);V)NC'([r —r,0); H).
Step 2: uniqueness of the solution
Assume that U(1) =u(z,¢)and V() = V([ 7, ) are two solutions of the initial boundary value problem (1.1), @,y are the

corresponding initial value, we denote W(') =u([) —Vv(() . Therefore we have
W +(-A)"W+M () (-A)" w+M (t)(Vm(u +v),VmW)(—A)m (U+v)+g(u)-g(v) =h(t,u)-het,v,),t >,

W(t) = gt —7) —w(t—7) te[r—r,7], (3.32)
wW(t)=¢'(t-7)-y'(t-7),telr-r,7],
where
M@= (ar vl | (e Ao o 639
— 11 o 12 AN
M) =3[ | a+p(2|vif +a- v ) | dizo 334

13 www.erpublication.org
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Using the multiplier W +Owin (3.32), we have
% H(®)+[v"w| = K® —(g(u)— g(v), ' +ow) +(h(t,u,) —h(t,v,),w' +aw),
with
H(t) = %(”W'”Z + HV'”WHZ)H‘)(W, w),
K(t) = =M (t)(V"W, V"W) = M (£) (V" (u+V), V"W ) (V" (U +Vv),V"w)
—(‘)( M (t) HV”‘WH2 +M ) (V" (u+Vv),V"w)? ) + c‘>||w'||2 :
Obviously, there existsb >a >0and C, > 0, such that

alwl’ vl ) <H© < b(Jw

1112

elvnaf’),

K@) <=

2 2
I+

By (H,) , we know H{' (Q2) = L*(€2) . So we have
(9 -g)w +aw)| <C, [ (ul* V") wl([w]+ofw])dx

< C (||u||p+l + ||V||p+l)||w||p+l (”W,”pﬂ +6||W||p+l)

)

< —HV’“W’
8

+Cy W+

By (G;) . we get
[ In(s.ug)=h(s.v)[fds <CZ[ Ju(s)-v(s)|] ds

<xcirlp-yle, +A4"CI[ Vrws)| ds,

(h(tu) =NtV W+ ) < [, u) (e )+

2 Oy g2
L

1
<Ih(t.u) =)+ i + 0

<[Iht,u) - h(t )| += (||W [+ o),
with0 <o< A"
Inserting (3.38)—(3.42) into (3.35), we obtain

d 3umy
aH(t)+zuv

(c Cy+ j(||w|| o).

By (3.38), (3.41), integrating (3.43) over (z,t) , we can get

a(Hw’ 2t 2)+%[: V™u(s
Sb(w’(r)2+Vmw(r)2)+(C4+C5+;jJ':( "S)| +[vV"
s(bmﬂcgr)¢—V/QH+(C4+CS+MC§+;)£( ) +

Combining the Gronwall lemma, we get
b+ﬂl C r 2C4+ch+l(t T)

—= -yl e =

If ¢ and i stand for the same |n|t|al value, there has

Jwif +[v™w] <o.

)['ds

)Hz)dsw%l’mCthHgﬁ—wH;HM{"“Chzj': "w(s)| ds

W +vmf <

14

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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Therefore, U=V.

0 2
Step 3: Next, we need the further estimate of L HVmut (S)H ds.

Multiplying (1.1) by 2u’ gives

]
—| |u
dt

"2

1
+—
(a+1)p

(a+ ,BHV”‘qu)qHJrZJ(u)—Z(f(x),u)}ZHV”‘u’HZ o

(3.47)

Integrating the above equality over (t, inf) . So, there exists C, >0, such that

mvmut (S)szs <C,t>r.

IVV. EXISTENCE OF THE PULLBACK ATTRACTOR

In this subsection, we assume that f € H , we aim to study

the pullback attractor for the initial value problem (1.1).
From Theorem 3.1, the initial value problem (1.1) generates

a family two-parameter semigroupU (L) inC,, ,, , which can
be defined by
Ut 7r)g)=ulz¢)t=76C, .

(3.48)

Lemma 4.1. Letg, iy € C, |, be the two initial values for
the problem (1.1), and 7 € R is the initial time. Denote
byu() =u(tz,¢)and v() =Vv(iz,w) the corresponding
solution to (1.1). Then, there exists a constant C; > O which
does not depend on the initial data and time, such that

(4.1
770 -V 4@ o <2 gy e s 2
and
”u‘_VtHCV,H MW ”2 %) i > 7y, 43)

with a,b > Oare given in (3.38).

