Darboux transformation and rational solutions for the general Hirota equation

Fei Chen

Abstract—In this paper, we investigate the rational solutions of the general Hirota equation by the generalized Darboux transformation. Based on two kinds of seed solutions, the rogue wave solutions and lump solutions are derived in terms of rational forms. It is shown that this equation supports lump solutions with constant boundary condition.

Index Terms—Darboux transformation, rational solutions, rogue wave solutions, lump solutions

PACS: 02.30.Ik, 05.45.Yv

I. INTRODUCTION

The Darboux transformation (DT) [1]-[3], originating from the work of Darboux in 1882 on the Sturm-Liouville equation, is a powerful method for constructing exact solutions of nonlinear wave equations [4]-[9]. The Darboux theory is presented in several monographs and review papers [1, 2]. In the literature, various approaches have been proposed to find a DT for a given equation, for instance, the operator factorization method [10], the gauge transformation method [11], and the loop group transformation [12]. It is remarked that the DT is very efficient for constructing rogue wave solutions, which have gained more and more interests in the study of physics. In this paper, we study the general Hirota equation

\[u_t = i(\partial_{xx}^2 + 2|u|^2 u + \omega u) + \epsilon(\partial_{xx}^2 + 6|u|^2 u_x), \]

where is the complex amplitude of the pulse envelope, the parameter \(\epsilon \) denotes the relative width of the spectrum that arises due to the quasi-monochromicity, and \(\alpha \) is a constant. The aim of this paper is to construct the rational solutions of Eq. (1) by DT, including the rogue wave solutions and lump solutions.

This paper is organized as follows. In Section 2, the N-step Darboux transformation and generalized Darboux transformation for the general Hirota equation are proposed. In Section 3, some rational rogue wave and lump solutions of the general Hirota equation are derived and their figures are plotted. The main results of the paper are summarized in Section 4.

II. THE GENERALIZED DARBOUX TRANSFORMATION

The Lax pair (i.e. linear spectral problem) [13] of the general Hirota equation (1) is

\[\varphi_x = U \varphi, \quad \varphi_t = V \varphi, \]

where the matrices \(U \) and \(V \) have the forms

\[U = \begin{pmatrix} i & 0 \\ -\alpha^T & i \end{pmatrix}, \quad V = \begin{pmatrix} i(\alpha^T - 2|u|^2 - \lambda) + h_0 + \alpha \lambda \end{pmatrix} \]

where \(\varphi = (f, g)^T \) (here \(T \) denotes the transpose), \(\lambda \) is the spectral parameter, \(a_{12} = \epsilon u_{xx} + i \alpha u_x + 2 \epsilon |u|^2 u \) and

\[a_{11} = \epsilon u_{xx} u^* - \epsilon u_x u + i \alpha |u|^2 + \frac{1}{2} i \alpha \omega, \]

\[a_{21} = -\epsilon u_{xx}^* + i \alpha u_x^* - 2 \epsilon |u|^2 u^*. \]

DT technique is a method which can derive exact solutions from trivial seed solutions in a purely algebraic procedure for the integrable nonlinear wave equations [14]-[18]. Main feature of DT is that the Lax pair associated with the nonlinear wave equations remains covariant under the gauge transformation. For the Lax pair (2) with (3), we first construct the gauge transformation

\[\varphi^{(1)} = T^{(1)} \varphi = (\lambda I - S) \varphi, \]

where \(I \) denotes the identity matrix and \(S = (s_{ij})_{2 \times 2} \) is a 2 \(\times \) 2matrix. Further, if matrix \(S \) takes the following form

\[S = H \Lambda H^{-1}, \quad \text{with} \quad \Lambda = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^* \end{pmatrix}, \quad H = \begin{pmatrix} f_1 & -g_1^* \\ g_1 & f_1^* \end{pmatrix} \]

It can be verified that if \((f_1, g_1)^T \) is a solution of Lax pair (2) with \(\lambda = \lambda_1 \), then \((-g_1^*, f_1^T)^T \) is also the solution of Lax pair (2) corresponding to \(\lambda = \lambda^*_1 \). Thus under the gauge transformation \(\varphi^{(1)} = T^{(1)} \varphi \), the Lax pair (2) becomes

\[\varphi_x^{(1)} = U^{(1)} \varphi^{(1)}, \quad \varphi_t^{(1)} = V^{(1)} \varphi^{(1)}, \]

where \(U^{(1)} \) and \(V^{(1)} \) have the same forms as \(I \) and \(V \) in Eq (3) except replacing \(u \) with \(u^{(1)} \).

