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 

Abstract— In this paper, we consider the higher-order 

Kirchhoff-type equation with nonlinear strongly dissipation: 
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 in n dimensional space. The squeezing property of the 

nonlinear semi-group associated with this equation and the 

existence of exponential attractors are proved. The inertial 

manifolds are also estimated. The main result is that the 

nonlinear ( )g u and damping coefficient ( )s meet 

conditions
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
 


    . In this case, exponential 

attractors and inertial manifolds are established. 

 

Index Terms— Higher-order; Squeezing property; 

Exponential attractors; Inertial manifold. 

 

I. INTRODUCTION 

  In this paper, we research the existence of exponential 

attractors and inertial manifolds for the higher-order 

Kirchhoff-type equation with nonlinear strongly dissipation: 
2
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 x , t>0,m>1

m mm
tt tu u u u g u f x

 
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    (1.1)                    

( , ) 0,      0,     i=1,2, ,m-1, x , t>0
iuu x t iv

   


      (1.2)                                        

0 1( , 0) ( ),         u ( , 0) ( )tu x u x x u x                       (1.3)                                      

Where is a bounded domain of nR , with a smooth Dirichlet 

boundary   and initial data, the damping coefficient is 

function of the
2L -norm of the gradient m power, ( )g u is a 

nonlinear forcing, ( )
m

tu is a strongly dissipation. 

As well as we known, the exponential attractors and inertial 

manifolds occupies a significant position in the study of the 

long-time behavior of infinite-dimensional dynamical 

system, because of exponential attractors possess a deeper 

and more practical property, it is a compact invariant and 

exponentially attractor all the orbits of the solution.  

While an inertial manifold is a finite-dimension invariant 

Lipschitz surface in the phase space of the system attracting 

all trajectories at an exponential rate. It play an important role  
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between infinite-dimensional dynamical system and 

finite-dimensional dynamical system. 

In [1], Zheng Songmu and Albert Milani studied the 

exponential attractors and inertial manifolds for the 

following singular perturbations of Cahn-Hilliard equations 

in one dimensional of space 
3

( ) 0tt t tu u u u u u         ,        (1.4)                                           

where 0, 0.   Their results allow that the dynamical 

systems generated by these two problems admit exponential 

attractors and inertial manifolds in the phase 

space
1 1

0 (0, )H H 


 . 

In [2], Jingzhu Wu and Guoguang Lin research the existence 

of inertial manifolds of two-dimensional strong damping 

Boussinesq equation while 2  . 
2 1 ( , ),

( , ) ,

k

tt tu u u u f x y

x y

     


          (1.5) 

0( , ,0) ( , ),( , ) ,u x y u x y x y              (1.6) 

( , , ) ( , , )

( , , ) 0, ( , )

u x y t u x y t

u x y t x y





 

   
               (1.7)                 

Where (0, ) (0, ) , 0.R R t        

Recently, in [3], Zhijian Yang, Zhiming Liu study the 

existence of exponential attractor for the Kirchhoff equations 

with strong nonlinear damping and supercritical nonlinearity 
2 2

( ) ( ) ( )

( ),

tt tu uu u u f u

h x

      


          (1.8) 

0

1

0,  ( , 0) ( ),  

( , 0) ( ),  .t

u u x u x

u x u x x

  

 
                       (1.9)                                   

Where  is a bounded domain in 
N

with the smooth 

boundary  , the nonlinear functions ( ), ( )s s  and 

( )f u and the external force term h will be specified later. 

 They acquire an exponential attractor in natural energy 

space by using a new method based on the weak 

quasi-stability estimates (rather than the strong one as usual). 

Chueshov[4] first studies the existence and uniqueness of 

solution and global attractors for problem(1.8)-(1.9). His 

results show that the growth exponential p of the 

nonlinearity term ( )f u need to be satisfied:
1 2p p p  ,  

with 1 2,
2 4

( 2) ( 4)
N Np p
N N 
  
 

. However, when
1p p , 

he obtained an exponential attractor by virtue of the strong 

quasi- 

stability estimates. 

