

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015

 38 www.erpublication.org

Abstract— Software Defined Networking is the most recent

advancement, extending the idea of programmable networks.

Software-defined networking (SDN) has generated tremendous

curiosity from both academia and industry. SDN framework

decouples the network service from underlying implementation

providing a novel approach for application to configure, operate

and communicate with the network. SDN aims at simplifying

network management while enabling researchers to experiment

with network protocols on deployed networks. This article is a

purification of the state of the art of SDN in the context of

Computer networks. We extant a synopsis of the major design

trends, SDN architecture, its current and future applications

and highlight key differences between them. OpenFlow is the

first standard interface designed specifically for SDN, providing

high performance, granular traffic control across multiple

networking devices. This Paper looks at the fundamentals of

OpenFlow, as one of the early implementations of the SDN

concept. Starting from OpenFlow switches and controllers up to

the development of OpenFlow-based network applications (Net

Apps) and network virtualization.

Index Terms— Control plane, Data plane, Network Protocols ,

SDN, OpenFlow , Programmable Networks, Software Defined

Networking.

I. INTRODUCTION

 In this article, we review the published research literature on

the application of software-defined networking (SDN) ideas

in computer networks. We begin with a brief overview of the

history of SDN and what the term entails. Software-defined

networking is a broad term that is applied to a variety of

approaches to network design. Conventionally,

packet-switched networks have consisted of nodes running

distributed protocols to route packets. There is little, if any,

control over the forwarding tables of a switch. The control of

the path of a packet is given to individual routers making

decisions according to some distributed algorithm. SDN is a

network view that argues for a separation of routing

intelligence from the device itself. In software, this would

enable the management of the forwarding tables of these

“dumb” switches by a possibly integrated controller. This

parting of the control and data planes allows one to

experiment with network protocols in an lucid manner than

what is possible today.The vision is to have a common set of

hardware, such as switches, that form a base over which

various network functionalities are implemented in software.

A rough analogy is how the x86 instruction set provides a

common architecture for Personal computers over which

many software implementations, providing different

functionalities, are run. Figure 1 provides an illustration of

N. Venkata Ramana Gupta been working as Assistant Professor in the

Department of Computer Science and Engineering Prasad V. Potluri

Siddhartha Institute of Technology(Autonomous) Vijayawada, Andhra

Pradesh
Dr. M.V. Ramakrishna has been working as Professor in the Department

of Computer science and Engineering, Prasad V. Potluri Siddhartha Institute

of Technology(Autonomous) Vijayawada, Andhra Pradesh

the basic SDN architecture.The earliest efforts in SDN, such

as Ethane [1], RCP [2], and 4D [3], arose as a protest against

the ossification of networks. Researchers were being

increasingly aware of the need to simplify the functions baked

into network infrastructure and wished for the ability to

extend network devices with desired functionality as and

when needed.

Fig. 1. Basic SDN architecture.

Ethane introduced a flow-based policy language to a network

comprised of a simplified data plane and a centralized control

plane. It demonstrated the feasibility of operating a centrally

managed network. Open- Flow [4] built on this work by

defining an open protocol that defines communication

between the network controller and a network device such as

a switch. Some of the ideas that characterize present-day SDN

predate the coining of the term [5]. SDN originally referred to

the OpenFlow project at Stanford. Since then, the term has

evolved to encompass any network architecture possessing

the following two properties [6]. First, the decisions on how to

handle packet data are separated from the operations that

carry out those decisions. This property is commonly known

as control and data plane separation. The control and data

planes interface with each other using a well-defined API

such as OpenFlow. Second, the control plane allows the

operation of a possibly disparate set of devices from a single

vantage point. SDN uses packet-switched networks, adding

features such as flow-based routing.

II. BUILDING BLOCKS & SDN OPERATION

The SDN switch (for instance, an Openflow switch), the SDN

controller , and the interfaces present on the controller for

communication with forwarding devices, generally

southbound interface (OpenFlow) and network applications

interface(northbound interface) are the fundamental building

blocks of an SDN deployment as shown in the figure.

