
                                                                                

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-4, Issue-3, March 2016   

                                                                                                  9                                                                 www.erpublication.org 

 

 

Abstract— The main objective of this paper is to provide a 

simple analysis of the various sensorless control methods used to 

estimate the rotor position of a permanent-magnet synchronous 

machine. In particular model-based soft sensors are presented. 

The model used can be expressed either in a reference frame 

related to stator or in a reference frame related to rotor. The 

advantages and the drawbacks of each method are highlighted. 

 
Index Terms— Permanent magnet synchronous motor, 

position estimation, review, rotor, sensorless drives. 

 

I. INTRODUCTION 

 

Permanent magnet synchronous machines (PMSM) are 

widely used in industrial applications because of their special 

advantages, such as high efficiency, high power/torque 

density, and a wide constant power zone. To achieve high 

performance field-oriented control, accurate rotor position 

information, which is usually measured by rotary encoders is 

necessary. However, the cost of a sensor may exceed the cost 

of a small motor in some applications. Also, the presence of 

the mechanical sensors not only increases the cost and 

complexity of the total material with additional wiring but 

also reduces its reliability with additional sensitivity to 

external disturbances. In addition, it may be difficult to install 

and maintain a position sensor due to the limited space and 

rigid work environment with high vibration or high 

temperature. Therefore, the idea is to replace the mechanical 

sensor by a soft sensor which offers a number of attractive 

properties one of them being a low cost alternative to 

hardware speed measurement used in classical motor drives 

[1–3]. 

 

Therefore the position sensor is replaced by a model-based 

soft sensor where the position estimation can be correctly 

obtained from the standard models of the permanent-magnets 

synchronous machines.  This model can be expressed either in 

a reference frame fixed to stator windings: the fixed reference 

(α - β) or in a reference frame fixed to rotor windings: the 

rotating frame (d - q). For the first instance, the (α - β) model 

allows direct estimation of the rotor position. The speed is 

deduced by using a Phase-Locked Loop (PLL) which avoids 

the direct derivation of the position [4–6].  For the second 

case, the (d - q) model can be obtained by applying the Park 

transform to the (α - β) model. However, this transform 

requires the position measurement which is not available in 
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the case of sensorless applications. With this model the 

velocity estimate precedes the estimate of the position which 

can be derived by integrating the estimated speed [7].  

The  aim  of  this  paper  is  to  present  a  review  about  

conventional  methods  and  current  trends in sensorless 

control of permanent magnet synchronous  motor drive. At the 

end an observation on the convergence of the (d - q) soft 

sensors is presented. 

 

This paper is organized as follows: 

 

 First, the motor equations for the PMSM in different 

coordinates are illustrated. 

 Second, a classification for different sensorless  

control  methods for the PMSM is given. 

 Third, the (d - q) and the (α - β) soft sensors are 

described. 

II. SYNCHRONOUS MACHINE MODELING 

Nowadays, synchronous machines, especially PMSM 

spread increasingly like actuators in automated industries 

where they replace the DC motors. Indeed, the use of the 

permanent magnets synchronous machines had a very 

important development in several industrial sectors because 

of its simplicity of design, its high-speed operating ability, 

performance in terms of torque-to-weight ratio and low 

maintenance. 

 

The PMSM considered in this study has a stator composed 

of a three-phase winding represented by the three axes (a, b, c) 

phase-shifted with respect to one another by an electrical 

angle of 120° and a rotor having p pole pairs. To simplify the 

modeling of the machine, we adopt the usual simplifying 

assumptions given in the majority of references [8] 

 

 The stator windings are symmetrical and have 

perfect sinusoidal distribution along the air gap. 

 The permanence of the magnetic paths on the rotor is 

independent of the rotor positions. 

 Saturation and hysteresis effects are inexistent. 

 

In this section, the model of PMSM is presented in three 

different frames: in the three-phase frame (abc), in the 

stationary reference frame (α - β) and in the rotating frame (d - 

q). The different coordinates are defined in Fig. 1, which 

shows the model of a PMSM. 
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Fig. 1. Three-phase / Stationary / Rotating frame. 

 

A. Model in the three-phase frame 

In the three-phase frame (abc), the stator voltages of 

PMSM can be expressed by 

                              s s s s

d
u R i

dt
                                (1) 

where [us]=[ua ub uc]
T 

are the phase voltages, [is]=[ia ib ic]
T 

are 

the phase currents, [ψs]=[ ψa ψb ψc]
T
 are the phase flux 

linkages and [Rs] is the phase  resistance given by  

                          
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Equation (1) presents a nonlinear model of the PMSM 

which is difficult to use. Thus, different changes and 

transformations are considered in order to reduce the 

complexity of this system. 