Ke Li, Zhijian Yang[5] studied the exponential attractors for 

the strongly damped wave equation 

Exponential attractors and inertial manifolds for the 

higher-order nonlinear Kirchhoff-type equation 

Ling Chen, Wei Wang, Guoguang Lin 
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( ) ,tt tu u u u f                          (1.10) 

0(0) , (0) ,t tu u u u                              (1.11) 

0,u                                               (1.12) 

Where
2 2
( ), ( ), (0) 0.f L C       

1 1 1( ) lim inf ( ) , ,
r

A r r R  


    is the first eigenvalue 

of  with Dirichlet boundary condition, and is of critical 

growth. 
3

2( ) ( ) (1 ),A r c r r R    . 

Under suitable assumption
1 2( ), ( )A A . They obtain 

exponential attractor by the l-trajectories method, and they 

give an explicit upper bound of the fractal dimension of the 

exponential attractor. 

The problem (1.10)-(1.12) was studied by Meihua Yang and 

Chunyou Sun in [6] when their assumption respectively are: 
1

1( ) ( ), (0) 0H C R   ; 

2( )H growth condition ( ) (1 );
p

s c s    

3( )H 1

( )
lim inf , 0 4.
s

s
ps





     

They result allow that for each 0T  fixed, there is a bound 

(in
2 1

H H ) set which attracts exponentially every
1 2

H L  

bounded set w.r.t the stronger
1 1

H H -norm for all t T and 

has finite fractal dimension in 
1 1

0 0H H for the 

case
2
( )f L   

Guigui Xu, Libo Wang and Guoguang Lin [7] studied global 

attractor and inertial manifold for the strongly damped wave 

equation 
2

( ) ( , ),

( , ) ,

tt tu u u u g u f x t

x t R

  



       


      (1.13) 

0 1( , 0) ( ), ( , 0) ( ), ,tu x u x u x u x x            (1.14) 

0, 0, ( , ) .u u x t R


                 (1.15) 

They give assumption for the nonlinearity term g satis- 

fies the following inequality: 

01 2

( )
( ) lim inf 0, , ( ) ( ) .

s

s

G s
H s R G s g r dr

s
     

2( )H There is some positive constant
1C such that 

1
2

( ) ( )
lim inf 0, .
s

sg s C G s
s R

s


   

    Under suitable assumption, they prove the dynamical 

system admits the inertial manifold by using the Hadamard’s 

graph transformation method. 

 More research on exponential attractors and inertial 

manifolds, we can refer to literature [8-12]. 

In the present paper, the existence of the exponential attractor 

is easily to be proved. Concerning the inertial manifold, there 

exist lots of difficulties in the process of existence of inertial 

manifolds, in order to overcome the difficulties, we take 

advantage of Hadamard’s graph transformation method. As a 

graph of a Lipschitz continuous function defined over a 

finite-dimensional subspace of X. Following Robinson [11], 

we first transform equation (1.1) into an equivalent 

first-order system of the form. 

( ),   U XtU AU F U                         (1.16)                                                           

So as to conquer the difficulties, we need some reasonable 

assumption in literature [12], now, we will need the 

assumption of display as follows: 

(1) 2( ) (1 ),  0< p , 3;
2

p ng u C u n
n m

   


 

(2) 
1

( ) ( );s C R   

(3) 1
0 1

2 1
( )

4
m s m


 


     

The other two new hypothesis is given: 

(4) 0( )( , ) ( , ),  ( , );
m m m m
u v u v m           

The main contributions of this paper are: (a) the problem 

considered in this paper is higher-order nonlinear equation 

with strongly damping term and this problem is 

representative; (b) the estimates are precise and the proofs 

are understood easily. 

This paper is arranged as follows. In section 2, some 

notations and basic concepts are established. In section 3, it is 

proved that the exponential attractor exists. In section 4, we 

will discuss the existence of inertial manifolds. 