A Road Map for SDN-Open Flow Networks

N.Venkata Ramana Gupta, Dr. M.V. Ramakrishna

 A Road Map for SDN-Open Flow Networks

 39 www.erpublication.org

Switches in an SDN are often represented as basic forwarding

hardware accessible via an open interface, as the control logic

and algorithms are offloaded to a controller. OpenFlow

switches come in two varieties: pure (OpenFlow-only) and

hybrid(OpenFlow-enabled). Pure OpenFlow switches have

no legacy features or on-board control, and completely rely on

a controller for forwarding decisions.

Hybrid switches support OpenFlow in addition to traditional

operation and protocols. Most commercial switches available

today are hybrids. An OpenFlow switch consists of a flow

table, which performs packet lookup and forwarding. Each

flow table in the switch holds a set of flow entries that consists

of:

1. Header fields or match fields, with information found in

packet header, ingress port, and metadata, used to match

incoming packets.

2. Counters, used to collect statistics for the particular flow,

such as number of received packets, number of bytes, and

duration of the flow.

3. A set of instructions or actions to be applied after a match

that dictates how to handle matching packets. For instance,

the action might be to forward a packet out to a specified port.

The decoupled system in SDN (and OpenFlow) can be

compared to an application program and an operating system

in a computing platform. In SDN, the controller (that is,

network operating system) provides a programmatic interface

to the network, where applications can be written to perform

control and management tasks, and offer new functionalities.

A layered view of this model is illustrated in the following

figure. This view assumes that the control is centralized and

applications are written as if the network is a single system.

While this simplifies policy enforcement and management

tasks, the bindings must be closely maintained between the

control and the network forwarding elements. As shown in the

following figure, a controller that strives to act as a network

operating system must implement at least two interfaces: a

southbound interface (for example, OpenFlow) that allows

switches to communicate with the controller and a

northbound interface that presents a programmable API to

network control and high-level policy applications/services.

Header fields (match fields) are shown in the following

figure.Each entry of the flow table contains a specific value,

or ANY (* or wildcard , as depicted in the following figure),

which matches any value.

If the switch supports subnet masks on the IP source and/or

destination fields, these can more precisely specify matches.

The port field (or ingress port) numerically represents the

incoming port of the switch and starts at 1. The length of this

field is implementation dependent. The ingress port field is

applicable to all packets.

The source and destination MAC (Ethernet) addresses are

applicable to all packets on enabled ports of the switch and

their length is 48 bits. The Ethernet type field is 16 bits wide

and is applicable to all the packets on enabled ports. An

OpenFlow switch must match the type in both standard

Ethernet and IEEE 802.2 with a Subnetwork Access

Protocol (SNAP) header and Organizationally Unique

Identifier (OUI) of 0x000000. The special value of 0x05FF

is used to match all the 802.3 packets without SNAP headers.

VLAN ID is applicable to all packets with and Ethernet type

of 0x8100. The size of this field is 12 bits (that is, 4096

VLANs). The VLAN priority (or the VLAN PCP field) is 3

bits wide and is applicable to all packets of Ethernet type

0x8100. The IP source and destination address fields are 32

bit entities and are applicable to all IP and ARP packets.

These fields can be masked with a subnet mask.

The IP protocol field is applicable to all IP, IP over Ethernet,

an the ARP packets. Its length is 8 bits and in case of ARP

packets, only the lower 8 bits of the ARP op-code are used.

The IP ToS (Type of Service) bits has a length of 6 bits and is

applicable to all IP packets. It specifies an 8 bit value and

places ToS in the upper 6 bits. The source and destination

transport port addresses (or ICMP type/code) have a length of

16 bits and are applicable to all TCP, UDP, and ICMP

packets. In case of the ICMP type/code only the lower 8 bits

are considered for matching. Counters are maintained per

table, per flow, per port and per queue. Counters wrap around

with no overflow indicator. The required set of counters is

summarized in the following figure. The phrase byte in this

figure refers to an 8 bit octet. Duration refers to the time the

flow has been installed in the flow table of the switch. The

receive errors field includes all explicitly specified errors,

including frame, overrun, and CRC errors, plus any others.

