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Abstract— Software Defined Networking is the most recent 

advancement, extending the idea of programmable networks. 

Software-defined networking (SDN) has generated tremendous 

curiosity from both academia and industry. SDN framework 

decouples the network service from underlying implementation 

providing a novel approach for application to configure, operate 

and communicate with the network. SDN aims at simplifying 

network management while enabling researchers to experiment 

with network protocols on deployed networks. This article is a 

purification of the state of the art of SDN in the context of 

Computer networks. We extant a synopsis of the major design 

trends, SDN architecture, its current and future applications 

and highlight key differences between them. OpenFlow is the 

first standard interface designed specifically for SDN, providing 

high performance, granular traffic control across multiple 

networking devices. This Paper looks at the fundamentals of 

OpenFlow, as one of the early implementations of the SDN 

concept. Starting from OpenFlow switches and controllers up to 

the development of OpenFlow-based network applications (Net 

Apps) and network virtualization. 

 

Index Terms— Control plane, Data plane, Network Protocols , 

SDN, OpenFlow , Programmable Networks, Software Defined 

Networking. 

I. INTRODUCTION 

  In this article, we review the published research literature on 

the application of software-defined networking (SDN) ideas 

in computer networks. We begin with a brief overview of the 

history of SDN and what the term entails. Software-defined 

networking is a broad term that is applied to a variety of 

approaches to network design. Conventionally, 

packet-switched networks have consisted of nodes running 

distributed protocols to route packets. There is little, if any, 

control over the forwarding tables of a switch. The control of 

the path of a packet is given to individual routers making 

decisions according to some distributed algorithm. SDN is a 

network view that argues for a separation of routing 

intelligence from the device itself. In software, this would 

enable the management of  the forwarding tables of these 

“dumb” switches by a possibly integrated controller. This 

parting of the control and data planes allows one to 

experiment with network protocols in an lucid manner than 

what is possible today.The vision is to have a common set of 

hardware, such as switches, that form a base over which 

various network functionalities are implemented in software. 

A rough analogy is how the x86 instruction set provides a 

common architecture for Personal computers over which 

many software implementations, providing different 

functionalities, are run. Figure 1 provides an illustration of  
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the basic SDN architecture.The earliest efforts in SDN, such 

as Ethane [1], RCP [2], and 4D [3], arose as a protest against 

the ossification of networks. Researchers were being 

increasingly aware of the need to simplify the functions baked 

into network infrastructure and wished for the ability to 

extend network devices with desired functionality as and 

when needed. 

 
 

 

Fig. 1. Basic SDN architecture. 

 

Ethane introduced a flow-based policy language to a network 

comprised of a simplified data plane and a centralized control 

plane. It demonstrated the feasibility of operating a centrally 

managed network. Open- Flow [4] built on this work by 

defining an open protocol that defines communication 

between the network controller and a network device such as 

a switch. Some of the ideas that characterize present-day SDN 

predate the coining of the term [5]. SDN originally referred to 

the OpenFlow project at Stanford. Since then, the term has 

evolved to encompass any network architecture possessing 

the following two properties [6]. First, the decisions on how to 

handle packet data are separated from the operations that 

carry out those decisions. This property is commonly known 

as control and data plane separation. The control and data 

planes interface with each other using a well-defined API 

such as OpenFlow. Second, the control plane allows the 

operation of a possibly disparate set of devices from a single 

vantage point. SDN uses packet-switched networks, adding 

features such as flow-based routing. 

 

II. BUILDING BLOCKS & SDN OPERATION 

The SDN switch (for instance, an Openflow switch), the SDN 

controller , and the interfaces present on the controller for 

communication with forwarding devices, generally 

southbound interface  (OpenFlow) and network applications 

interface(northbound interface) are the fundamental building 

blocks of an SDN deployment as shown in the figure. 
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Switches in an SDN are often represented as basic forwarding 

hardware accessible via an open interface, as the control logic 

and algorithms are offloaded to a controller. OpenFlow 

switches come in two varieties: pure (OpenFlow-only) and 

hybrid(OpenFlow-enabled). Pure OpenFlow switches have 

no legacy features or on-board control, and completely rely on 

a controller for forwarding decisions. 

Hybrid switches support OpenFlow in addition to traditional 

operation and protocols. Most commercial switches available 

today are hybrids. An OpenFlow switch consists of a flow 

table, which performs packet lookup and forwarding. Each 

flow table in the switch holds a set of flow entries that consists 

of: 

1. Header fields or match fields, with information found in 

packet header, ingress port, and metadata, used to match 

incoming packets. 

2. Counters, used to collect statistics for the particular flow, 

such as number of received packets, number of bytes, and 

duration of the flow. 

3. A set of instructions or actions to be applied after a match 

that dictates how to handle matching packets. For instance, 

the action might be to forward a packet out to a specified port. 

The decoupled system in SDN (and OpenFlow) can be 

compared to an application program and an operating system 

in a computing platform. In SDN, the controller (that is, 

network operating system) provides a programmatic interface 

to the network, where applications can be written to perform 

control and management tasks, and offer new functionalities. 

A layered view of this model is illustrated in the following 

figure. This view assumes that the control is centralized and 

applications are written as if the network is a single system. 

While this simplifies policy enforcement and management 

tasks, the bindings must be closely maintained between the 

control and the network forwarding elements. As shown in the 

following figure, a controller that strives to act as a network 

operating system must implement at least two interfaces: a 

southbound interface (for example, OpenFlow) that allows 

switches to communicate with the controller and a 

northbound interface that presents a programmable API to 

network control and high-level policy applications/services. 