 

II. PRELIMINARIES 

For convenience, we first introduce the following notations: 
2 2

1 0( ), ( ) ( ),
m

H L V H L       

2 1

2 0 0( ( ) ( )) ( ),
m m

V H H H      

( 0,1, 2 )ic i  denote various positive constants and they 

may be different at each appearance. where (. ,  .) and . are 

the inner product and norm of H. The inner product and the 

norm in V1 space is defined as follows: 

( , ) , 1, 2,i i i iU u v V i     we have 

1 2 1 2 1 2( , ) ( , ) ( , )
m m

U U u u v v                      (2.1)                                            

11

22 2
( , )

m

VV
U U U u v                       (2.2)                                            

Let
1( , ) , ,tU u v V v u u     

 1 4
1

2
1

4
min , 2

3
2

m m

m

  
 






 



 
 
 
  

Equation (1.1) is 

equivalent to the following the evolution equation 

( ),tU AU F U                                     (2.3)                                      

with  

1( , ) , ,tU u v V v u u                             (2.4)                                          

2
2

,
( ) ( ( ) )( )

m m m

u v
AU

u v v u u



   




      

 
  
 

        (2.5) 

0
( )

( ) ( )
F U

f x g u

 
 
 
 




                               (2.6) 

We will use the following notations, let 
1 2,V V are two Hilbert 

spaces, we have 
1 2V V with dense and continuous 



 

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-4, Issue-11, November 2016  

                                                                                               8                                                           www.erpublication.org 

injection, and 
1 2V V  is compact. Let ( )S t is a map from 

iV into 
iV , 1,2.i   

Definition 2.1.
[15]

 The semi-group ( )S t possesses a 

2 1( , )V V -compact attractor A , If it exists a compact set 

1A V , A  attracts all bounded subsets of 
2V , and 

( ) , 0.S t A A t    

Definition 2.2.
[16]

  A compact set M is called a 

2 1( , )V V -exponential attractor for the system ( ( ), )S t B , if 

A M B   and 

1) ( ) ,   t 0,S t M M    

2) M  has finite fractal dimension, ( )fd M   ; 

3)there exist positive constants 
2 3,c c  such that 

3

2
( ( ) , ) , 0,

c t
dist S t B M c e t


   

    where 1
1 1

( , ) sup inf ,V V
dist A B x y B V

y Bx A
  


 is a 

positive invariant set of ( )S t . 

Definition 2.3.
[16]

 ( )S t is said to satisfy the discrete 

squeezing property on B  if there exists an orthogonal 

projection 
NP of rank N such that for every u and v  in B , 

either 

1 1
* *

1( ) ( ) , (0, ),
8V V

S t u S t v u v      

or 

1 1
* * * *( ( ) ( ) ) ( ( ) ( ) ) ,N NV V

Q S t u S t v P S t u S t v    

where .N NQ I P   

Theorem 2.1. Assume that 

 1) ( )S t possesses a 
2 1( , )V V -compact attractor A ; 

 2) it exists a positive invariant compact set 
1B V of ( )S t ; 

 3) ( )S t is a Lipschitz continuous map with Lipschitz 

constant l on B , and satisfies the discrete squeezing property 

on B . 

Then ( )S t has a 
2 1( , )V V -exponential attractor 

M A on B , and *

*

( ) ,
0

M S t M
t t


 

 

( )

* *( ( ) ( )).
1 1

kj
M A S t E

j k

 


 
Moreover, the fractal 

dimension of M satisfies 0( ) 1,fd M cN   where 

( )

0 ,
K

N E are defined as in [17]. 

Proposition 2.1.
[16]

 There is 
0 0( )t B such that 

0

0

( )
0

B S t B
t t


 

 is the positive invariant set of ( )S t in 
1V , 

and B attracts all bounded subsets of 
2V , where 

0B  is a 

closed bounded absorbing set for ( )S t in 
2V . 