Each flow entry is associated with zero or more actions that

instruct the OpenFlow switch how to handle matching

packets. If no forward actions are present, the packet is

dropped. Action lists must be processed in the specified order.

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015

 40 www.erpublication.org

However, there is no guaranteed packet output ordering

within an individual port. For instance, two packets which are

generated and destined to a single output port as part of the

action processing, may be arbitrarily re-ordered. Pure

OpenFlow switches only support the Required Actions, while

hybrid OpenFlow switches may also support the NORMAL

action. Either type of switches can also support the FLOOD

action. The Required Actions are: Forward, All, Controller,

Local, Table, IN_port, Drop

A flow entry with no specified action is considered as a Drop

action.

 The Optional Actions are: Forward, Normal, Flood,

Enqueue.

 associated data. This action is only applicable to IPv4

packets.

For each packet that matches a flow entry, the associated

counters for that entry are updated. If the flow table look-up

procedure does not result on a match, the action taken by the

switch will depend on the instructions defined at the

table-miss flow entry. The flow table must contain a

table-miss entry in order to handle table misses. This

particular entry specifies a set of actions to be performed

when no match is found for an incoming packet. These actions

include dropping the packet, sending the packet out on all

interfaces, or forwarding the packet to the controller over the

secure OpenFlow channel. Header fields used for the table

lookup depend on the packet types.

For IP packets with nonzero fragment offset or more

fragments bit set, the transport ports are set to zero for the

lookup. Optionally, for ARP packets (Ethernet type equal to

0x0806), the lookup fields may also include the contained IP

source and destination fields. Packets are matched against

flow entries based on prioritization. An entry that specifies an

exact match (that is no wildcards) is always the highest

priority. All wildcard entries have a priority associated with

them. Higher priority entries must match before lower priority

ones. If multiple entries have the same priority, the switch is

free to choose any ordering. Higher numbers have higher

priorities. The following figure shows the packet flow in an

OpenFlow switch. It is important to note that if a flow table

field has a value of ANY (*, wildcard), it matches all the

possible values in the header.

OpenFlow messages : The communication between the

controller and switch happens using the OpenFlow protocol,

where a set of defined messages can be exchanged between

these entities over a secure channel. The secure channel is the

interface that connects each OpenFlow switch to a controller.

The Transport Layer Security (TLS) connection to the

user-defined (otherwise fixed) controller is initiated by the

switch on its power on. The controller's default TCP port is

6633. The switch and controller mutually authenticate by

exchanging certificates signed by a site-specific private key.

Each switch must be user-configurable with one certificate for

authenticating the controller (controller certificate) and the

other for authenticating to the controller (switch certificate).

In the case that a switch loses contact with the controller, as a

result of an echo request timeout, TLS session timeout, or

other disconnection, it should attempt to contact one or more

backup controllers. If some number of attempts to contact a

controller (zero or more) fail, the switch must enter

emergency mode and immediately reset the current TCP

connection. Then the matching process is dictated by the

emergency flow table entries (marked with the emergency bit

set). Emergency flow modify messages must have timeout

value set to zero. Otherwise, the switch must refuse the

addition and respond with an error message. All normal

entries are deleted when entering emergency mode. Upon

connecting to a controller again, the emergency flow entries

remain. The controller then has the option of deleting all the

flow entries, if desired. The controller configures and

manages the switch, receives events from the switch, and

sends packets out to the switch through this interface. Using

the OpenFlow protocol, a remote controller can add, update,

or delete flow entries from the switch's flow table. That can

happen reactively (in response to a packet arrival) or

proactively.