Header fields (match fields) are shown in the following 

figure.Each entry of the flow table contains a specific value, 

or ANY (* or wildcard , as depicted in the following figure), 

which matches any value. 

If the switch supports subnet masks on the IP source and/or 

destination fields, these can more precisely specify matches. 

The port field (or ingress port) numerically represents the 

incoming port of the switch and starts at 1. The length of this 

field is implementation dependent. The ingress port field is 

applicable to all packets. 

 
The source and destination MAC (Ethernet) addresses are 

applicable to all packets on enabled ports of the switch and 

their length is 48 bits. The Ethernet type field is 16 bits wide 

and is applicable to all the packets on enabled ports. An 

OpenFlow switch must match the type in both standard 

Ethernet and IEEE 802.2 with a Subnetwork Access 

Protocol (SNAP) header and Organizationally Unique 

Identifier (OUI) of 0x000000. The special value of 0x05FF 

is used to match all the 802.3 packets without SNAP headers. 

VLAN ID is applicable to all packets with and Ethernet type 

of 0x8100. The size of this field is 12 bits (that is, 4096 

VLANs). The VLAN priority (or the VLAN PCP field) is 3 

bits wide and is applicable to all packets of Ethernet type 

0x8100. The IP source and destination address fields are 32 

bit entities and are applicable to all IP and ARP packets. 

These fields can be masked with a subnet mask. 

The IP protocol field is applicable to all IP, IP over Ethernet, 

an the ARP packets. Its length is 8 bits and in case of ARP 

packets, only the lower 8 bits of the ARP op-code are used. 

The IP ToS (Type of Service) bits has a length of 6 bits and is 

applicable to all IP packets. It specifies an 8 bit value and 

places ToS in the upper 6 bits. The source and destination 

transport port addresses (or ICMP type/code) have a length of 

16 bits and are applicable to all TCP, UDP, and ICMP 

packets. In case of the ICMP type/code only the lower 8 bits 

are considered for matching. Counters are maintained per 

table, per flow, per port and per queue. Counters wrap around 

with no overflow indicator. The required set of counters is 

summarized in the following figure. The phrase byte in this 

figure refers to an 8 bit octet. Duration refers to the time the 

flow has been installed in the flow table of the switch. The 

receive errors field includes all explicitly specified errors, 

including frame, overrun, and CRC errors, plus any others. 

Each flow entry is associated with zero or more actions that 

instruct the OpenFlow switch how to handle matching 

packets. If no forward actions are present, the packet is 

dropped. Action lists must be processed in the specified order. 
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However, there is no guaranteed packet output ordering 

within an individual port. For instance, two packets which are 

generated and destined to a single output port as part of the 

action processing, may be arbitrarily re-ordered. Pure 

OpenFlow switches only support the Required Actions, while 

hybrid OpenFlow switches may also support the NORMAL 

action. Either type of switches can also support the FLOOD 

action. The Required Actions are: Forward, All, Controller, 

Local, Table, IN_port, Drop 

A flow entry with no specified action is considered as a Drop 

action. 

 The Optional Actions are: Forward, Normal, Flood, 

Enqueue. 

 associated data. This action is only applicable to IPv4 

packets. 

For each packet that matches a flow entry, the associated 

counters for that entry are updated. If the flow table look-up 

procedure does not result on a match, the action taken by the 

switch will depend on the instructions defined at the 

table-miss flow entry. The flow table must contain a 

table-miss entry in order to handle table misses. This 

particular entry specifies a set of actions to be performed 

when no match is found for an incoming packet. These actions 

include dropping the packet, sending the packet out on all 

interfaces, or forwarding the packet to the controller over the 

secure OpenFlow channel. Header fields used for the table 

lookup depend on the packet types.  

For IP packets with nonzero fragment offset or more 

fragments bit set, the transport ports are set to zero for the 

lookup. Optionally, for ARP packets (Ethernet type equal to 

0x0806), the lookup fields may also include the contained IP 

source and destination fields. Packets are matched against 

flow entries based on prioritization. An entry that specifies an 

exact match (that is no wildcards) is always the highest 

priority. All wildcard entries have a priority associated with 

them. Higher priority entries must match before lower priority 

ones. If multiple entries have the same priority, the switch is 

free to choose any ordering. Higher numbers have higher 

priorities. The following figure shows the packet flow in an 

OpenFlow switch. It is important to note that if a flow table 

field has a value of ANY (*, wildcard), it matches all the 

possible values in the header.  

OpenFlow messages : The communication between the 

controller and switch happens using the OpenFlow protocol, 

where a set of defined messages can be exchanged between 

these entities over a secure channel. The secure channel is the 

interface that connects each OpenFlow switch to a controller. 

The Transport Layer Security (TLS) connection to the 

user-defined (otherwise fixed) controller is initiated by the 

switch on its power on. The controller's default TCP port is 

6633. The switch and controller mutually authenticate by 

exchanging certificates signed by a site-specific private key. 

Each switch must be user-configurable with one certificate for 

authenticating the controller (controller certificate) and the 

other for authenticating to the controller (switch certificate). 