Proposition 2.2. Let 
0 1,B B respectively are closed bounded 

absorbing set of (2.3) in
2 1,V V , then ( )S t possesses a 

2 1( , )V V -compact attractor A . 

Definition 2.4.
[18]

 An inertial manifold  is a 

finite-dimensional manifold enjoying the following three 

properties: 

1)   is Lipschitz, 

2)  is positively invariant for the semi-group 

0 ,  i.e. { ( )} ( ) ,  t 0,tS t S t       

3)   attracts exponentially all the orbits of the solution. 

Definition 2.5.
[13] 

Let A : X X  be an operator and 

assume that ( , )bF C X X  satisfies the Lipschitz condition 

( ) ( ) ,  , .FX X
F U F V l U V U V X     

The operator A  is said to satisfy the spectral gap condition 

relative to F , if the point spectrum of the operator A  can be 

divided into two parts 
1  and 

2 , of which 
1 is finite, and 

such that, if 

1 1 2 2sup{Re },   inf{Re },                 (2.7)                                     

and 

{ }, 1, 2.i j iX span j i                           (2.8) 

Then  

2 1 4 Fl                                           (2.9) 

and the orthogonal decomposition 

1 2X X X                                       (2.10) 

holds with continuous orthogonal projections 
1 1:P X X  

and 
2 2:P X X . 

Lemma 2.1.
[1]

 Let the eigenvalues j


, 1j  be arranged in 

nondecreasing order, for all m N , there is N m such 

that N


and 1N


 are consecutive. 

 

III. EXPONENTIAL ATTRACTORS 

 

Theorem 3.1.
[14] 

Under of the proper assume for ( ), ( )g u u , 

the initial boundary value problem (1.1)-(1.3) with Dirichlet 

boundary exists unique smooth solution. This solution 

possesses the following properties: 

1

22 2

0( , ) ( ),
m

V
u v u v c R     

2

2 22

1( , ) ( )
m m

V
u v u v c R     . 

We denote the solution in Theorem 2.1, by 

0 0( )( , ) ( ( ), ( )),S t u v u t v t the ( )S t is a continuous 

semi-group in
1V , we have the ball: 

1

2

1 1 0{( , ) : ( , ) ( )},
V

B u v V u v c R    

2

2

0 2 1 {( , ) : ( , ) ( )}.
V

B u v V u v c R     

Respectively is a absorbing set of ( )S t in
1V and

2V . 

Lemma 3.1. For any
1( , )U u v V  , we have 

2

2

2

1
1

),( vkUkUAU
m

V
 . 

Proof. By (2.1) and (2.2), we obtain 
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2

( , ) ( ( ), ) ( , )

               ( , ) ( , )

m m

m m m

AU U u v u A v

u v u A v





    

     
          (3.1)  

Where vuuuvA
mmm

)())()((
2

2
   

22
22

2
2

),)()((),(v-          

),)())()(((),(

vvuuvu

vvuuuvvA

mmmm

mmm








         (3.2) 

  By using a new hypothesis (4). Holder inequality, Young’s 

inequality and Poincare inequality, we can work out the 

following terms 

22

1

2

22
),(

),)((),)((

),)()((

2 uvvu

vuvu

vuu
m

mmm

mmmm

mm

m













 








        (3.3) 

2
4-

1

2
-

1

)

2
2

2

2
(

-

1

2

-

1

22

2

1

2

1

22

1

 ),(

vu

vu

vuvu

mmmm

mmm

mmm
















             (3.4) 

Where
1( 0)  is the first eigenvalue of the operator  . 

  To sum up (3.2)-(3.4), we can receive 

22 12
1

4
2

1
                 

3
( , ) ( ) ( )

2 2 2

(1 )
2

mm
m

m
m

AU U v u

v

   
 

 





 
    

  

because of 

41 4min , 2
13

2 2
1

mm

m

  
 




 



 
 
 
 
 

 

then  
4

1 12
1

3
( ) 0, ( ) 0, (1 ) 0

2 2 2 2

m mm      
 

 
 

       

so, we can obtain 

1

22

1 2( , )
m

V
AU U k U k v   , 

where 
4

1 12
1 1 2

3
min , , (1 ) 0

2 2 2 2
{( ) ( )}

m mm

k k
     

 
 

 
       

The proved is ended. 