The OpenFlow protocol can be viewed as one possible

implementation of controller switch interactions (southbound

interface), as it defines the communication between the

switching hardware and a network controller. The OpenFlow

protocol defines three message types, each with multiple

subtypes:

 Controller-to-switch

 Symmetric

 Asynchronous

At a conceptual level, the behavior and operation of a

Software Defined Network is straightforward. In Figure 2.1

we provide a graphical depiction of the operation of the basic

components of SDN: the SDN devices, the controller, and the

applications. The SDN controller is responsible for

abstracting the network of SDN devices it controls and

presenting an abstraction of these network resources to the

SDN applications running above. The controller allows the

SDN application to define flows on devices and to help the

application respond to packets that are forwarded to the

controller by the SDN devices. In Figure 2.1 we see on the

right side of the controller that it maintains a view of the entire

network that it controls. Since one controller can control large

number of network devices, these calculations are normally

performed on a high-performance machine with an

order-of-magnitude performance advantage over the CPU and

memory capacity than is typically afforded to the network

devices themselves. SDN applications are built on top of the

controller.

Fig 2.1 SDN operation overview.

Since SDN applications are really part of network layers two

and three, this concept is orthogonal to that of applications in

the tight hierarchy of OSI protocol layers. The SDN

application interfaces with the controller, using it to set

 A Road Map for SDN-Open Flow Networks

 41 www.erpublication.org

proactive flows on the devices and to receive packets that

have been forwarded to the controller. Proactive flows are

established by the application; typically the application will

set these flows when the application starts up, and the flows

will persist until some configuration change is made. This

kind of proactive flow is known as a static flow. Another kind

of proactive flow is where the controller decides to modify a

flow based on the traffic load currently being driven through a

network device.

In addition to flows defined proactively by the application,

some flows are defined in response to a packet forwarded to

the controller. Upon receipt of incoming packets that have

been forwarded to the controller, the SDN application will

instruct the controller as to how to respond to the packet and,

if appropriate, will establish new flows on the device in order

to allow that device to respond locally the next time it sees a

packet belonging to that flow. Such flows are called reactive

flows. In this way, it is now possible to write software

applications that implement forwarding, routing, overlay,

multipath, and access control functions, among others. There

are also reactive flows that are defined or modified as a result

of stimuli from sources other than packets from the controller.

For example, the controller can insert flows reactively in

response to other data sources such as intrusion detection

systems (IDS) or the NetFlow traffic analyzer. Figure 2.2

depicts the OpenFlow protocol as the means of

communication between the controller and the device.

FIG 2.2 Controller-to-device communication.

2.1 SDN Devices

An SDN device is composed of an API for communication

with the controller, an abstraction layer, and a

packet-processing function. In the case of a virtual switch, this

packet-processing function is packet processing software, as

show in Figure 2.3. In the case of a physical switch, the

packet-processing function is embodied in the hardware for

packet-processing logic, as shown in Figure 2.4. The

abstraction layer embodies one or more flow tables. The

packet-processing logic consists of the mechanisms to take

actions based on the results of evaluating incoming packets

and finding the highest-priority match. When a match is

found, the incoming packet is processed locally unless it is

explicitly forwarded to the controller. When no match is

found, the packet may be copied to the controller for further

processing. This process is also referred to as the controller

consuming the packet. In the case of a hardware switch, these

mechanisms are implemented by the specialized hardware. In

the case of a software switch, these same functions are

mirrored by software. Since the case of the software switch is

somewhat simpler than the hardware switch. Over time the

actual packet-forwarding logic migrated into hardware for

switches that needed to process packets arriving at

ever-increasing line rates. More recently, a role has

reemerged in the data center for the pure software switch.

Such a switch is implemented as a software application

usually running in conjunction with a hypervisor in a data

center rack. Like a VM, the virtual switch can be instantiated

or moved under software control. It normally serves as a

virtual switch and works collectively with a set of other such

virtual switches to constitute a virtual network.

2.2 SDN Controller

The controller maintains a view of the entire network,

implements policy decisions, controls all the SDN devices

that comprise the network infrastructure, and provides a

northbound API for applications.

.

FIGURE 2.3 SDN software switch anatomy.

FIG 2.4 SDN hardware switch anatomy.

When we have said that the controller implements policy

decisions regarding routing, forwarding, redirecting, load

balancing, and the like, these statements referred to both the

controller and the applications that make use of that

controller. Controllers often come with their own set of

common application modules, such as a learning switch, a

router, a basic firewall, and a simple load balancer.