Through the gauge transformation (4) and Eqs. (5)-(6), the 1-step DT of the Eq. (1) is found as
where

\[
\varphi^{(1)} = T^{(1)} \varphi, \quad u^{(1)} = u - 2i \sum_{j=0}^{(0)} s_{21}^{(0)},
\]

and

\[
T^{(1)} = \lambda I - S = \begin{pmatrix}
\lambda - s_{11}^{(0)} & -s_{12}^{(0)} \\
-s_{21}^{(0)} & \lambda - s_{22}^{(0)}
\end{pmatrix}, \quad s_{21}^{(0)} = \frac{(\lambda_1 - \lambda_1^*) f_{21}^{(1)} g_{1}}{|f_{11}^{(1)}|^2 + |g_{1}^{(1)}|^2}.
\]

Furthermore, let \(\varphi_2 = (f_2, g_2)^T \) be a solution of Lax pair (2) at \(\lambda = \lambda_2 \). Employing the map \(T^{(1)} \varphi_2 \) with \(\varphi_2^{(1)} = (f_2^{(1)}, g_2^{(1)})^T \), we have the 2-step DT of the Eq. (1) as

\[
\varphi^{(2)} = T^{(2)} T^{(1)} \varphi, \quad u^{(2)} = u^{(1)} - 2i \sum_{j=0}^{(2)} s_{21}^{(2)} = u - 2i \sum_{j=0}^{(1)} s_{21}^{(1)},
\]

where

\[
T^{(2)} = \begin{pmatrix}
\lambda - s_{11}^{(1)} & -s_{12}^{(1)} \\
-s_{21}^{(1)} & \lambda - s_{22}^{(1)}
\end{pmatrix}, \quad s_{21}^{(1)} = \frac{(\lambda_2 - \lambda_2^*) f_{21}^{(1)} g_{1}^{(1)}}{|f_{11}^{(1)}|^2 + |g_{1}^{(1)}|^2}.
\]

The 2-step DT may be iterated sequentially. In the general case, we have the following theorem:

Theorem 1. Let \(\varphi_k \ (k = 1, 2, \cdots, N) \) be \(N \) distinct solutions of the Eq. (2) at \(\lambda_k \), then the \(N \)-step DT of Eq. (1) is

\[
\varphi^{(n)} = T^{(n)} T^{(n-1)} \cdots T^{(1)} \varphi, \quad u^{(n)} = u - 2i \sum_{j=0}^{(n-1)} s_{21}^{(n-1)},
\]

where \(\varphi_{j+1} = (f_{j+1}, g_{j+1})^T = (T^{(j)} T^{(j-1)} \cdots T^{(1)})|_{\lambda = \lambda_{j+1}} \varphi_{j+1} \) and

\[
T^{(j+1)} = \begin{pmatrix}
\lambda - s_{11}^{(j)} & -s_{12}^{(j)} \\
-s_{21}^{(j)} & \lambda - s_{22}^{(j)}
\end{pmatrix}, \quad s_{21}^{(j)} = \frac{(\lambda_{j+1} - \lambda^*) f_{21}^{(j)} g_{1}^{(j)}}{|f_{11}^{(j)}|^2 + |g_{1}^{(j)}|^2}.
\]