In the case that a switch loses contact with the controller, as a 

result of an echo request timeout, TLS session timeout, or 

other disconnection, it should attempt to contact one or more 

backup controllers. If some number of attempts to contact a 

controller (zero or more) fail, the switch must enter 

emergency mode and immediately reset the current TCP 

connection. Then the matching process is dictated by the 

emergency flow table entries (marked with the emergency bit 

set). Emergency flow modify messages must have timeout 

value set to zero. Otherwise, the switch must refuse the 

addition and respond with an error message. All normal 

entries are deleted when entering  emergency mode. Upon 

connecting to a controller again, the emergency flow entries 

remain. The controller then has the option of deleting all the 

flow entries, if desired. The controller configures and 

manages the switch, receives events from the switch, and 

sends packets out to the switch through this interface. Using 

the OpenFlow protocol, a remote controller can add, update, 

or delete flow entries from the switch's flow table. That can 

happen reactively (in response to a packet arrival) or 

proactively.  

The OpenFlow protocol can be viewed as one possible 

implementation of controller switch interactions (southbound 

interface), as it defines the communication between the 

switching hardware and a network controller. The OpenFlow 

protocol defines three message types, each with multiple 

subtypes: 

 Controller-to-switch 

 Symmetric 

 Asynchronous 

 

At a conceptual level, the behavior and operation of a 

Software Defined Network is straightforward. In Figure 2.1 

we provide a graphical depiction of the operation of the basic 

components of SDN: the SDN devices, the controller, and the 

applications. The SDN controller is responsible for 

abstracting the network of SDN devices it controls and 

presenting an abstraction of these network resources to the 

SDN applications running above. The controller allows the 

SDN application to define flows on devices and to help the 

application respond to packets that are forwarded to the 

controller by the SDN devices. In Figure 2.1 we see on the 

right side of the controller that it maintains a view of the entire 

network that it controls. Since one controller can control large 

number of network devices, these calculations are normally 

performed on a high-performance   machine with an 

order-of-magnitude performance advantage over the CPU and 

memory capacity than is typically afforded to the network 

devices themselves. SDN applications are built on top of the 

controller.  

 
Fig 2.1 SDN operation overview. 

 

Since SDN applications are really part of network layers two 

and three, this concept is orthogonal to that of applications in 

the tight hierarchy of OSI protocol layers. The SDN 

application interfaces with the controller, using it to set 
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proactive flows on the devices and to receive packets that 

have been forwarded to the controller. Proactive flows are 

established by the application; typically the application will 

set these flows when the application starts up, and the flows 

will persist until some configuration change is made. This 

kind of proactive flow is known as a static flow. Another kind 

of proactive flow is where the controller decides to modify a 

flow based on the traffic load currently being driven through a 

network device. 

In addition to flows defined proactively by the application, 

some flows are defined in response to a packet forwarded to 

the controller. Upon receipt of incoming packets that have 

been forwarded to the controller, the SDN application will 

instruct the controller as to how to respond to the packet and, 

if appropriate, will establish new flows on the device in order 

to allow that device to respond locally the next time it sees a 

packet belonging to that flow. Such flows are called reactive 

flows. In this way, it is now possible to write software 

applications that implement forwarding, routing, overlay, 

multipath, and access control functions, among others. There 

are also reactive flows that are defined or modified as a result 

of stimuli from sources other than packets from the controller. 

For example, the controller can insert flows reactively in 

response to other data sources such as intrusion detection 

systems (IDS) or the NetFlow traffic analyzer. Figure 2.2 

depicts the OpenFlow protocol as the means of 

communication between the controller and the device. 

 
FIG 2.2 Controller-to-device communication. 

 

 

2.1 SDN Devices 

An SDN device is composed of an API for communication 

with the controller, an abstraction layer, and a 

packet-processing function. In the case of a virtual switch, this 

packet-processing function is packet processing software, as 

show in Figure 2.3. In the case of a physical switch, the 

packet-processing function is embodied in the hardware for 

packet-processing logic, as shown in Figure 2.4. The 

abstraction layer embodies one or more flow tables. The 

packet-processing logic consists of the mechanisms to take 

actions based on the results of evaluating incoming packets 

and finding the highest-priority match. When a match is 

found, the incoming packet is processed locally unless it is 

explicitly forwarded to the controller. When no match is 

found, the packet may be copied to the controller for further 

processing. This process is also referred to as the controller 

consuming the packet. In the case of a hardware switch, these 

mechanisms are implemented by the specialized hardware. In 

the case of a software switch, these same functions are 

mirrored by software. Since the case of the software switch is 

somewhat simpler than the hardware switch. Over time the 

actual packet-forwarding logic migrated into hardware for 

switches that needed to process packets arriving at 

ever-increasing line rates. More recently, a role has 

reemerged in the data center for the pure software switch. 

Such a switch is implemented as a software application 

usually running in conjunction with a hypervisor in a data 

center rack. Like a VM, the virtual switch can be instantiated 

or moved under software control. It normally serves as a 

virtual switch and works collectively with a set of other such 

virtual switches to constitute a virtual network. 

 

 

2.2 SDN Controller 

The controller maintains a view of the entire network, 

implements policy decisions, controls all the SDN devices 

that comprise the network infrastructure, and provides a 

northbound API for applications. 

. 

 
FIGURE 2.3 SDN software switch anatomy. 

 

 
FIG 2.4 SDN hardware switch anatomy. 