 

Let 

0( ) ( ) ( ( ), ( ))
T

S t U U t u t v t  , where ( ) ( )tv u t u t  ; 

0( ) ( ) ( ( ), ( ))
T

S t V V t u t v t  , where ( ) ( );tv u t u t   

Set  

0 0( ) ( ) ( ) ( ) ( ) ( ( ), ( ))
T

W t S t U S t V U t V t w t z t     , 

where ( ) ( ) ( )tz t w t w t  , then ( )W t satisfies: 

( ) (0, ( ) ( )) 0
T

tW t AU AV g u g u     ,            (3.5) 

0 0(0)W U V  .                                        (3.6) 

  For the sake of attesting (1.1)-(1.3) has a exponential 

attractor, we first prove the dynamical system ( )S t of 

(1.1)-(1.3) is Lipschitz continuous on B . 

   

Lemma 3.2. (Lipschitz property) For any  

,0,, 00  TBVU  we have 

1 1

2 2

0 0 0 0( ) ( ) .
kt

V V
S t U S t V e U V    

Proof. Applying the inner product of the equation (3.7) 

with ( )W t in
1

V , we discover that 

21 ( ) ( , ( )) ( ( ), ( ) ( )) 0
2

d W t AU AV W t z t g u g u
dt

                                                  

(3.7)  

Similar to Lemma 3.1, we obtain 

1 1 1

22

1 2( , ( )) ( ) ( ) .
m

V V V
AU AV W t k W t k z t          (3.8) 

Using Young’s inequality, Poincare inequality and Lagrange 

mean value theorem, we have 

2

2

2

4 1

2 2
4 1

2
4 1

                                 

( ( ) ( ), ( )) ( ) ( ) ( )

( ) ( )

                             ( ( ) ( ) )
2

                             ( )
2

.

m

m

m

m

m

g u g u z t g w t z t

c w t z t

c
w t z t

c
W t















 

 

  



      (3.9) 

So we have 

2

22 2

1

2

4 1

( ) 2 ( ) 2 ( )

( ) .
m

md W t k W t z t
dt

W tc 


  



               (3.10) 

By using Gronwall inequality, we obtain 

22 2 2
4 1( ) (0) (0)

m

ktc
W t e W e W




   ,           (3.11) 

where 2

4 1

m

k c 


 , so we have 

1 1

2 2

0 0 0 0( ) ( ) .
kt

V V
S t U S t V e U V    

The proved is ended. 

 

Now, we define the operator : ( )A D A H   ; 

( ) { }mD A u H A u H   . 

  Obviously, A is an unbounded self-adjoint positive operator 

and
1

A


is compact, we find by elementary spectral theory the 

existence of an orthogonal basis of H consisting of 

eigenvectors 

j of A such that 

1 2  0j j j jA            . 

N denote by
1 N:  H span{ , }nP P    the projector, 

N NQ Q I P   . 

   Next, we will use 

2 1

1 0( ) , ( ( ) ( )),  

,

m m

n n

n

A u u u u Q H H

Q u u u H

m
       

 
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Lemma 3.3. For any
0 0,U V B , let 

0 0 0 0 0
( ) ( ( ) ( )) ( ) ( , )

T

n n n n nQ t Q U t V t Q W t w z    , then 

01

0
1

22 24 12

1

( ) ( ) (0)
2

.

m

nk t kt

n
V

c
W t e e W

k k





 


 

Detailed proof of Lemma 3.3, please refer to Lemma 3.3 of 

literature [11]; so we will omit it. 