Next, we begin to search for a generalized DT of the general Hirota equation (1). Suppose that \(\varphi_2 = \varphi_1 (\lambda_1 + \sigma) \) is a special solution for Eq. (2), then after transformation we have \(\varphi_2^{(1)} = T^{(1)} \varphi_2 \). Expanding \(\varphi_2 \) at \(\lambda_1 \), we have [19]

\[
\varphi_1 (\lambda_1 + \sigma) = \varphi_1^{[0]} + \varphi_1^{[1]} \sigma + \varphi_1^{[2]} \sigma^2 + \cdots + \varphi_1^{[N]} \sigma^N + \cdots,
\]

where \(\varphi_1^{[0]} = \varphi_1, \varphi_1^{[k]} = \frac{1}{k!} \frac{\partial^k}{\partial \sigma^k} \varphi_1 (\lambda) |_{\lambda = \lambda_1} \) and \(\sigma \) is a small parameter. Through the limit process

\[
\lim_{\sigma \to 0} \left[\left. \frac{T^{(1)}_{\lambda = \lambda_1 + \sigma} \varphi_2}{\sigma} \right|_{\sigma = 0} = \left. \frac{T^{(1)}_{\lambda = \lambda_1} \varphi_1}{\sigma} \right|_{\sigma = 0},
\]

we can find another solution to the Eq. (2) with \(u^{(1)} \) and spectral parameter \(\lambda = \lambda_1 \). Continuing the above process and combining all the DT, a generalized DT is constructed. Thus we have the following theorem:

Theorem 2. Let \(\varphi_1, \varphi_2, \cdots, \varphi_N \) be \(N \) distinct solutions of the Eq. (2) at \(\lambda_1, \cdots, \lambda_N \), respectively, and

\[
\varphi_i (\lambda + \sigma) = \varphi_i^{[0]} + \varphi_i^{[1]} \sigma + \varphi_i^{[2]} \sigma^2 + \cdots + \varphi_i^{[N]} \sigma^N + \cdots (i = 1, 2, \cdots, n),
\]

be their expansions, where \(\varphi_i^{[0]} = \varphi_i, \varphi_i^{[k]} = \frac{1}{k!} \frac{\partial^k}{\partial \sigma^k} \varphi_i (\lambda) |_{\lambda = \lambda_i} \) (\(j = 1, 2, \cdots \)).

Defining \(T = \Gamma_n \Gamma_{n-1} \cdots \Gamma_1 \Gamma_0 \), \(\Gamma_k = T^{(n_k)} \cdots T^{(1)} (i \geq 1) \), \(\Gamma_0 = I \), where

\[
T^{(j+1)} = \begin{pmatrix}
\lambda - s_{11}^{(j)} & -s_{12}^{(j)} \\
-s_{21}^{(j)} & \lambda - s_{22}^{(j)}
\end{pmatrix},
\]

\[
\varphi_i^{(j)} = \lim_{\sigma \to 0} \left[\left. \frac{T^{(j)}_{\lambda = \lambda_i + \sigma} \varphi_i}{\sigma} \right|_{\sigma = 0} = \left. \frac{T^{(j)}_{\lambda = \lambda_i} \varphi_i}{\sigma} \right|_{\sigma = 0},
\]

are the generalized DT for the general Hirota equation (1).
III. RATIONAL SOLUTIONS

Let us consider an example to illustrate the application of Theorem 2 to construct rational solutions for the general Hirota equation (1). In doing so, starting with the seed solution \(n = e^{i \alpha (\omega + 2 \varepsilon)^2} \). Without loss of generality, assuming that \(c = 1 \), the solution of the Lax pair (2) at \(\lambda = i \) is

\[
\varphi_1(f) = \left\{ \frac{e^B (C_2 e^A + C_1 e^{-A})}{i e^{-B} (C_1 e^A - C_2 e^{-A})} \right\},
\]

where \(C_1 = \sqrt{1 + \lambda^2 + \lambda, \lambda} = \sqrt{1 + \lambda^2 - \lambda, B = \frac{1}{2} i \alpha (2 + \omega) t, A = i \sqrt{1 + \lambda^2} [x + 2 (\varepsilon + \lambda \alpha - 2 \lambda^2) t + (b_1 + i d_1) \sigma^2 + (b_2 + i d_2) \sigma^4 + (b_3 + i d_3) \sigma^6 + \ldots + (b_N + i d_N) \sigma^{2N}] \)

where \(b_k, d_k (k = 1, 2, \ldots, N) \) are free real parameters.