B. Model in the stationary reference frame 

In order to model the three-phase system previously 

introduced through a two-phase model, Clarke 

transformation, given by (3), is used.  
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                      (3) 

The unsaturated PMSM can be modeled in the stationary 

reference frame (α - β) by the following set of equations [9] 

            
sin
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s e pm
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              (4) 

                    
3

cos sin
4

e pm e e

p
T i i                         (5) 

where 

[ ]Ti i i   is the stator current vector, [ ]Tu u u   is 

the motor terminal voltage vector, 
sR is the stator windings 

resistance, L is the cyclic inductance, 
pm  is the magnetic 

flux, p is the number of pole pairs, 
e is the electrical rotor 

position and 
e is the electrical rotor speed. Throughout this 

paper, we shall assume that the mechanical parameters, 

position and speed, are unknown. 

C. Model in the rotating frame 

This model is obtained by implementing Park's transform 

to (4) and (5). Then, PMSM can be given by 

                            d
s d d e q

di
L R i u Li

dt
    , 

                q

s q q e d pm

di
L R i u Li

dt
      ,               (6) 

                                    
e pm qT p i . 

In this type of model, the delivered torque Te is proportional 

to the quadrature current iq. Thereby, this representation is the 

most frequently used in the field-oriented control of PMSM. 

However, Park's transform requires the use of the electrical 

position which is not available in sensorless applications. 

Several techniques have been developed to estimate, in a first 

step, the velocity from which we can deduce the position by 

integration. 

III.  PROPOSED SOFT SENSORS 

During the years, researchers have developed many 

sensorless techniques. These methods can be classified under 

two main categories according to the speed range of the 

machine: 

 Methods adequate for standstill and low speed 

region (High-frequency soft sensors), 

 Methods suitable for rated and high speed region 

(Model-based soft sensors). 

 

In the first category, position estimation is based on the 

anisotropy of the magnetic circuit and it can be obtained from 

high-frequency signal injection. These techniques are usually 

applied to the interior permanent magnet synchronous motor 

(IPMSM) as it involves the effects of salience. 

As for the second category, this estimate can be correctly 

obtained from the standard models of synchronous and 

asynchronous machines which give excellent results. The 

model used can be expressed either in the stationary reference 

frame (α, β) or in the rotating frame (d, q). 

Several techniques inspired from control theory [10]–[12], 

such as adaptive observers [13]–[15], reference models 

[16]–[18], extended Kalman filter [19] and reduced-order 

observers [20]–[21].  

A more detailed classification of proposed soft sensors can 

be presented as follows: 

1. High-frequency soft sensors  

     1.1. Pulses injection, 

     1.2. Signal injection, 

     1.3. INFORM method. 

2. Model-based soft sensors  

    2.1. Back-EMF estimation 

           2.1.1. Currents interruption,  

           2.1.2. Zero crossings,  

           2.1.3. Voltage integration, 

           2.1.4. Back-EMF calculation. 

    2.2. Estimators and observers 
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           2.2.1. Sliding mode observers,  

           2.2.2. Reduced-order observers,  

           2.2.3. Kalman filter, 

           2.2.4. Adaptive observers, 

           2.2.5. Model reference adaptive system (MRAS) 

observers.  

In the next sections of this paper , we present some 

model-based soft sensors expressed in the stationary 

reference frame (α, β) and in the rotating frame (d, q). First, 

we present a sliding mode and a nonlinear observer developed 

in the stationary reference frame. Second, a reduced-order 

and a MRAS observer expressed in the rotating frame are 

exposed. Finally, some observations on the convergence of 

the model-based soft sensors is illustrated. 

IV. SOFT SENSORS EXPRESSED IN THE STATIONARY FRAME 

For synchronous machines, such approaches allow a direct 

estimate of the position without using the speed estimation. 

These methods are based on the estimation of the 

electromotive forces which are proportional to the rotor 

speed. 

A. Sliding mode observer 

Sliding mode control is a powerful robust nonlinear control 

technique that has been intensively developed during the last 

years. This technique have been approved as one of the main 

approaches for the design of robust observers for complex 

nonlinear dynamic systems operating under conditions of 

uncertainty. Sliding mode observer (SMO) are receiving a 

very important attention because of its robustness, speed of 

convergence, good performance and innate insensitivity to 

parameter variations and disturbances. It takes advantage  of  

the  error  between  the  measured  and  the  estimated  stator  

currents  to  obtain  the  back-EMF  which  contains  the  rotor  

position  and  speed  information. However,  the  chattering  

phenomenon is the major disadvantage of SMO. The 

chattering creates system oscillations, performance 

degradation and even instability  to  the  system. The  effect  of  

chattering  is  predominant in conventional SMO where a 

signum function is used as control law [22]–[23]. 