 

When we have said that the controller implements policy 

decisions regarding routing, forwarding, redirecting, load 

balancing, and the like, these statements referred to both the 

controller and the applications that make use of that 

controller. Controllers often come with their own set of 

common application modules, such as a learning switch, a 

router, a basic firewall, and a simple load balancer.  

Figure 2.5 exposes the anatomy of an SDN controller. The 

figure depicts the modules that provide the controller’s core 

functionality, both a northbound and a southbound API, and a 

few sample applications that might use the controller. As we 

described earlier, the southbound API is used to interface with 

the SDN devices. This API is OpenFlow in the case of Open 

SDN or some proprietary alternative in other SDN solutions. 
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It is worth noting that in some product offerings, both 

OpenFlow and alternatives coexist on the same controller. 

Early work on the southbound API has resulted in more 

maturity of that interface with respect to its definition and 

standardization. OpenFlow itself is the best example of this 

maturity, but de facto standards 

Such as Cisco CLI and SNMP also represent standardization 

in the southbound-facing interface. 

 
FIGURE 2.5 SDN controller anatomy. 

 

OpenFlow’s companion protocol, OF-Config, and Nicira’s 

Open vSwitch Database Management Protocol (OVSDB) are 

both open protocols for the southbound interface, though 

these are limited to configuration roles. Unfortunately, there 

is currently no northbound counterpart to the southbound 

OpenFlow standard or even the de facto legacy standards. 

This lack of a standard for the controller-to-application 

interface is considered a current deficiency in SDN, and some 

bodies are developing proposals to standardize it.The absence 

of a standard notwithstanding, northbound interfaces have 

been implemented in a number of disparate forms. For 

example, the Floodlight controller includes a Java API and a 

Representational State Transfer (RESTful) API. The 

OpenDaylight controller provides a RESTful API for 

applications running on separate machines. The northbound 

API represents an outstanding opportunity for innovation and 

collaboration among vendors and the open source 

community. 

 

2.3 SDN Controller Core Modules 

The controller abstracts the details of the SDN 

controller-to-device protocol Figure 2.5 shows the API below 

the controller, which is OpenFlow in Open SDN, and the 

interface provided for applications. Every controller provides 

core functionality between these raw interfaces. Core features 

in the controller include : End-user device discovery, 

Network device discovery, Network device topology 

management, Flow management. The core functions of the 

controller are device and topology discovery and tracking, 

flow management, device management, and statistics 

tracking. These are all implemented by a set of modules 

internal to the controller. As shown in Figure 2.5, these 

modules need to maintain local databases containing the 

current topology and statistics. The controller tracks the 

topology by learning of the existence of switches (SDN 

devices) and end-user devices and tracking the connectivity 

between them. It maintains a flow cache that mirrors the flow 

tables on the various switches it controls. The controller 

locally maintains per-flow statistics that it has gathered from 

its switches.  

 

2.3.1 SDN Controller Interfaces 

For SDN applications, a key function provided by the SDN 

controller is the API for accessing the network.Figure 2.6 

takes a closer look at how the controller interfaces with 

applications. The controller informs the application of events 

that occur in the network. Events are communicated from the 

controller to the application. Events may pertain to an 

individual packet that has been received by the controller or 

some state change in the network topology, such as a link 

going down. The applications may invoke methods 

independently, without the stimulus of an event from the 

controller, Such inputs are represented by the “Other 

Context” box in Figure 2.6. 

 
 

FIGURE 2.6 SDN controller northbound API. 

 

Active networking is focused on improving the data plane 

functionality of the network. Certain variants specifically the 

capsule model, mandated that new data plane functionality be 

installed on network devices through code carried through 

data packets. Projects such as Planet Lab [7] feature the 

separation of traffic to different execution environments on 

the basis of packet headers. SDN efforts differed from active 

networking by focusing on problems of immediate import to 

network administrators. 

Moreover, To increase the programmability of the control 

plane and together with commercial successes such as 

Nicira’s Network Virtualization Platform [8], these efforts 

have led to significant industry attention being given to SDN. 

The application of these concepts in the context of wireless 

networks poses many challenges. Consider a WLAN. Each 

access point (AP) has to make decisions on its modulation 

format, power, and channel based on SINR estimates. In this 

case, a fully centralized network architecture imposes strict 

upper bounds on the latency between the controller and the 

AP. Thus, in wireless networks, it is not always clear as to 

which point in the design space one should operate. 

 

III.  WLAN 

Much of the research in wireless SDN so far has focused on 

IEEE 802.11 networks. However, with the ubiquity of 

high-definition video content, there is considerable interest on 

the part of cellular companies in offloading data traffic to 

WiFi networks whenever possible. Thus, SDN efforts in WiFi 

and cellular are not entirely isolated from each other. There 

has been some work also on IEEE 802.16 (WiMax) networks, 

including a demonstration of the handover between WiFi and 

WiMAX on Openflow [15]. There is an ongoing effort to 

apply SDN in wireless backhaul network focusing on IEEE 

802.16 [IEEE 2013], but it is recent and only beginning to be 

studied. 
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Fig. 3.1 Mobility across technologies. 