Lemma 3.4. (Discrete squeezing property) For 

any
0 0,U V B , if 

0 0
1

1

* * * *

0 0 0 0( ( ) ( ) ) ( )( ( ) ( ) )n n
V

V

P S T U S T V I P S T U S T V   

then we have  

1 1

* *
.0 0 0 0

1( ) ( )
8V V

S T U S T V U V    

Proof. If  

0 0
1

1

* * * *

0 0 0 0( ( ) ( ) ) ( )( ( ) ( ) )n n
V

V

P S T U S T V I P S T U S T V   

then 

 

0
1

0
1

0
1

* *
01

2
* *

0 0

2
* *

0 0

2
* *

0 0

2
* *

0 0

2
24 12

0 0
1

( ) ( )

( )( ( ) ( ) )

( ( ) ( ) )

( )( ( ) ( ) )

2

2

2( ) .

n
V

n
V

n
V

m

nk T kT

S T U S T V

I P S T U S T V

P S T U S T V

I P S T U S T V

c

k k
e e U V











  



 





  

         (3.12) 

Let 
*

T be large enough 
*2

1 1 .
256

k T
e


                                       (3.13) 

Also let
0n be large enough 

0

2 *4 1

1

1
2 256

m

n
c kT

e
k k








.                               (3.14) 

Substituting (3.13),(3.14) into (3.12), we obtain 

1 1

* *
.0 0 0 0

1( ) ( )
8V V

S T U S T V U V            (3.15) 

Lemma 3.4 is proved. 

 

  Theorem 3.2. Under of the above assume,
0 0( , ) ,ku v V  

1 4
1

2
1

41, 2, , , min , 2
3

2

m m

t m
k f H v u u

  
  




     



 
 
 
  

t

hen the initial boundary value problem (1.1)-(1.3) the 

solution semi-group has a
2 1( , )V V -exponential attractor 

on B ,
*

* ( )
( )( ( ( ) ( ))),

10 1

j k
M S t A S T E

jt T k

 


  
 and 

the fractal dimension is satisfied 0( ) 1fd M cN  . 

Proof. According to Theorem 2.1, Lemma 3.2, Lemma 3.4, 

Theorem 3.2 is easily proven. 

 

IV. INERTIAL MANIFOLD 

 

Equation (1.1) is equivalent to the following one order 

evolution equation 

( ),tU HU F U                                     (4.1) 

where  

2

0
( , ), , ,

( )( ) ( )
t m m m

I
U u v v u H

u


  

  

 
  
 

             (4.2) 

0
( ) ,

( ) ( )
F U

f x g u




 
 
 

                             (4.3) 

2 2 2
( ) { ( ) ( ) , ( ) ( )} .

m m m m
D H u H u L u H H        

   We consider the usual graph norm in X , induced by the 

scale product, 

( , ) ( , ) ( , )
m m

XU V u y z v    ,                   (4.4) 

with ( , ), ( , )U u v v y z X   , ,y z respectively denote the 

conjugation of y and x ,
2

, ( ),
m

u y H 
0

, ( ),
m

v z H   

obviously, the operator H defined in (4.2) is monotone, 

for ( )U D H , 

2

( , ) (( , ( ) ( ) ), ( , ))

                  ( , ) ( , ( ) ( ) )

                  ( , ) ( , ) ( , )

                  0

m m

X X

m m m m

m m m m m m

m

HU U v u v u v

v u v u v

v u v u v v

v



 

 

     

        

         

  

                                                         (4.5) 

Therefore, ( , )XHU U is a nonnegative and real number. 

  To determine the eigenvalues of H , we consider the 

following eigenvalue equation 

,    ( , )HU U U u v X                             (4.6) 

That is 

2

,

( )( ) ( ) .
m m m

v u

u u v v



 

 

    





                  (4.7) 

The first equation of (4.7) is substituted into the second 

equation of (4.7), we obtain 
2

2
( )( ) ( ) 0,

( ) 0.

m m m

m

u u u u

u u

  

 

     

  





           (4.8) 

Takingu inner product with the first equation of (4.8), we 

have 
2 2 222

( ) 0.
m m m

u u u u                 (4.9) 

