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Abstract— We investigate the existence of exponential 

attractor for the Higher-order Kirchhoff-type equation with 

nonlinear strongly damped 

term:
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.For strong nonlinear damping 
 s

 and 
 s

,we 

assumptions
   1 3H H

.Under of the proper assume, we 

first prove the squeezing property of the nonlinear semigroup 

associated with this equation, then the existence of exponential 

attractor is proved. 

 
Index Terms— Higher-order, squeezing property, 

Exponential  attractor. 

 

I. INTRODUCTION 

 

  In this paper, we study the existence of exponential attractor 

for the Higher-order Kirchhoff-type equation with nonlinear 

strongly damped term: 
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where is a bounded domain of 
nR , with a smooth dirichlet 

boundary  and initial value, and 1m   is an integer 

constant. Moreover,   is the unit outward normal on 

 . ( )s  and ( )s  are scalar functions specified later, 

f  is a given function. 

 

The exponential attractor, in contrast to a global attractor, 

enjoys a uniform exponential rate of convergence of its 

solutions once the solution is invariant absorbing set, and it is 

an important feature of the long time behaviors of nonlinear 

partial differential equations. because of this, exponential 

attractors possess a deeper and more practical property, and 

they remain more robust under perturbations and numerical 

approximations than global attractors[1-2]. Hence, since the 

concept of Foias [3] was proposed in 1994, many authors  
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began to study the existence of exponential and numerical 

approximations than global attractors; see[4-11]. 

 

Recently, Wenting Wang and Qiaozhen Ma[4] research the 

existence of the exponential attractors for the  suspension 

bridge equation. 
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The suspension bridge equation is an important model in 

engineering mathematics. We have a lot of results for 

attractors in class of autonomous and non-autonomous 

conditions. However, there are nobody have discussed the 

problem of exponential attractors for this problem. This 

paper, based on the methods proposed by Aden et al, they 

proved the existence of the exponential attractors for the 

suspension bridge equation. 

 

In 2005, Zhengde Dai and Dacai Ma[5] study the exponential 

attractors for the following nonlinear wave equations: 
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Then in 2012, Jundong Jin, Jianhua Ding and Wanxiong 

Wang$^{[6]}$ used the same method and the existence of 

exponential attractors for the generalized 

convection-diffusion expansion equation is obtained by using 

the decomposing technique of operator semigroup in 

 2L  . 
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In 2015, Zhijian Yang and Zhiming Liu studied the existence 

of exponential attractor for the Kirchhoff equations with 

strong nonlinear damping and supercritical nonlinearity 
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Where   is a bounded domain of 
nR , with a smooth 

boundary  , the nonlinear functions ( )s , ( )s  and 

( )f u  and the external force term h  will be specified later. 

The main result is that the nonlinearity ( )f u  is of 

supercritical growth. In this case, we establish an exponential 

attractor in natural energy space by using a new method based 

on the weak quasi-stability estimates (rather than the strong 

one as usual.) 

    At present, most Higher-order Kirchhoff-type equations 

investigate the blow-up of the solution. On the basis of Yang, 

we investigate the exponential attractor of the higher-order 

Kirchhoff-type equation (1.1) with strong nonlinear damping. 

Such problems have been studied by many authors, but 
2

( )mu   is a definite constant and even 

2

( ) 0mu   . Generally, the equation exist a nonlinear 

 f u . But in the paper, 
2

( )mu  is a scalar function 

and   0f u  . Under of the the proper assume, in section 2, 

we introduce some basic concepts. In section 3, we prove the 

squeezing property of the nonlinear semigroup associated 

with this equation, then the existence of existence of 

exponential attractor is proved. 

 

II. PRELIMINARIES 

For brevity, we denote the simple symbol, · represents inner 

product, 

     2 2 2

0 0,  ,  ,  m m m m m mH H H H H H H L      

, 2· ·
L

 , 

· ·
L

 ,  f f x , ( 1,2)ic i  are constants, 

( 0,1)im i  are also constants. 
m is the first eigenvalue of 

the operator .m  The notation  ,   for the H- inner 

product will also be used for the notation of duality pairing 

between dual spaces. 

In this section, we present some assumptions needed in the 

proof of our results, state a global existence result, and prove 

our main result. For this reason, we assume that  

  1

1( )    H s C          0, 0;s s                 (2.1) 

  1

2( )    H s C 
 
   0, 0s s    ;               (2.2) 

3( )H        0 11 , 0.m s s m s         (2.3)   

We will use the following notations. Let 1 2,V V  are two 

Hilbert spaces, we have 2 1V V  with dense and continuous 

injection, and 
2 1V V  is compact. Let ( )S t  is a map from 

1 2( )V V  into 
1 2( )V V [11]. 

Definition 2.1  The semigroup ( )S t  possesses a 

2 1( , )V V -compact attractor A , If it exists a compact set 

1VA , A  attracts all bounded subsets of 
2V , and 

( ) , 0S t t  A A . 