 

3.1. OpenFlow Wireless 

In campus Wi-Fi networks, network administration is mostly 

centralized. Commercial products from various companies 

[9]-[12] stand as a testimony to this fact. OpenFlow Wireless 

[13]-[15] aims to be an open alternative to the proprietary 

solutions currently being offered. Envisage a future where the 

end user is free from worrying about the details as to which 

wireless network she is getting service from. It offers a 

compelling vision, where a user roams freely between cellular 

and Wi-Fi networks taking advantage of seamless handovers 

(see Figure 3.1 for an illustration). Network operators benefit 

as well. The ubiquity of high-definition video content places 

enormous pressure on the cellular data infrastructure, which 

would gladly welcome the offloading of traffic to Wi-Fi. The 

realization of this vision would require decoupling of service 

providers and network owners. This decoupling already exists 

in the present day. H20 Wireless, Tesco Mobile and 

LycaMobile are mobile virtual network operators (MVNOs). 

An open research problem in this domain is the design of a 

mobility manager capable of servicing each customer. 

An important feature of SDN-enabled WLANs is 

virtualization. The ability to slice the network, based on users, 

subnets, or traffic, allows many benefits. In 

OpenFlow-enabled networks, this virtualization is achieved 

using FlowVisor [13]-[15] to delegate the control of different 

slices to different controllers. The FlowVisor is essentially a 

proxy that forwards OpenFlow messages from different slices 

to the appropriate controllers. But  it does not provide 

facilities for configuration of the network. Independent 

configuration per slice is achieved using a SNMPVisor. 

Home networks form a specific type of WLAN. In a home 

network, one of the primary objectives is to enable seamless 

sharing of data between various devices in the home while 

restricting access to other devices. One of the primary 

bottlenecks in realizing this goal is the need for network 

configuration by the end user. Another approach is to 

virtualize the AP by providing each user with their own 

personalized virtual access point [16]. However, it is not 

immediately clear how much of network management and 

control can be centralized in view of the fact that wireless 

channel conditions are variable the choice of taking a control 

decision centrally must be made after careful evaluation of the 

network parameters that the control decisions depend on. 

 

3.2. Software-Defined Radios 

The developments stated so far have focused on the network 

layer and above. OpenRadio[17] aims to provide 

programmability of the PHY and MAC layers by attempting 

to define a software abstraction layer that hides the hardware 

details from the programmer. Wireless protocols are 

decomposed to processing blocks and decision logic. 

Processing blocks operate on and manipulate the analog 

waveform, while the decision logic charts a path traversing 

different processing blocks at various times. Key advantages 

claimed by OpenRadio include modular programmability and 

the ability for real-time implementation on commodity digital 

signal processors.OpenRadio is not unique in offering 

programmable PHY and MAC layers. Other efforts in this 

direction include WARP [18]. See Table II for a listing of 

active projects. CloudMAC [19], CloudMAC uses virtual 

access points (VAPs).  

 

 
 

Table II. Software-Defined Radio (SDR) Projects 

 

Each physical access  point, now termed as wireless 

termination point (WTP), is “dumb” in that they do not 

generate their own MAC frames. WTPs are used only to send 

and receive MAC frames from an OpenFlow switch that they 

are connected to, in addition to the end user. The OpenFlow 

switch in turn is connected to a controller and to virtual 

machines that manage the VAPs. Thus, all MAC frames 

generated by the user will have to travel to the VAPs. This 

decreases delay performance considerably. Indeed, their 

implementation shows a three fold increase in round trip time 

(RTT). Ultimately, these efforts point to a future where we are 

able to modify the entire wireless stack to suit our 

requirements. There is a trade-off in delay as one moves more 

and more intelligence to the center of the network, which 

might not be acceptable as we move lower in the stack. The 

optimal operating point depends on the specific network 

requirements. 

 

3.3. Odin 

Odin [20] is an SDN framework that proposes to simplify the 

implementation of high-level enterprise WLAN services, 

such as authentication, authorization and accounting (AAA), 

by introducing light virtual access points (LVAPs). This 

approach is similar to the VAPs used in CloudMAC. Usually, 

the AP to which a user is connected to may change in 

accordance with local decisions made by the user. Thus, the 

last hop connecting the user to the WLAN infrastructure is not 

stable. Using the abstraction of LVAP, Odin gives 

programmers a virtual unchanging link connecting users to 

APs. To achieve this, each user is assigned a unique BSSID, 
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giving the illusion that it has its own AP. This virtual 

user-specific AP is called an LVAP. Each physical AP will 

host multiple LVAPs, one corresponding to each client. 

 

Architecturally, Odin consists of a single master, which is an 

application running on top of an OpenFlow controller, and 

multiple agents running on APs. The control channel is a TCP 

connection between the agent and the master. It is easier to 

implement mobility managers because the BSSID at the user 

does not change during a handover. Aeroflux builds on the 

aforementioned framework and proposes the division of the 

control plane into two tiers. The lower tier, managed by 

near-sighted controllers (NSCs), is responsible for events that 

do not require global state data or those events that occur very 

frequently. Events such as network monitoring or load 

balancing, which are global in nature, are handled by a global 

controller (GC). 

IV. CELLULAR 

 

There have been two main attempts at utilizing SDN concepts 

to improve cellular networks. SoftRAN [21] focuses on 

improving the design of the radio access network (RAN). 

RAN is the part of the cellular network architecture that is 

burdened with providing wide area connectivity to mobile 

devices. SoftRAN argues for improved management of radio 

resources to achieve this objective. CellSDN and SoftCell[20] 

constitute the major efforts toward using SDN concepts to 

improve the core cellular network. The following sections 

discuss the design principles of these works. 