(4.9) is considered an a yuan quadratic equation on , so we 

know 

2 4 ( )

2
k k k k

k

    

  
                             (4.10) 

Where
k is the eigenvalue of ( )

m
 in 0 ( )

m
H  , 

then
1

m
n

k k  . If 4 ( )k k   , that is,
14k m  , the 

eigenvalues of H are all positive and real numbers, the 

corresponding eigenfunction have the 
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form ( , )k k k kU u u
 
  . For (4.10) and future reference, we 

note that for all 1k  , 
2 1, 1, .

m m

k k k k
k

u u u



               (4.11) 

Lemma 4.1 0 0: ( ) ( )
m m

g H H   is uniformly bounded 

and globally Lipschitz continuous. 

Proof. 1 2 0, ( )
m

u u H   , we have 

1 2 1 2 1 2( ) ( ) '( )( ) '( ) .g u g u g u u g u u       

with 
1 2( , )u u  , because of (1), we can get 

1 2 1 2 5 1 2( ) ( ) '( )( ) .g u g u g u u c u u      

Let
5l c , then l is Lipschitz coefficient of ( )g u . 

  Theorem 4.1 The following inequalities hold 

while
14k m  , if l is Lipschitz constant of ( )g u , 

let
1N  be so large such that

1N N . 

1 1 1
1 1

41 1( )( 2 4 ) 1
2 2 2 4N N

lm
m

  
     


.   (4.12) 

Then the operator H satisfies the spectral gap condition of 

(2.9). 

Proof. When 
14k m  , all the eigenvalues of H are real and 

positive, and we know that both sequences 1{ }k k


 and 

1{ }k k


 are increasing. 

  The whole process of proof is divided into four steps. 

(1) since k


is arranged in nondecreasing order. According  

to Lemma 2.1, given N such that N


and 1N


 are 

consecutive, we separate the eigenvalue of H as 

1 { , max{ , } },

{ , min{ , }}.
2

j k j k N

j k j N j k

     

      

    

     

 

  
       (4.13) 

(2) we will decomposition of X . 

1 1

2 2

{ , , },

{ , , }.

j k j k

j k j k

X span U U

X span U U

  

  

   

   

 

 
         (4.14) 

Our purpose is made these two subspaces orthogonal and 

satisfies spectral inequality (2.9). 1 2 1,N N 
 

    , we 

further decompose
2 c RX X X  , with 

{ },

{ }.

c j j N j

R R N k

X span U

X span U

  

 

   

  

  

 
                (4.15) 

and let
1N cX X X  . Next, we will stipulate a eigenvalue 

scale product of X such that
1X and

2X are orthogonal, so we 

need to introduce two functions 

: , :N RX R X R    . 

2

( , ) 2( , ) 2( , )

             2( , ) 4( , )

             4 ( )( , )

m m m m

m m m m

m

U V u y z u

v y v v

u u y



  

      

     

 

     (4.16)   

( , ) ( , ) ( , ) ( , )
m m m m m m

U V u y v u z y
 

                  (4.17)    

With ( , ), ( , ), ,U u v V y z y z  respectively denotes the 

conjugation of ,y z . 

Let ( , ) NU u v X  , then  

2

2 2 2 2 2

2 2 2

1 1

( , )

2( , ) 2( , ) 2( , )

4( , ) 4 ( )( , )

2 4 4 4

4   ( 4 )

m m m m m m

m m m

m m m m

m

U U

u u v u v u

v v u u u

u v u v u

u u m u





 

 

 

 



        

    

        

    

          (4.18) 

Since. For any
1, 4kk m  , we can conclude 

that ( , ) 0U U  . For all
NU X , analogously, 

for
RU X , we have 

2

1

( , ) ( , ) ( , )

             ( , )  0

m m m m

m m

U U u u v u

v u u





      

    
            (4.19) 

So, we also find that ( , ) 0U U  for all
RU X . Therefore , 

we define a scale product with and in X . 