Let \(h = 1 + \sigma^2 \), expanding the vector function \(\varphi_1(\sigma) \) at \(\sigma = 0 \), we have

\[
\varphi_1(\sigma) = \varphi_1[0] + \varphi_1[1] \sigma^2 + \varphi_1[2] \sigma^4 + \varphi_1[3] \sigma^6 + \ldots,
\]

where \(\varphi_1[0] = \left(\begin{array}{c} P[0] \\ Q[0] \end{array} \right), \varphi_1[1] = \left(\begin{array}{c} P[1] \\ Q[1] \end{array} \right), \varphi_1[2] = \left(\begin{array}{c} P[2] \\ Q[2] \end{array} \right), \) and \((P[i-1], Q[i-1])^T, (i = 1, 2, 3) \) are given in Appendix A.

It is clear that \(\varphi_1[0] \) is a solution for Eq. (2) at \(\lambda = i \). In what follows, we impose \(\alpha = 1, \varepsilon = 0.1, \) and only discuss three cases: \(N = 1, N = 2 \) and \(N = 3 \).

(1). When \(N = 1 \), by means of formula (14), we have

\[
\varphi_1^{(1)} = \lim_{\sigma \to 0} \left[f^2 + T_{1,1}^{(1)} \right] \varphi_1(\sigma) = T_{1,1}^{(1)} \varphi_1[1] + \varphi_1[0],
\]

From Eqs. (19) and (20), the first-order rogue wave solution is derived as

\[
u[1] = e^{i t} \left(75 - 100 x^2 - 120 x t - 436 i t^2 + 436 t^2 \right),
\]

where we have used the notation \(u^{(N)} \) represent the N-order rogue wave solution for simplicity.

(2). When \(N = 2 \), by means of the formula of \(\varphi_1^{(2)} \) in Eq. (17), we obtain

\[
\varphi_1^{(2)} = \lim_{\sigma \to 0} \left[\sigma^2 + T_{1,1}^{(2)} + T_{1,1}^{(1)} \right] \varphi_1(\sigma) = T_{1,1}^{(2)} T_{1,1}^{(1)} \varphi_1[1] + (T_{1,1}^{(1)} + T_{1,1}^{(2)}) \varphi_1[1] + \varphi_1[0],
\]

which helps to derive the second-order rogue wave solution as

\[
\nu[2] = \frac{M_{2,j}}{N_{2,j}},
\]

where for \(j = 1 \), we have \(\nu[2] \) with parameters \(b_2 = 0, d_1 = 0 \), and for \(j = 2 \), we have \(\nu[2] \) with parameters \(b_1 = 100, d_1 = 0 \). Here \(M_{2,j} \) and \(N_{2,j} \) (\(j = 1, 2 \)) are listed in Appendix B.

(3). When \(N = 3 \), by means of the formula in Eq. (17) the third-order rogue wave solutions can also be obtained, which is omitted since it is very complicated. Thus we only show the figures of \(\nu[3] \) for simplicity. The first-order, second-order and third-order rogue wave solutions are displayed in Figure 1 and Figure 2, respectively.

Figure 1: (a) The first-order rogue wave \(\nu[1] \). (b) The second-order rogue wave \(\nu[2] \) with parameters \(b_1 = d_1 = 0 \). (c) The second-order rogue wave \(\nu[2] \) with parameters \(b_1 = 100, d_1 = 0 \). The other parameters are \(\alpha = 1, \varepsilon = 0.1, \omega = -1, \lambda = i \).
Finally, let us provide another example to illustrate the application of Theorem 2. To do so, starting with the constant seed solution $u = \sqrt{-\frac{\alpha}{\epsilon}}$ ($\omega < 0$), the solution of the Lax pair (2) at $\lambda = i \ h$ is

$$\varphi_1^1(f) = \begin{pmatrix} C_2 e^{A} + C_1 e^{-A} \\ i(C_1 e^{A} - C_2 e^{-A}) \end{pmatrix}.$$

(25)

Also we can obtain the rogue wave solutions of the general Hirota equation (1) by using the same procedure as above. Although the seed solution $u = \sqrt{-\frac{\alpha}{\epsilon}}$ ($\omega < 0$) is a real constant instead of plane wave, we can also obtain the rational rogue wave solutions, which seems an interesting result: in other literature the rogue wave solution can usually be obtained starting from a plane wave seed solution, however, we can derive the rogue wave solutions from a constant seed solution in this paper. The most interesting result is that we can utilize the Taylor expansion and limit procedure to obtain the lump solutions from the constant seed solution. In the following, we impose parameters $\alpha = 0, \epsilon = 0.1, \omega = -1$ and only consider three cases, i.e. $N = 1, N = 2$ and $N = 3$.