_ _ 2C,+2C, +1 |
Proof. We denote W=U—V .By(3.32),we can get (4.2) easily with C6 = 2— in (3.46). If we
a
considert > 7+r, thent +6 > 7 forany @ €[—r,0], and
b+ "Clr
va /11 ”¢ Ce(t—r+9)
o (4.4)
M”¢ Ce(tff)’\v/t >T4T.
Thus,
b+/11 mC r 2 C (t=7)
I t|| —L " |g— || DVt >+, (4.5)
Theorem 4.1. The mapping U tz7):C,  — CV'H is continuous for anyt > 7 .
Proof. Let @,y €C, ,, be the initial value for the problem (1.1) and t>7 . Denote by u()=u(rz,¢)
and V() =Vv(jz,w) the corresponding solution to (1.1). Then, writing again W=U—V, we obtain the following:
Ift e[z —r, 7], thenw(t) =pp(t —7) —y(t—7)and
2 2 2
[Vrw@| + Wl <é-vl,
4.6
b+ﬂ1 "Cor eCo(t-r+1) (40)
<= g-vl, -
Thus, we have
2 b+A4 "Ccr
[Vrw)| +[w )| < ——EL———M¢ vle,, e vz, (4.7)
whence
b+ﬂ'1 mC r 2 C (t=7+r1)
Il < === g v, €5 vtz (48)
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which implies the continuity of U (t, 7).
Theorem 4.2. Assume that f € H,¢ € C, |, and g(u) satisfies (H,) — (H,) , h satisfies (G,) — (G;) withk, >0, and

1
(20h2]4<min ) qzzim,ﬁqlem 2-C,-4 +J(2;c2+z1 ) +16);

(4.9)
2

Then, there exists a family{ B(t)}teR of bounded sets in CV,H which is uniformly pullback absorbing for the processU (L) .

Moreover, B(t) =Bforallt € R, where B® isabounded setinC, .

Proof. By lemma 3.1, we know (3.30)-(3.31) fort > zandt > 7 —r.
If we take nowt > 7+, then for all & €[, 0] we havet +6 > 7and so

||Vmu(t+6’ T, ¢)|| +|u't+6;7,9)| —+p0 2d2elrekt ), (4.10)
or, in other words,
U, )¢|| +p02d2ekrek(f Y Vt>7r+r,4eD. (4.11)
Therefore, there eX|stsTD 2 I such that
[utt-s); <p’ VteRs=T, ¢eD, (4.12)
which means that the ball BCV,H 0, ) = B’ C, 4 is uniformly pullback absorbing for the processU ([][).
Remark (See [2]) On the one hand, observe that if t; € R andt >t,, then u(t+0;t0 —S,¢) = u(t+9;t—(s +t—t0),¢)
and u’(t +0:1, -5, ¢) = u’(t +0;t—(s+t-t,), ¢) withS+t—1t, > S. As a consequence of (4.12), we have
Ju (t.t, —s)¢H;H < P2Vt eRt>t,seT,,¢eD, (4.13)
or equivalently, we have Vt, € R,t >t,,0 €[-r,0],s €T, ¢ € D,

[vru(t+6;t,—s,0) H
On the other hand, (3.30) implies, Vt, e R,t>t;,seR,tet,—s—r,¢geD,

"(t+6;t,—s,9)| <Pt (4.14)

2 2
HVmu (t+6;t, s, ¢)H +u'(t+6;t, —s,8)| < pf + pld?. (4.15)
Theorem 4.3. In addition to the assumptions in Theorem 4.1. Then, there exists a compact set B, < C,, ,; which is uniformly
pullback attracting for the process U (DD) , and consequently, there exists the pullback attractor A (t) . Moreover,

teR
A(t)teR cC forallteR.

H2™ AV vV

Proof. For each & € R, the norm ||¢||§ = ||¢||iv

(Z:H ¢ € C, \, is equivalent
to ||[”0 = ||["Cv .This allows us to obtain absorbing ball for the original norm by proving the existence of absorbing balls for
H
this new norm for some suitable value of & .Indeed, let us denote B, (0, p) = {¢ eC, ||¢||€ < p} :
Noticing that for C, = max {2,1+ 252/11_”‘} , it follows that

145, =lele, +l¢ +eo—edlc, <Idle, +2]¢ +edl, +25% ., <

(4.16)

1
then we have B_(0, p) < B, (0, Cfp] :

iv +||¢'+a;¢||iH <d?,
and so, ||¢||;H <C,d’.

Denote, as usual, by U(1) = u(] 7, @) the solution of problem (2.1), and consider the following problems:
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VAN +Har IV ) g = FR+RE )
v(t)=0,te[r—r,7], (4.17)
V(t)=0,te[r—r,1],
W+ (—A)" W +(a + ﬂHVmuHZ )q (-A)"w=0,t >,
w(t)=¢t-7),te[r-r,7], (4.18)
W(t)=¢'(t—7),te[r-r,7].

From the uniqueness of the solution of problem (2.1), (4.17) and (4.18) it follows that

u@=vOD+w(),vteR, and Vt>7—r. (4.19)
Consequently, U (t, 7) can be written as
U(t,7)(9) =U,(t,7)(9) +U,(t.7)(¢).4 €C, ,, 127 —T. (4.20)

where U, (t,7)(¢) =v,() =V, (G 7,9) and U, (t,7)(#) =W, () =W, ((7,¢) are the solution of (4.17) and (4.18)
respectively.
First,thanks to (3.30), but with g = f =h=0. Then, there exists C; = C4(p0,,d, @) > 0, it follows

[V™w(t; 7, @) +|wt;7, @) <Cud? vt217,4eD, (4.20)
and by means of (4.10), then
WG, +Iw @7 ), <Cud’e“e V) vtzr+r,eD. (4.22)
Furthermore, for t, e R,t >tjands >T, >,
w(t;t,—s,@)=w(t;t—(s+t—t)),¢), (4.23)

withs+t—t, >s=>T, >r.