, ( , ) ( , )X N N R RU V P U P V P U P V          (4.20)  

Where ,N RP P are respectively the projection: ,NX X  

RX X , for brief, we can rewriter (4.20) as the following. 

),(),(, VUVUVU X  .              (4.21) 

We will show that these two subspace
1 2,X X  

Defined in (4.14) are orthogonal in regard to the scale 

product (4.21) in the following process, in fact 

NX and
cX are orthogonal, that is , 0j j XU U

 
   , for 

every ,j c j NU X U X
 
  , we can compute from (4.16) 

2

2 2

2 2

  

, ( , )

 2( , ) 2 ( , )

  2 ( , ) 4 ( , )

  4

 2 2( )

4 4

1 2 2( ) 4 4

j j X j j

m m m m

j j j j j

m m m m

j j j j j j j

j

m

j j j j

m

j j j j

j j j j j
j

U U U U

u u u u

u u u u

u

u u

u u



  



 

  

     

   

 

     

 

  

   

   

     

     



   

  

     

  (4.22)                                              

According to (4.10), we have ,j j j j j j     
   
    

So  

, ( , ) 0j j X j jU U U U
   

                      (4.23) 

(3) Next, we estimate the Lipschitz constant
Fl of F , 

 ( ) (0, ( ) ( )) :
T m m

F U f x g u g H H   is globally.  

 

Lipschitz continuous with Lipschitz constant l , from (4.17), 

(4.18), for arbitrarily ( , )U u v X  , we have 
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2

1 1 2 2

2 2

1 1 1 2

2

1 1

( , ) ( , )

         ( 4 )

         (2 4 )

X
U PU PU PU PU

Pu P u

m u

  



   

  

 

                (4.24) 

Given ˆ ˆ( , ), ( , )U u v V u v X   , we have 

1 1

ˆ( ) ( ) ( ) ( )

ˆ                          

                          
2 4

X

X

F U F V g u g u

l u u

l U V
m

  

 

 


             (4.25) 

That we can claim that 

1 1
2 4F

ll
m




                                    (4.26) 

(4) Now, we need verify the spectral gap condition (2.9) 

holds. 

 Following the above mentioned 1 N


   and 2 1N


  , 

we can obtain 

2 1 1

1
1 1( ) ( ( ) ( 1)
2 2

N N

N N R N R N

 

 

 





    

    
       (4.27) 

Where
2

( ) 4N NR N    . 

  We determine
1 0N  such that for all

1N N , 

Let 1
1

1 1 1 1 1

41( ) 1
2 4 (2 4 )

N

m
R N

m m  


  
 

, we can 

compute 

1 1 1

1 1 1 1 1

( ) ( 1) 2 4 ( )

2 4 ( ( 1) ( ))

N N

N N

R N R N m

m R N R N

  

  





    

   
  (4.28) 

By the former assume 1
0 1

2 1
( )

4
m s m


 


    , we can 

easily know that 

1 1 1lim ( ( ) ( 1) 2 4 ( )) 0N N
N

R N R N m  


         (4.29) 

Then, combining (4.26) (4.27) (4.12) and (4.29), we obtain 

2 1 1 1 1

1 1

1 1( )( 2 4 ) 1
2 2

4            4
2 4

N N

F

m

l l
m

  



       

 


   (4.30) 

So, the prove is ended. 

 

   Theorem 4.2. Under the condition of Theorem 4.1, the 

initial boundary value problem (1.1)-(1.3) admits an inertial 

manifold in X of the form 

1( ) : { ( ) : }graph m m X       ,            (4.31) 

where
1 2,X X are as in (4.14) and

1 2:m X X is a Lipschitz 

continuous function. 

V. SUMMARY 

  In section 4, we have proved that the inertial manifold exists 

when
14k m  , next, we discuss the existence of the inertial 

manifold when
14k m  . 

Since
14k m  , the eigenvalues of H are complex, 

with 1Re
2k k 


 , and when N is sufficiently large, discuss 

the results with Theorem 4.1 is similar, so the proof 

procedure is omitted. 
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