 

4.1. Core Network 

Current cellular networks consist of base stations (BS) 

connected to server gateways (S-GW), which in turn are 

connected to packet gateways (P-GW). The S-GW acts as a 

mobility manager, maintaining state information for each user 

to ensure uninterrupted connectivity while the user travels 

across base stations. The P-GW is responsible for policy 

enforcement and accounting Traffic between users on the 

same network is needlessly routed through the P-GW, which, 

in addition to making the device more expensive, is slower. 

CellSDN [21] is to distribute the processing load over the 

switches and base stations while retaining centralized control 

over them using a controller. Implementing the architecture 

sketched earlier[21], however, would require extensions to 

both switches and base stations. Each of these devices should 

now run cell agents that enable remote control of resources. 

Moreover, Latency considerations would dictate which 

functionality can be handed over to the controller. Overall, the 

goal is to have a network operating system running over the 

cellular infrastructure, there enabling various network 

management requirements to be written as application 

modules. SoftCell [20] extends CellSDN by designing an 

architecture that supports fine-grained policies for mobile 

devices while still allowing the use of commodity switches 

and servers. This is achieved by employing fine-grained 

packet classification at the access switches in the base 

stations. The gateway switches perform only basic packet 

forwarding with the help of policy identifiers embedded 

directly in the IP packet headers. Support for such policies 

face the challenge of having to work with small switch tables. 

This obstacle is circumvented by aggregating traffic based on 

policy, location, and user equipment ID. 

 

4.2. Radio Access Network 

One way of dealing with the increasing mobile data traffic and 

the limited availability of spectrum resources is to bring the 

base station closer to the mobile client. This approach would 

mandate a smaller cell size, leading to a denser deployment. 

[23] argue that a denser deployment calls for an increase in 

coordination between neighboring base stations to improve 

interference management and load balancing. To this end, 

SoftRAN abstracts out all radio resources of a geographical 

area in a three-dimensional grid of base station index, time, 

and frequency slots. A geographical area is defined as a 

macro cell. The physical base stations are then viewed as 

individual radio elements that are controlled by a logically 

centralized controller. The radio elements and the controller 

communicate with each other using a suitable API. In view of 

the varying channel conditions, the controller is effectively 

working with a possibly outdated view of the network state. 

Consequently, not all the control plane functionality is given 

over to the controller. All control decisions that affect the 

neighboring radio elements are taken at the controller. The 

control decisions that depend on parameters that are known to 

vary frequently are taken locally at the radio elements. For 

example, handovers and power allocation fall under the 

purview of the controller, while the downlink resource block 

allocation is handled by the radio elements. The network state 

is maintained at the controller in the form of a database, 

known as RAN information base (RIB). The RIB maintains 

information required by the control such as frequency, in 

addition to the power allocation at the radio elements.  

 

V. MULTIHOP WIRELESS NETWORKS 

There have been multiple research efforts in multi hop 

networks that are in the spirit of SDN while differing in 

terminology. The following subsections provide an overview 

of these works. 

 

5.1. Mesh Networks 

 Feasibility study of using OpenFlow in wireless mesh 

networks was provided [24]. One of the primary challenges 

that mesh networks have to face, is frequent changes in 

topology. Nodes may be mobile, and nodes arrive and leave 

more frequently. The proposed network architecture is as 

follows. All nodes are OpenFlow-enabled mesh routers 

complying with the IEEE 802.11 standard. A single-channel 

single radio setup is assumed. Each wireless interface is used 

for both control and data traffic. Separation between the two 

is achieved using different SSIDs. A NOX controller is used 

for managing the forwarding tables of individual nodes and 

handling node mobility. Experiments conducted on the 

KAUMesh testbed show that on increasing the complexity of 

a rule, throughput suffers. A simple rule matches the port 

number of an incoming packet, whereas a complex rule 

consisted of matching the MAC and IP addresses for each 

packet. This was shown to lead to a throughput degradation of 

up to 15%. The control traffic was shown to be small, albeit 

linearly increasing with the number of rules to be installed as 

might be expected. It is not quite clear at what point the 

control traffic begins to pose a significant overhead. 
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5.2. Wireless Sensor Networks 

A wireless sensor network (WSN) is another multihop 

wireless scenario where an SDN approach has been claimed 

to be beneficial [25]. WSNs are subject to a unique set of 

constraints. The nodes are typically low powered, small and 

are often deployed without any particular attention to the 

topology they form. In any case, a change in topology post 

deployment is quite common due to node failures or physical 

displacement of nodes. Nodes may also contain application 

specific components. [25]propose a SDN-based architecture 

that proposes to centralize network management and enable 

running different applications on a single WSN. This 

proposed architecture for WSNs is conceptually quite similar 

to the various wireless SDN efforts described previously. The 

control plane is decoupled from the data plane that runs on the 

sensor nodes. A centralized controller uses a customized 

version of OpenFlow to interact with the nodes. The nodes are 

modified to enable this centralized control of their flow 

tables. Various applications may be run on top of the 

controller. The primary contribution of the article lies in the 

specifics of extending OpenFlow to support WSN specific use 

cases, such as flow creation using sensor attributes.As  control 

and data traffic share the same network, This increases the 

average latency of the control channel. Another problem that 

remains unaddressed is the reduced reliability of the control 

channel. Compared to the data network, the control network is 

typically subject to better standards of reliability. Particularly 

in WSNs, as node and link failures are much more common, 

sharing the network remains dubious. Other difficulties that 

need to be worked around include the need to minimize 

control overhead as communication is inherently costly. 