Definition 2.2 A compact set M  is called a 

2 1( , )V V  exponential attractor for the system ( ( ), )S t B , if 

B A M  and 

1) ( ) , 0,S t t  M M  

2)M has finite fractal dimension, ( )Fd  M , 

3) there exist universal constants 
1 2,c c such that 

 2

1( ( ) , ) e , 0c tdist S t B c t M ,                (2.4) 

where 
1 1
( , ) supinf | |V V

y Bx A

dist A B x y


  , 
1B V is the 

positive invariant set of ( )S t . 

Definition 2.3 ( )S t is said to satisfy the discrete squeezing 

property on B  if there exists an orthogonal projection 
NP  of 

rank N  such that for every u  and v  in B , 

            

1 1* *| ( ) ( ) | | | , (0,1 / 8)V VS t u S t v u v     ,                

(2.5) 

or 

           

1 1* * * *| ( ( ) ( ) ) | | ( ( ) ( ) ) |N V N VQ S t u S t v P S t u S t v                  

(2.6) 

where 
N NQ I P  . 

Theorem 2.1 [11] Assume that 

    1) ( )S t  possesses a 
2 1( , )V V -compact attractor A ; 

    2) it exists a positive invariant compact set 
1B V  of 

( )S t ; 

    3) ( )S t  is a Lipschitz continuous map with Lipschitz 

constant l  on B ,and satisfies the discrete squeezing 

property on B (with rank 
0N ). 

Then ( )S t  has a 
2 1( , )V V  exponential attractor 

M A on B , and 

                    
*0 *( )t t S t M M                       (2.7)        

where 

                
( )

* *

1 1

( ) ( )j k

j k

S t E
 

 

 
  

 
M A .   (2.8) 

Moreover, the fractal dimension of M  satisfies 

       0

log(16 1)
( ) max 1,

2log 2
F

l
d N

 
  

 
M ,        (2.9) 

                     2

1 1( ( ) , ) c t

Vdist S t B c eM ,         (2.10)    

where
( )

0, , kN E are the same as [12] definition, l is 

Lipschitz constant  for ( )S t in B . 
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Proposition 2.1[11] There is 
0 0( )t B  such that 

0 00 ( ) 0( )t t BB S t B   is the positive invariant set of 

( )S t  in 
1V , and B attracts all bounded subsets of 

2V , where 

0B  is a closed bounded absorbing set for ( )S t in 
2V . 

Proposition 2.2 Let 
0 1,B B  respectively are closed bounded 

absorbing set of problem (1.1)-(1.3) in 
2 1,V V , then ( )S t  

possesses a 
2 1( , )V V -compact attractor A . 

Remark 1 The proof of the Proposition 2.1 and Proposition 

2.2 refer to [14]. 

 

III. EXPONENTIAL ATTRACTORS 

Let 1 0

mV H H   endowed with the inner product and 

norm as: for any 
1( , ) , 1,2i i iU u v V i   . 
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(3.2) 

Let 
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,then problem (1.1)-(1.3) can be writen as 

                        U +H(U)=F(x)t
                            (3.3) 

where     
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Theorem 3.1[13] Let
1 3( ) ( )H H be in force, assume 

that f H  
0 0, ( , ) , 1,2ku v V k  , then 

problem(1.1)-(1.3)admits a unique solution 

( , ) ( ; )ku v L V  . This solution possesses the following 

properties: 

  

1 2

2 2 2 2 2 2

1 2( , ) , ( , ) , ,m m m

V V ku v u v R u v u v R t t        ‖ ‖ ‖ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖ ‖    

                     (3.6) 

We denote the solution in Theorem 3.1 by 

0 0( )( , ) ( ( ), ( ))S t u v u t v t . Then ( )S t composes a 

continuous semigroup in 
1V . 

According to Theorem 3.1, we have the ball  

             {( , ) : ( , ) }
kk k V kB u v V u v R  ‖ ‖     (3.7) 

is a absorbing set of ( )S t  in , 1,2kV k  . 

From Proposition 2.1, we have 

                 
0 20 ( ) 2( )t t BB S t B                            (3.8) 

is a positive invariant compact set of ( )S t  in
1V , and absorbs 

all of the bounded subsets of 
2V . According to literature[13] 

and Theorem 2.1, we can get the semigroup 
0{ ( )}tS t 

 

possesses 
2 1( , )V V  compact global attractor  

                       2

0

( )
s t s

S t B
 

A ,                           (3.9) 

where the bar means the closure in 
1V , and A  is bounded in 

2V . 

Lemma 3.1 For any
1( , )U u v V  , we get 
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Proof  By (3.1) and (3.2), we have 
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                                                                                     (3.11) 

By the Hölder's inequality, Young's inequality and Poincarés 

inequality and
3( )H , we receive 
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Substitution (3.12), (3.13) into (3.11), we get 
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Hence, 
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Let 0( ) ( ) ( ( ), ( ))TS t U U t u t v t    where ( ) ( )tv u t u t  , 

and 0( ) ( ) ( ( ), ( ))TS t V V t u t v t   where ( ) ( ) ( )tv t u t u t  . 