Figure 2.5 exposes the anatomy of an SDN controller. The

figure depicts the modules that provide the controller’s core

functionality, both a northbound and a southbound API, and a

few sample applications that might use the controller. As we

described earlier, the southbound API is used to interface with

the SDN devices. This API is OpenFlow in the case of Open

SDN or some proprietary alternative in other SDN solutions.

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015

 42 www.erpublication.org

It is worth noting that in some product offerings, both

OpenFlow and alternatives coexist on the same controller.

Early work on the southbound API has resulted in more

maturity of that interface with respect to its definition and

standardization. OpenFlow itself is the best example of this

maturity, but de facto standards

Such as Cisco CLI and SNMP also represent standardization

in the southbound-facing interface.

FIGURE 2.5 SDN controller anatomy.

OpenFlow’s companion protocol, OF-Config, and Nicira’s

Open vSwitch Database Management Protocol (OVSDB) are

both open protocols for the southbound interface, though

these are limited to configuration roles. Unfortunately, there

is currently no northbound counterpart to the southbound

OpenFlow standard or even the de facto legacy standards.

This lack of a standard for the controller-to-application

interface is considered a current deficiency in SDN, and some

bodies are developing proposals to standardize it.The absence

of a standard notwithstanding, northbound interfaces have

been implemented in a number of disparate forms. For

example, the Floodlight controller includes a Java API and a

Representational State Transfer (RESTful) API. The

OpenDaylight controller provides a RESTful API for

applications running on separate machines. The northbound

API represents an outstanding opportunity for innovation and

collaboration among vendors and the open source

community.

2.3 SDN Controller Core Modules

The controller abstracts the details of the SDN

controller-to-device protocol Figure 2.5 shows the API below

the controller, which is OpenFlow in Open SDN, and the

interface provided for applications. Every controller provides

core functionality between these raw interfaces. Core features

in the controller include : End-user device discovery,

Network device discovery, Network device topology

management, Flow management. The core functions of the

controller are device and topology discovery and tracking,

flow management, device management, and statistics

tracking. These are all implemented by a set of modules

internal to the controller. As shown in Figure 2.5, these

modules need to maintain local databases containing the

current topology and statistics. The controller tracks the

topology by learning of the existence of switches (SDN

devices) and end-user devices and tracking the connectivity

between them. It maintains a flow cache that mirrors the flow

tables on the various switches it controls. The controller

locally maintains per-flow statistics that it has gathered from

its switches.

2.3.1 SDN Controller Interfaces

For SDN applications, a key function provided by the SDN

controller is the API for accessing the network.Figure 2.6

takes a closer look at how the controller interfaces with

applications. The controller informs the application of events

that occur in the network. Events are communicated from the

controller to the application. Events may pertain to an

individual packet that has been received by the controller or

some state change in the network topology, such as a link

going down. The applications may invoke methods

independently, without the stimulus of an event from the

controller, Such inputs are represented by the “Other

Context” box in Figure 2.6.

FIGURE 2.6 SDN controller northbound API.

Active networking is focused on improving the data plane

functionality of the network. Certain variants specifically the

capsule model, mandated that new data plane functionality be

installed on network devices through code carried through

data packets. Projects such as Planet Lab [7] feature the

separation of traffic to different execution environments on

the basis of packet headers. SDN efforts differed from active

networking by focusing on problems of immediate import to

network administrators.

Moreover, To increase the programmability of the control

plane and together with commercial successes such as

Nicira’s Network Virtualization Platform [8], these efforts

have led to significant industry attention being given to SDN.

The application of these concepts in the context of wireless

networks poses many challenges. Consider a WLAN. Each

access point (AP) has to make decisions on its modulation

format, power, and channel based on SINR estimates. In this

case, a fully centralized network architecture imposes strict

upper bounds on the latency between the controller and the

AP. Thus, in wireless networks, it is not always clear as to

which point in the design space one should operate.