 

There have been other efforts in centralizing control in WSNs 

that are in the same spirit as SDN, but the terminology 

pertaining to SDN has not been used. MCC [26] is 

multichannel time-scheduled protocol aimed toward real-time 

data collection in WSNs. MCC design features centralized 

channel allocation and time scheduling to combat co-channel 

interference, and routes from sources to the sink are centrally 

computed using a capacitated minimal spanning (CMS) tree 

heuristic. Thus, there is a centralized control plane that 

obtains information about the network topology to configure 

the transmission and routing decisions for all nodes to use for 

the distributed data forwarding plane. This makes the protocol 

design of MCC architecturally close to SDN. Tenet  is another 

architecture design that decouples control from the sensor 

motes for a tiered architecture for WSNs. The lower tier 

consists of resource constrained motes, whereas the upper tier 

contains fewer but more capable nodes called masters. In the 

words of the authors, the Tenet design principle may be stated 

as: Multi-node data fusion functionality and multi-node 

application logic should be implemented only in the master 

tier. The cost and complexity of implementing this 

functionality in a fully distributed fashion on motes outweighs 

the performance benefits of doing so. In fact, Tenet represents 

an extreme design point that severely constraints even the 

type of communication allowed on the motes. Thus, the motes 

only provide a limited set of generic functions and 

applications, written in software in the master tier, combine 

this functionality to achieve network objectives. These 

properties are characteristic of SDN. 

 

 
 

Table I. Focus Areas of Selected Papers 

 

6. CONCLUSIONS 

SDN opens many axes in the network design space. See Table 

I for a comparison of selected projects. The most important of 

these is the possibility of centralizing much of the intelligence 

in a network. For wireless networks, this move comes with 

obvious advantages. For example, the hidden terminal 

problem ceases to be an issue if transmission decisions are 

made centrally, based on a view of the entire network. 

Virtualization of network resources is now possible, enabling 

sharing of resources across vendors, thereby reducing cost. 

However, the increased channel variability and the latency 

sensitive nature of key network parameters, such as power 

allocation in a channel, increases the complexity of the design 

space. In fact, while research thus far has focused on enabling 

choice in different design axes, the larger question of how to 

make use of this new-found freedom optimally for different 

scenarios remains unanswered. 

 

REFERENCES 

[1] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick 

McKeown, and Scott Shenker. 2007. 

Ethane: Taking control of the enterprise. SIGCOMM Comput. Commun. 

Rev. 37, 4 (Aug. 

2007),12.DOI:http://dx.doi.org/10.1145/1282427.1282382. 

[2] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, 

Aman Shaikh, and Jacobus van derMerwe. 2005.  

Design and implementation of a routing control platform. In Proceedings 

of the 2ndConference on Symposium on Networked Systems Design & 

Implementation - Volume 2 (NSDI’05).USENIX Association, Berkeley, 

CA, 1528. 

[3] Albert Greenberg, Gisli Hjalmtysson, David A.Maltz, AndyMyers, 

Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang. 

2005. A clean slate 4D approach to network control and management. 

SIGCOMM Comput. Commun. Rev. 35, 5 (Oct. 2005), 

41–54.DOI:http://dx.doi.org/10.1145/1096536.1096541 

[4] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, 

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 

2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM 

Comput. Commun. Rev. 38, 2 (March 2008), 69–74.  

[5] TR10. 2009. Software Defined Networking. Retrieved from 

http://www.technologyreview.com/article/412194/tr10-software-define

d-networking/. 

[6]  Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2013. The road to 

SDN. Queue 11, 12 (Dec. 2013), 20 pages.  

[7]  Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry 

Peterson, Mike Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An 

overlay testbed for broad-coverage services. SIGCOMM Comput. 

Commun.Rev. 33, 3 (July 2003), 3–12.  

[8]  Nicira. 2012. It’sTime to Virtualize the Network. Retrieved Jan 16,2014 

from 

http://www.netfos.com.tw/PDF/Nicira/ItisTimeToVirtualizetheNetwor

kWhite Paper.pdf. 

http://www.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.technologyreview.com/article/412194/tr10-software-defined-networking/


 

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015 

                                                                                                46                                                          www.erpublication.org 

[9] Aruba. 2013. Aruba Networks. Retrieved from 

http://www.arubanetworks.com.  

[10]  Meraki. 2011. Meraki Whitepaper: Meraki Hosted Architecture. 

Retrieved Jan 21, 2014 

fromhttps://meraki.cisco.com/lib/pdf/meraki_whitepaper_architecture.

pdf. 

[11] Meraki. 2013. CloudManagedWireless by 

Meraki.Retrievedfromhttp://www.meraki.com/products/wireless. 

[12] Ericsson. 2012. The Cloud and Software Defined Networking. 

Retrieved Jan 16, 2014 

fromhttp://www.ericsson.com/res/investors/docs/2012/ericsson-cloud-

and-sdn.pdf. 

[13] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario 

Flajslik, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, 

Masayoshi Kobayashi, Jad Naous, Srinivasan Seetharaman, David 

Underhill, Tatsuya Yabe, Kok-Kiong Yap, Yiannis Yiakoumis, Hongyi 

Zeng, Guido Appenzeller, Ramesh Johari,Nick McKeown, and Guru 

Parulkar. 2010. Carving research slices out of your production networks 

with OpenFlow. SIGCOMM Comput. Commun. Rev. 40, 1 (Jan. 2010), 

129–130.. 