In order to reduce the effect of chattering and to increase 

the accuracy of the estimation of the rotor position at low 

speed and the stability of the system at high-speed, a 

saturation function is used in such systems [24]–[26]. Using 

this function greatly reduces the chattering, but the presence 

of a low-pass filter can not be avoided. 

Another solution is to replace the signum function by the 

sigmoid function [27]–[29]. Significant  reduction  in  

chattering is noticed in the system with saturation and sigmoid 

function  compared  to  the  conventional  signum  function.  

The sigmoid function could even reduce chattering far better 

than saturation function. Use of sigmoid function also avoids 

the use of low pass filter and hence the compensation 

algorithms. 

The sliding mode control design is composed of three 

steps. First, a sliding surface, given by S(x)=0, should be 

designed. Then, the convergence condition must be define. 

Finally, the control law have to be determined. 

The electrical equations of the PMSM in the stationary 

reference frame may be formulated as follows:  

              
1 1s

q q q

i u i eR

u i eL L Li

   

  
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        

                (7)       

eα and eβ are the extended electromotive force. 

                       12 sine d e pm ee L i                            (8) 

                         12 cose d e pm ee L i                           (9) 

where 
2

1

qd LL
L


 . 

A sliding mode observer can be defined as follows [30]: 
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     (10) 

where KSM is the gain of the observer and  
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               (11) 

Subtracting the model equation (7) from (10) yields the error 

dynamics along the sliding surface 

     
 

 
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sign ii i eR K
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      (12) 

where i
~

and i
~

are the observation errors given by  

                                        iii  ˆ~
                                 (13) 

                                        iii  ˆ~
                                    (14) 

Let us select the Lyapunov function as 

                                      2 21

2
V i i                                (15) 

Then  

          ii
L

K
ieie

L
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Equation (16) shows that, if KSM is large enough, i.e., 

                            max ,SMK e e                             (17) 

then 0V   is always guaranteed until 0i  and 0i  . 

In order to force the convergence of the observed current 

values to the measured current values, the desired error values 

between the observed and actual current values in the 

stationary reference frame are set to zero. Then we apply the 

control scheme presented in Fig. 2. Once the sliding surface is 

reached and the observation error tends to zero, the extended 

electromotive force can be given by the following equations: 

                                 SM eqe K sign i                            (18) 

                                 SM eqe K sign i                            (19) 

Low-pass filters are used to extract eα and eβ. Finally, the 

rotor position is obtained by 
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 Fig. 2. Block diagram of the sliding mode observer. 

 

B. Nonlinear observer 

The  presented  technique  is  based  on  the model  of the  

PMSM  given  by  (4) and  (5)  and  on  an  online  

reconstruction of the back-electromotive  force. Based on the 

following equation 

                    
cos

sin

e

pm

e

Li 






 
    

 

                        (21) 

we can obtain the rotor position 
e : 

                     tan 2 ,e a Li Li                        (22) 

But  in  the  sensorless  control,  the  position  is  un known  

so we  cannot  compute  the  actual  value  of the  total  flux.  

As  a solution,  we  can  use  the  estimated value  of the flux  

given by the following equations: 

                2 2 2ˆ
s pmR i u                         (23) 

                2 2 2ˆ
s pmR i u                         (24) 

where ν is a  positive  scalar that  establishes  the  convergence 

speed of the  observer and 

                                    ˆ Li                                    (25)   

                                    ˆ Li                                    (26) 

The estimated flux ˆ
 and ˆ

 are available  for 

measurement as  it  only  depends  on  the  currents (iα, iβ) and  

the  voltages (uα, uβ). Then the estimated rotor position can be 

given by: 

                  ˆ ˆ ˆtan 2 ,e a Li Li                             (27) 

As is ill-advised to obtain the speed estimate through 

numerical differentiation  of the  position  estimates.  The  

speed  observer can be given by the  following  equations  [9]. 

                        1 1 2
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p e iz K z K z    
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ez z                                     (28) 
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ˆˆ

e p e iK z K z     

where Ki and Kp are  proportional  and  integral  gain  of the  

controller,  respectively. 

V. SOFT SENSORS EXPRESSED IN THE ROTATING FRAME 

Several soft sensors expressed in the rotating frame have 

been developed. In this case, the velocity estimate precedes 

the estimate of the position which can be derived by 

integrating the estimated speed. 