When $N = 1$, the first-order lump solution is derived as

$$u^{(1)}_{ls} = \frac{-75 + 100 x^2 + 120 x t + 36 t^2}{25 + 100 x^2 + 120 x t + 36 t^2},$$

(26)

which is a real rational solution compared with the complex rational rogue wave solution in (22), where we have used the notation $u^{(N)}_{ls}$ to represent the N-order lump solution for simplicity.

When $N = 2$, we can obtain the second-order lump solutions as

$$u^{(2)}_{ls} = \frac{X_{2j}}{Y_{2j}},$$

where

for $j = 1$, we have $u^{(2)}_{ls}$ with parameters $b_1 = 0, d_1 = 0$; and for $j = 2$, we have $u^{(2)}_{ls}$ with parameters $b_1 = 100, d_1 = 0$. Here, X_{2j} and Y_{2j} ($j = 1, 2$) are given in Appendix C. The first-order and second-order lump solutions are shown in Figure 3, which are localized in space and evolution in time.

When $N = 3$, we can derive the third-order lump solution $u^{(3)}_{ls}$ which is too complicated to be written down here, so we only show their plots in Figure 4.

![Figure 2: Plots of the third-order rogue wave solution](image)

(a) Parameters $b_1 = d_1 = b_2 = d_2 = 0$. (b) Parameters $b_1 = 100, d_1 = b_2 = d_2 = 0$. (c) Parameters $b_1 = d_1 = b_2 = 0, d_2 = 1000$. The other parameters are $\alpha = 1, \epsilon = 0.1, \omega = -1, \lambda = i$.

![Figure 3: (a) The first-order lump solution $u^{(1)}_{ls}$. (b) The second-order lump solution $u^{(2)}_{ls}$ with parameters $b_1 = 0$ and $d_1 = 0$. (c) The second-order lump solution $u^{(2)}_{ls}$ with parameters $b_1 = 100$ and $d_1 = 0$. The other parameters are $\alpha = 0, \epsilon = 0.1, \omega = -1, \lambda = i$.](image)
IV. CONCLUSIONS

In summary, we have obtained two kinds of rational solutions of the general Hirota equation by the generalized Darboux transformation. By means of the Taylor expansion and limit procedure [19], the generalized Darboux transformation is given from the N-step Darboux transformation. Then the one, two and three-order rational rogue wave solutions and lump solutions are proposed by choosing the plane wave seed solution and constant seed solution, respectively. The plots of these rational solutions are also provided. We show in this paper that complex nonlinear wave equation can support real lump solutions with pure constant boundary condition. Our results may be helpful to observe the evolution of rogue waves and lumps in a complicated optical system with high-order dispersion term like the general Hirota equation.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China under Grant Nos. 11271362 and 11375030, Beijing Natural Science Fund Project and Beijing City Board of Education Science and Technology Key Project No. KZ201511232034, Beijing Natural Science Foundation under Grant No. 1153004, Beijing Nova program No. Z131109000413029 and Beijing Finance Funds of Natural Science Program for Excellent Talents No.2014000026833ZK19.

Appendices.