[14] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan 

Huang, Michael Chan, Nikhil Handigol, and Nick McKeown. 2010. 

OpenRoads: Empowering research in mobile networks. SIGCOMM 

Comput. Commun. Rev. 40, 1 (Jan. 2010), 125–126. Kok-Kiong Yap, 

Masayoshi Kobayashi, David Underhill, Srinivasan Seetharaman, 

Peyman Kazemian, andNick McKeown. 2009. The stanford openroads 

deployment. In Proceedings of the 4th ACM International Workshop on 

Experimental Evaluation and Characterization (WINTECH’09). ACM, 

New York, NY, 59– 66.  

[15] Kok-Kiong Yap, Rob Sherwood, Masayoshi Kobayashi, Te-Yuan 

Huang, Michael Chan, Nikhil Handigol,Nick McKeown, and Guru 

Parulkar. 2010. Blueprint for introducing innovation into wireless 

mobile networks. In Proceedings of the 2nd ACM SIGCOMM 

Workshop on Virtualized Infrastructure Systems and Architectures 

(VISA’10). ACM, New York,NY,25 -32.. 

[16] Yiannis Yiakoumis, Manu Bansal, Sachin Katti, and Nick McKeown. 

2014. SDN for Dense WiFi Networks.USENIX Association, Santa 

Clara, CA. 

[17] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. 2012. 

OpenRadio: A programmable wireless dataplane. In Proceedings of the 

1st Workshop on Hot topics in Software Defined Networks 

(HotSDN’12). ACM, New York, NY, 109–114.  

[18] Ahmed Khattab, Joseph Camp, Chris Hunter, Patrick Murphy, 

Ashutosh Sabharwal, and Edward W.Knightly. 2008. WARP: A flexible 

platform for clean-slate wireless medium access protocol design. 

SIGMOBILE Mob. Comput. Commun. Rev. 12, 1 (Jan. 2008), 56–58.  

[19] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo. 

2012. CloudMAC - An openflow based architecture for 802.11 MAC 

layer processing in the cloud. In Proceedings of the 2012 IEEE 

GlobecomWorkshops (GC Wkshps’12).186–191. 

[20] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013. 

SoftCell: Scalable and flexible cellular core network architecture. In 

Proceedings of the 9th ACM Conference on Emerging Networking 

Experiments and Technologies (CoNEXT’13). ACM, New York, 

NY,163–174.  

[21] L. E. Li, Z. M. Mao, and J. Rexford. 2012. Toward software-defined 

cellular networks. In Proceedings ofthe 2012 Eurpean Workshop on 

Software Defined Networking (EWSDN’12). 

7–12.DOI:http://dx.doi.org/10.1109/EWSDN.2012.28. 

[22] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and 

Teresa Vazao. 2012. Towards programmable enterprise WLANS with 

Odin. In Proceedings of the 1st Workshop on Hot Topics in Software 

Defined Networks (HotSDN’12). ACM, New York, NY, 115–120.  

[23] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. 2013. 

SoftRAN: Software defined radio access network. In Proceedings of the 

2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined 

Networking (HotSDN’13). ACM, New York, NY, 25–30.. 

[24] P. Dely, A. Kassler, and N. Bayer. 2011. OpenFlow for wireless mesh 

networks. In Proceedingsof 20th International Conference on 

Computer Communications and Networks (ICCCN’11).1-6. 

[25] Tie Luo, Hwee-Pink Tan, and T. Q. S. Quek. 2012. Sensor OpenFlow: 

Enabling software-definedwirelesssensornetworks.Communications 

Letters,IEEE 16, 11 (2012), 1896–1899.  

[26] Ying Chen and Bhaskar Krishnamachari. 2011. MCC: A 

High-Throughput Multi-Channel Data Collection Protocol for 

Wireless Sensor Networks. Technical Report, USC Computer 

Engineering, Los Angeles, CA. 

 

 N. Venkata Ramana Gupta been working as 

Assistant Professor in the Department of 

Computer Science and Engineering Prasad V. 

Potluri Siddhartha Institute of 

Technology(Autonomous) Vijayawada, Andhra 

Pradesh and is  affiliated to JNTU-K, Kakinada,. 

He obtained M.Tech (Computer Science and 

Technology with specialization in computer 

Networks) from Andhra University College of 

Engineering, Visakhapatnam, AP. He had more 

than 15 Years of teaching experience. He had 

published 3 research papers in various International Journals. His areas 

of interest are Computer Networks, Distributed Systems. He is member 

of ACM  and ISTE.,Ph.No:9849578292 

 
Dr. M.V. Ramakrishna has been working as 

Professor in the Department of Computer 

science and Engineering, Prasad V. Potluri 

Siddhartha Institute of 

Technology(Autonomous) Vijayawada, Andhra 

Pradesh and is  affiliated to JNTU-K, 

Kakinada,. He obtained B.Tech, M.Tech and 

Ph.D. from NIT- Suratkal, Jawaharlal Nehru 

Technological University, Hyderabad and 

Acharya Nagarjuna University, Guntur 

respectively. He has 23 Years of Teaching and 4 

Years of Industry Experience. He had published 7 research papers in 

various International Journals and conferences. His areas of research 

include Computer Networks and Distributed Systems. He is a member 

of ACM and IEEE Computer Society. Ph.No: 9440672590 

 

http://www.arubanetworks.com/