    Let 0 0( ) ( ) ( ) ( ) ( ) ( ( ), ( ))TW t S t U S t V U t V t w t z t     , 

where ( ) ( ) ( )tz t w t w t  . 

    Then ( )W t satisfies 

                   W + H(U) - H(V) = 0, t
                                    (3.16) 

                      
0 0W(0) = U - V .                                          (3.17) 

    For the sake of attesting (1.1)-(1.3) has a exponential attractor, we first prove the dynamical systemS(t) is Lipschitz 

continuous on B . 

Lemma 3.2 (Lipschitz property). For any 
0 0,U V B and 0T  , 

             1

1 1

2

0 0 0 0( ) ( ) k t

V VS T U S T V e U V  ‖ ‖ ‖ ‖ .                    (3.18) 

Proof  Similar to Lemma 3.1, we have 

           
1

1

22

1 2( ( ) ( ), ( )) m

V V
H U H V W t k W t k z                   (3.19) 

Applying the inner product of the equation (3.16) with ( )W t in 1V , we discover that 

                    
21

, 0
2

d
W t H U H V W t

dt
   .                   (3.20) 

Collecting with (3.19), we obtain from (3.20) that 
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               
1

22 2

1 22 2 0.m

V

d
W t k W t k z

dt
                       (3.21) 

Which is 
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1

2 2

12 0.
V

d
W t k W t

dt
                              (3.22) 

By using Gronwall inequality, we end up with 

                     1
2 22 0k tW t e W .                                (3.23) 

So we have 

             1

1 1

2

0 0 0 0( ) ( ) k t

V VS T U S T V e U V  ‖ ‖ ‖ ‖ .                   (3.24) 

Now, we define the operator ( ) : ( )mA D A H   , ( ) { | }D A u Au H   

Obviously, A is an unbounded self-adjoint closed positive operator, and
1A

is compact, we find by elementary spectral theory 

the existence of an orthonormal basis of H consisting of eigenvectors j of A: 

             
1 2

, 1,2, ,

0 , .

j j j

j

A j

as j

  

  

 


    
                        (3.25) 

For a given integer n we denote by
nP the orthogonal projection of H onto the space spanned by

1 2, , n   . 

Let 

                    Q =I-Pn n
                                               (3.26) 

Then we have 

         2

1 0, ( )
m m m

n nAu u u u Q H H       ,                 (3.27) 

                 ,nQ u u u H  .                                                                 (3.28) 

Lemma 3.3 For any
0 0,U V B ,Let 

           
0 0 0 0 0
( ) ( ( ) ( )) ( ) ( , ) ,T

n n n n nQ t Q U t V t Q W t w z     

then 

                     1

0 1

2 22

0 0 .k t

n V
W t e U V                                              (3.29) 

Proof  Taking
0NQ in (3.16), we receive 

                  
0 0 0

21
, 0.

2
n n n

d
W t Q H U H V W t

dt
                (3.30) 

Which is 
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0 0

1

2 2

12 0.n n
V

d
W t k W t

dt
                                         (3.31) 

By using Gronwall inequality, we obtain 

                    1

0 1

2 22

0 0 .k t

n V
W t e U V                                                (3.32) 

Lemma 3.4 (Discrete squeezing property). For any 
0 0,U V B , if 

    
0 1 0 10 0 0 0( ( ) ( ) ) ( )( ( ) ( ) ) ,n V n VP S T U S T V I P S T U S T V      ‖ ‖ ‖ ‖     (3.33) 

then 
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V VS T U S T V U V   ‖ ‖ ‖ ‖                       (3.34) 

Proof   If 
0 1 0 10 0 0 0( ( ) ( ) ) ( )( ( ) ( ) ) ,n V n VP S T U S T V I P S T U S T V      ‖ ‖ ‖ ‖ then 
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Let
*T be large enough, 

                    
*

12 1

128

k Te  .                                          (3.36) 

Combining with (3.35),(3.36), we receive 

          
1 1

2 2

0 0 0 0

1
( ) ( )

64
V VS T U S T V U V   ‖ ‖ ‖ ‖ .                      (3.37) 

Then 

          
1 10 0 0 0

1
( ) ( ) ( )

8
V VS T U S T V U V   ‖ ‖ ‖ ‖ .                       (3.38)  

Theorem 3.2  Let 
1 3( ) ( )H H be in force, assume that f H , 

 
0 0( , ) ,ku v V 1,2k  ,then the semigroup ( )S t  determined by (1.1)-(1.3) possesses an 

2 1( , )V V  exponential attractor 

on B, 

           
*

* ( )

0
1 1

( )( ( ) ( ) )j k

t T
j k

S t S T E
 

 
 

 
  

 
 M A                   (3.39) 

Proof  According to Theorem 2.1, Lemma3.2 and Lemma 3.4, Theorem 3.2 is easily proven. 

IV. CONCLUSIONS 

    The paper's main results deal with exponential attractors. In 

section 2, we introduce some basic concepts. In section 3, we 

prove the squeezing property of the nonlinear semigroup 

associated with this equation, then the existence of existence 

of exponential attractor is proved. 
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