Appendix A.

\[Q^{[0]} = -\sqrt{2}, \quad P^{[0]} = \sqrt{2}, \quad Q^{[1]} = \frac{\sqrt{2}}{100} i (120 x t + 400 i x t^2 + 25 - 60 t - 100 x - 200 t^2 - 364 t^2 + 240 i t^2 + 100 x^2), \]
\[P^{[1]} = \sqrt{2} (-1 x + \frac{91}{25} i t^2 - \frac{3}{5} i t - i x^2 + \frac{12}{5} i t^2 + 2 t - \frac{6}{5} i x t + 4 i x t^2 - \frac{4}{5} i t). \]
\[Q^{[2]} = -\frac{1}{600} (1875 - 420000 i x t + 15000 x + 120000 i x^2 t + 144000 x t^2 - 116800 i t^3 - 144000 i x^3 t^2 + 120000 i x t + 236000 i x^3 t + 570000 t - 450000 x^2 t - 150000 t^2 + 586200 t^2 + 360000 x^3 t - 218400 x t^3 + 20000 x^3 t - 139680 t^3 + 240000 t x - 24000 x^3 t + 218400 x^2 t + 279360 x t^3 + 120000 d_1 x + 72000 d_2 t - 10000 x^4 - 71496 t^4 + 60000 i b_1 - 44400 i t^2 - 72000 i t b_1 - 60000 d_1 + 150000 i t + 174720 i t^4 - 80000 i t^3 t), \]
\[P^{[2]} = \sqrt{2} \left(\frac{5}{2} i x t + d_1 - \frac{40081}{375} t^2 - \frac{3}{5} i x^3 + \frac{3}{2} i x^2 t - 2 t i x^2 t + 4 i t d_1 + \frac{191}{25} t^3 - \frac{12}{5} i t x^2 t - \frac{6}{5} i x t + 4 i t x^2 t + 2 d_1 x + \frac{1586}{75} i t^3 + \frac{91}{25} i x^2 t^2 - \frac{37}{5} i t x^2 t - \frac{1}{2} i x t^2 - \frac{3}{2} i x^2 t - i b_1 + \frac{1}{2} i t - \frac{19}{20} t - 4 i x^3 t - \frac{3}{2} i x^3 t + 364 i t^4 - 7 i x t + \frac{1586}{75} i x^3 t^2 - 2 i x b_1 - \frac{3}{4} i x^2 t + \frac{972}{100} t - \frac{6}{5} i x^2 t^2 + \frac{692}{75} i x^3 t^2 - \frac{1}{2} i^4 t \right). \]
Appendix C

\[X_{21} = -(46656 t^6 + 466560 t^5 x + 1944000 t^4 x^2 - 810000 t^4 + 4536000 x t^3 + 4320000 x^2 t^2 - 2812500 t^2 + 324000000 t^2 - 918000 x^2 t^2 + 5400000 x^4 t^2 + 900000000 t^2 x^2) t^2 - 78000000 x^2 t - 2812500 x^2 + 1080000000 t x t - 2250000 x^4 + 1000000 x^6 + 22500703125 + 22500000000 i) , \]

\[Y_{21} = 46656 t^6 + 466560 t^5 x - 421200 t^4 + 1944000 t^4 x^2 - 1944000 x t^3 + 4320000 x^2 t^2 + 5400000 x^4 t^2 - 2700000 x^2 t^2 + 3127500 t^2 + 3825000 x t - 600000 x^2 t + 360000 x^5 t + 22500140625 + 1687500 x^2 + 1000000 x^6 + 750000 x^4 , \]

\[X_{22} = -(46656 t^6 + 466560 t^5 x - 8100000 t^4 + 1944000 x^2 t^2 - 4536000 x t^3 + 4320000 x^3 t^3 - 9180000 x^2 t^2 + 5400000 x^4 t^2 - 2812500 x^2 - 7800000 x^3 t - 28125000 x^2 - 2250000 x^4 + 1000000 x^6 + 703125) , \]

\[Y_{22} = 46656 t^6 + 466560 t^5 x - 421200 t^4 + 1944000 t^4 x^2 - 1944000 x t^3 + 4320000 x^2 t^2 - 2700000 x^2 t^2 + 5400000 x^4 t^2 + 3127500 t^2 + 3825000 x t - 600000 x^2 t + 360000 x^5 t + 140625 + 1687500 x^2 + 750000 x^4 + 1000000 x^6 . \]

REFERENCES

Fei Chen’s Profile: School of Science, Beijing Information Science and Technology University, Beijing 100192, P.R. China. Phone No.13240234686