Thus, (4.22) implies in particular

[w(tit,—s,¢)| <C,d% e ™= <C,d% e ™, Vt, eR,t 21,52 T, peD. (4.24)
Then, (4.22) yields that

JU,t.t-s)fl;,  <C,d%e“e™ VteRs>r$eD. (4.25)
Whence
lim supsup||U (t,t— s)¢|| (4.26)
S0 4o

Let us now proceed Wlth the other term. Let us flxt0 €R,s2>T,,¢ € Dand denote

u(t) =u(t;t, —s,9),v(t) =v(t;t,—s,9),t>t, —s—r, (4.27)
and
F(t)=-g(u)+ f(x)+h(t,u,),t>t,—s. (4.28)
By (G;), then
[FOI <o)+ 0afl+ Ly flull, (4.29)
From (H,) , Sobolev imbedding theory and (4.14), there exists Cy = C,(d, p,) > 0, such that
IF®)| <Cy+[ f(X)|+LyA% o =Ch, Yt 21, (4.30)
and from (4.15), then
-m 1 -m
IFOJ<Co+]f |+ LA (05 +p5d? )2 <Cpy+ L4y 2 pod, VE 2t —s. (4.31)
q _ ’ m
Letg=V' +evwith0 < & < mln{ 4 ;1 3+ Z+4/11 } then multiplying (4.17) by (—A)m q gives
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i{ Vg 2+[(a+ﬂ v™u 2)q —g} A™v 2}2 Ag[ - 26|V + 26 (V™ V"g)-25 A" ’
dt (4.32)
~2|lamy 2[qﬂ(a+ﬂ vV™u z)q_l(vmu,vmu’)}+25(a+ﬂ v™u 2)q A = 2(F(®),(-A)"q).
In (4.32), by Holder inequality and Young's inequality, then
2(F),(-a)"a) <|F@f +|a"q[ <c2 +|amq (4.33)
2 2 2 2\4 2
2]t -2e o] + 267 (v, 7) 262 [ + o v f |
el (30 2o )l o 4820 o A w2
2|anaf +(47 25 —¢?) Vo
>0.
Setting
1) =|v"q Z{(M plvnf) —e}HAmvuz > [V +(a - &) A >0, (439

then substituting (4.33)-(4.34) into (4.43), we have

S ot (a7 26— |v7 +efa v ) a]
(4.36)

q-1
<C} +2qﬂ(a+ﬁ vV™u 2) vV™u ‘V”‘u’ A”‘VHZ.
Therefore, by (3.31) and (4.36) for t>t, —S, there exists C,; =C,,(d,q, &, S, p,) >0, such that
%z(t) +£2(t) <Cf +Cy VU 2(1). (4.37)
Noticing that y(t, —S) =0, and for (4.37) in[t, —S,t,], by lemma 2.4 and (3.3), we obtain
2(t) <Cp =Cpp (L, d, 1), (4.38)
and
CZ
2(t) <C,e%z(t,)e " +C} j Ledy<C et +, (4.39)
£
Then, there exists T > T, such that, if S> T,
CZ
2(t) <Ce™ + 22 t, e Rt >t,. (4.40)
£

Recall that Z(t) = z(t;t, —S, @), if we fixt >t,, take S=T] and denote S =t —t, + T, we have, provided t is large
enough, that

< 2C;
2(tt —Tg.9) = 2(tt =t~ +Tp).9) = 2(t;t =5, 9) < —2. (4.41)
&
In conclusion, there exists T, > O such that forallt € R, and S > T} + T,
2C120
(t;t—s,9) <—=,VgeD. (4.42)
&
Denoting'lcD =Ty +T5+r ,wehaveforallgpe D,teR,s Zfo ,
2C;
[a™vt t-s, @) +[vvtt-s,g) <=2, (4.43)
&
and, by repeating once more the same argument previously used,
2 2C2
”Vt (Dt_s’¢)||H2mmv,v < 810 ! (4-44)
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forallgeD,teR,s>T,.
2

2C
0,— |isabounded setin H*™ NV,V which, in addition, is uniformly pullback
£

This means that the ball B' = B

H2™ AV Vv

absorbing for the family of operators Ul(D[I) . As Bl is a bounded set in C\,’H , then there existsTBl 2 I such that
U,(t,t-s)B' < B, VteR,s 2T, (4.45)

and, therefore, the bounded set B — C given by

HZMAV Vv

B*=JJU,(tt-s)B' =B, (4.46)

teR SZTB1

is uniformly pullback absorbing forU, (J0) inC, , .
By Ascoli-Arzela theorem, we can prove that B%is compact, so { B(t) = |§2} is a family of compact subsets in CV'H , Which

is also uniformly pullback attracting forU (DD) , and the proof has been completed.
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