 

A. Reduced-order Luenberger observer 

The  state-space representation of the PMSM model can be 

written as [31]: 
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To simplify the writing, we will use the following 

notations: 

1 1
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Based on the model of PMSM given by (29), we can write 

the state space representation of the machine follows: 

 
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          (30) 

In this model, ωe plays both the role of a state variable and a 

parameter appearing in the dynamical matrix. However, in the 

case of a sensorless control, the speed is not measured and 

only the currents id and iq are accessible to measurement. 

Hence, the state space representation can be given by the 

following equation 
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The state vector x in (31) can be divided into two sub-vectors: 
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Equation (31) leads to 
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The Luenberger observer has the following structure:  

ˆ

z Fz Py Ru

Lz Qy Gu

   


  

                            (35) 

where 
qz R . The observability of    22 12, ,A C A A  

is a necessary and sufficient condition for the existence of this 

observer. If  ,A C  is observable then so is  22 12,A A . 

Indeed 

 
 

 

11 12

21 22

0m

m

q

I
C

rank rank I A A n C
I A

A I A

 




 
  
       
     
 

 

 

 
12

22q

A
rank q C

I A




 
    

  

 

 

Luenberger’s idea is to design the observer so as to satisfy 

ˆz T x with
1 2

ˆ ˆ
T

T Tx x x 
 

is a reconstruction of x  

composed of 1x and 2x̂ : ( 2x̂  a reconstruction of 2x ). The 

matrix T can be divided as follows: 

 

T Z T   
                                       (36) 

such that 

2 1 2 1
ˆz T x Z x T x Z x       

where  

 2 2 2
ˆT T x x     

So, we have 

  

     2 0F FT TA PC ZC x R PD TB ZD F Z u            (37)  

          

To ensure the asymptotic convergence of z to Tx we must 

satisfy the following constraints  

   

   

   

22 12

,

0,

0 0.

F is stable

FT TA P Z C FT TA P Z A

R P Z D TB Z





       


    

(38) 

 

Under these constraints,  tends to 0 and thus
2

ˆT x tends to 

2T x . The third equation in (9) can be rewritten as: 

 

 

 

1 12 11

2 2 1

0

0

R TA P Z A FZ

R TB P Z B

     


   

                  (39) 

 

where
1 2R R R    . 

 

Moreover, the real goal is to rebuild  . The static equation in 

(35) leads to 

2 1 2
ˆ LT x LZ x L QCx QDu Gu        

 

   2
ˆ 0QC LT x LZ QD G u L           

 

To ensure an efficient reconstruction in the steady state such 

that  lim 0
t

t


 , we must ensure that 

    2 1 1 2 2lim 0
t

QC LT x LZ QD G u S x S x


       

 

Let 1 2G G G    , then we have  

2

0 0

QC LT S

LZ QD G

  

     

 

 

In other terms, we must satisfy the following constraints: 

12 2

11 1 1

1 2 0

Q A LT S

LZ Q A G S

QB G

  


  


 

                          (40) 

 

These constraints, given by equation (38) and equation (40) 

may be difficult to verify both from computational and 

practical point of views, so we set the following arbitrary 

choice: , 0qT I P  and 0Q  .  

So 1 2
ˆz Z x x  and 

 

 
22 12

21 11 22 12 2 1

2

1 2 0

F A ZC A Z A

R A Z A A Z A Z B Z B

L S

G S S Z

    


        





    

 

 

The Luenberger observer is then given by 

ˆ

mes

mes

z F z P y Ru

Lz Q y Gu

  


  
                             (41) 

where 



 

Review of soft sensors for position control of the PMSM: Rotating frame vs Stationary frame 

 

                                                                                               14                                                          www.erpublication.org 

 

  

 

22 12

1 21 11 22 12

2 1 2 1 21 11 22 12

2

1 1 2

1 2 1

F F A Z A

P R A Z A A Z A Z

R R R D B Z B A Z A A Z A Z D

L L S

Q G S S Z

G G D S Z S D

   


    

        

  


  


   

    (42) 

 

It comes then to determine a reduced observer by assuming 

that e  which leads to  1 0 0S  and 2 1S  . It 

should be noted that  22 12,A A is observable. Let Z be 

expressed as  1 2Z   . Based on the previous result, 

we have 

 

2

2

1 2 1 2 1 2 2

1 2

1 2

1

0

pm

q

d q e d e q

d q

F
L

P a c b c a b

R l l

L

Q

G

 

        

 

 


 


        

    





  

 

(43) 

From the equation (9), we obtain 

2 1
1 2 1 2

2 2
1 2 2

1 2
ˆ

pm pms d
e d d

q d q q d

q pms
e q q

d q q q

e d q

R L
z z i u

L L L L L

L R
i u

L L L L

z i i

   
    

 
   

  

  
         

  


 
        



   

 (44) 

In this particular observer, the reconstruction gap of the 

speed ˆ
e e e    is described by the following equation 

2

pm

e e e

q

F
L


                               (45) 

Such a dynamic is characterized by only one pole: F. 