III. WLAN

Much of the research in wireless SDN so far has focused on

IEEE 802.11 networks. However, with the ubiquity of

high-definition video content, there is considerable interest on

the part of cellular companies in offloading data traffic to

WiFi networks whenever possible. Thus, SDN efforts in WiFi

and cellular are not entirely isolated from each other. There

has been some work also on IEEE 802.16 (WiMax) networks,

including a demonstration of the handover between WiFi and

WiMAX on Openflow [15]. There is an ongoing effort to

apply SDN in wireless backhaul network focusing on IEEE

802.16 [IEEE 2013], but it is recent and only beginning to be

studied.

 A Road Map for SDN-Open Flow Networks

 43 www.erpublication.org

Fig. 3.1 Mobility across technologies.

3.1. OpenFlow Wireless

In campus Wi-Fi networks, network administration is mostly

centralized. Commercial products from various companies

[9]-[12] stand as a testimony to this fact. OpenFlow Wireless

[13]-[15] aims to be an open alternative to the proprietary

solutions currently being offered. Envisage a future where the

end user is free from worrying about the details as to which

wireless network she is getting service from. It offers a

compelling vision, where a user roams freely between cellular

and Wi-Fi networks taking advantage of seamless handovers

(see Figure 3.1 for an illustration). Network operators benefit

as well. The ubiquity of high-definition video content places

enormous pressure on the cellular data infrastructure, which

would gladly welcome the offloading of traffic to Wi-Fi. The

realization of this vision would require decoupling of service

providers and network owners. This decoupling already exists

in the present day. H20 Wireless, Tesco Mobile and

LycaMobile are mobile virtual network operators (MVNOs).

An open research problem in this domain is the design of a

mobility manager capable of servicing each customer.

An important feature of SDN-enabled WLANs is

virtualization. The ability to slice the network, based on users,

subnets, or traffic, allows many benefits. In

OpenFlow-enabled networks, this virtualization is achieved

using FlowVisor [13]-[15] to delegate the control of different

slices to different controllers. The FlowVisor is essentially a

proxy that forwards OpenFlow messages from different slices

to the appropriate controllers. But it does not provide

facilities for configuration of the network. Independent

configuration per slice is achieved using a SNMPVisor.

Home networks form a specific type of WLAN. In a home

network, one of the primary objectives is to enable seamless

sharing of data between various devices in the home while

restricting access to other devices. One of the primary

bottlenecks in realizing this goal is the need for network

configuration by the end user. Another approach is to

virtualize the AP by providing each user with their own

personalized virtual access point [16]. However, it is not

immediately clear how much of network management and

control can be centralized in view of the fact that wireless

channel conditions are variable the choice of taking a control

decision centrally must be made after careful evaluation of the

network parameters that the control decisions depend on.

3.2. Software-Defined Radios

The developments stated so far have focused on the network

layer and above. OpenRadio[17] aims to provide

programmability of the PHY and MAC layers by attempting

to define a software abstraction layer that hides the hardware

details from the programmer. Wireless protocols are

decomposed to processing blocks and decision logic.

Processing blocks operate on and manipulate the analog

waveform, while the decision logic charts a path traversing

different processing blocks at various times. Key advantages

claimed by OpenRadio include modular programmability and

the ability for real-time implementation on commodity digital

signal processors.OpenRadio is not unique in offering

programmable PHY and MAC layers. Other efforts in this

direction include WARP [18]. See Table II for a listing of

active projects. CloudMAC [19], CloudMAC uses virtual

access points (VAPs).

Table II. Software-Defined Radio (SDR) Projects

Each physical access point, now termed as wireless

termination point (WTP), is “dumb” in that they do not

generate their own MAC frames. WTPs are used only to send

and receive MAC frames from an OpenFlow switch that they

are connected to, in addition to the end user. The OpenFlow

switch in turn is connected to a controller and to virtual

machines that manage the VAPs. Thus, all MAC frames

generated by the user will have to travel to the VAPs. This

decreases delay performance considerably. Indeed, their

implementation shows a three fold increase in round trip time

(RTT). Ultimately, these efforts point to a future where we are

able to modify the entire wireless stack to suit our

requirements. There is a trade-off in delay as one moves more

and more intelligence to the center of the network, which

might not be acceptable as we move lower in the stack. The

optimal operating point depends on the specific network

requirements.