Hence 2 must be chosen positive for asymptotic of F and 

1 can be chosen equal to zero as it has no effect on this pole. 

This choice is due to the structure of the matrix 12A that 

present a null component. Therefore, 1 can be taken zero 

which simplifies the expression of the observer.  

In this analysis, the nonlinearity of the model is hidden by the 

fact that e is also a parameter of the dynamic matrix. But this 

nonlinearity appears suddenly and causes a problem. The 

calculated observer depends on e which is not measured. To 

implement it, we must replace, e  by ˆ
e  in the model of the 

observer, that is a reasonable approximation since the 

observer has converged. For this, we must choose the 

gain 2 such as the bandwidth of the observer is both greater 

than the bandwidth of the speed controller and smaller than 

the current controller (|αω|<< |αO|<|αC|). Hence, we obtain: 

 

2 2 2
2 2 2

2

ˆ

ˆ

pm pmd s
e d q q

q q q q q

e q

L R
z z i i u

L L L L L

z i

   
   

 

  
        

  




  

   (46) 

The rotor position can be obtained by integration of the 

rotor speed: 

   
0

ˆ ˆ
t

e et d                                    (47) 

B. MRAS observer  

This approach consists in using two different models: a 

reference model and an adaptive model. In [32], Three MRAS 

estimators are designed to estimate the rotor speed, the 

rotor-flux magnitude, and the stator resistance. It is 

demonstrated that the simultaneous estimation of the stator 

resistance and the rotor-flux magnitude is not possible, so two 

separate estimation schemes are proposed. The first scheme 

given by Fig. 3 can estimate the speed of the machine and the 

stator resistance while the rotor flux magnitude is set to its 

nominal value. The adaptive error signal equations of the 

rotor speed and the stator resistance are chosen as follows  

2

1

ˆ
sy

r

i
a




                             (48) 

                           
1 2

1 ˆ ˆ
ˆa sy sx sx sy

s

i i i i
i

                            (49) 

where 

          1

1 11 2

1
, , ,

ias i
c p ca pa

s s

KR K
a a G K G K

L L s s


        

The second scheme given by Fig. 4 is used to estimate the 

speed and magnetic flux where the stator resistance is set at its 

nominal value. Adaptive error signals are given by the 

following equations 

2

1

ˆ
sy

r

i
a




                             (50) 

                                   
2

2

1
r sx

r

i
a




                               (51) 

 
Fig. 3. Scheme 1: (a) Rotor-speed estimator. (b) Stator 

resistance estimator. 
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Fig. 4. Scheme 2: (a) Rotor-speed estimator. (b) Rotor flux 

estimator. 

 

VI. OBSERVATIONS ON THE CONVERGENCE OF THE 

ROTATING SOFT SENSORS  

 

Assumption: Let 0e  the initial rotor position estimation 

error. Then, a soft sensor expressed in the rotating frame 

maintains this error in open loop and eliminates it in closed 

loop. 

 

This assumption has be proved by different  simulation 

tests. Fig. 5 and Fig. 6 show the open-loop and the closed loop 

simulation results of two rotating soft sensors presented 

above. In order to prove that this is a characteristic of (d - q) 

soft sensors, we present in Fig.7 the simulation results 

achieved in open loop and closed loop of the nonlinear 

observer which is expressed in the stationary frame. The 

initial position estimation error is equal to 
4


. 

 

 
Fig. 5. MRAS observer. (a) Open-loop simulation (b) 

Closed-loop simulation 

 
Fig. 6. Reduced-order observer. (a) Open-loop simulation 

(b) Closed-loop simulation 

 
Fig. 7. Nonlinear observer. (a) Open-loop simulation (b) 

Closed-loop simulation 

 

VII. CONCLUSION 

In this paper, we have presented a review in  state of the art  

techniques for sensorless position estimation of permanent 

magnet  synchronous motor drives . In particular, the (d - q) 

and the (α - β) soft sensors have been described. At the end, 

some observations on the convergence of the model-based 

soft sensors have been illustrated. 
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