3.3. Odin

Odin [20] is an SDN framework that proposes to simplify the

implementation of high-level enterprise WLAN services,

such as authentication, authorization and accounting (AAA),

by introducing light virtual access points (LVAPs). This

approach is similar to the VAPs used in CloudMAC. Usually,

the AP to which a user is connected to may change in

accordance with local decisions made by the user. Thus, the

last hop connecting the user to the WLAN infrastructure is not

stable. Using the abstraction of LVAP, Odin gives

programmers a virtual unchanging link connecting users to

APs. To achieve this, each user is assigned a unique BSSID,

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015

 44 www.erpublication.org

giving the illusion that it has its own AP. This virtual

user-specific AP is called an LVAP. Each physical AP will

host multiple LVAPs, one corresponding to each client.

Architecturally, Odin consists of a single master, which is an

application running on top of an OpenFlow controller, and

multiple agents running on APs. The control channel is a TCP

connection between the agent and the master. It is easier to

implement mobility managers because the BSSID at the user

does not change during a handover. Aeroflux builds on the

aforementioned framework and proposes the division of the

control plane into two tiers. The lower tier, managed by

near-sighted controllers (NSCs), is responsible for events that

do not require global state data or those events that occur very

frequently. Events such as network monitoring or load

balancing, which are global in nature, are handled by a global

controller (GC).

IV. CELLULAR

There have been two main attempts at utilizing SDN concepts

to improve cellular networks. SoftRAN [21] focuses on

improving the design of the radio access network (RAN).

RAN is the part of the cellular network architecture that is

burdened with providing wide area connectivity to mobile

devices. SoftRAN argues for improved management of radio

resources to achieve this objective. CellSDN and SoftCell[20]

constitute the major efforts toward using SDN concepts to

improve the core cellular network. The following sections

discuss the design principles of these works.

4.1. Core Network

Current cellular networks consist of base stations (BS)

connected to server gateways (S-GW), which in turn are

connected to packet gateways (P-GW). The S-GW acts as a

mobility manager, maintaining state information for each user

to ensure uninterrupted connectivity while the user travels

across base stations. The P-GW is responsible for policy

enforcement and accounting Traffic between users on the

same network is needlessly routed through the P-GW, which,

in addition to making the device more expensive, is slower.

CellSDN [21] is to distribute the processing load over the

switches and base stations while retaining centralized control

over them using a controller. Implementing the architecture

sketched earlier[21], however, would require extensions to

both switches and base stations. Each of these devices should

now run cell agents that enable remote control of resources.

Moreover, Latency considerations would dictate which

functionality can be handed over to the controller. Overall, the

goal is to have a network operating system running over the

cellular infrastructure, there enabling various network

management requirements to be written as application

modules. SoftCell [20] extends CellSDN by designing an

architecture that supports fine-grained policies for mobile

devices while still allowing the use of commodity switches

and servers. This is achieved by employing fine-grained

packet classification at the access switches in the base

stations. The gateway switches perform only basic packet

forwarding with the help of policy identifiers embedded

directly in the IP packet headers. Support for such policies

face the challenge of having to work with small switch tables.

This obstacle is circumvented by aggregating traffic based on

policy, location, and user equipment ID.

4.2. Radio Access Network

One way of dealing with the increasing mobile data traffic and

the limited availability of spectrum resources is to bring the

base station closer to the mobile client. This approach would

mandate a smaller cell size, leading to a denser deployment.

[23] argue that a denser deployment calls for an increase in

coordination between neighboring base stations to improve

interference management and load balancing. To this end,

SoftRAN abstracts out all radio resources of a geographical

area in a three-dimensional grid of base station index, time,

and frequency slots. A geographical area is defined as a

macro cell. The physical base stations are then viewed as

individual radio elements that are controlled by a logically

centralized controller. The radio elements and the controller

communicate with each other using a suitable API. In view of

the varying channel conditions, the controller is effectively

working with a possibly outdated view of the network state.

Consequently, not all the control plane functionality is given

over to the controller. All control decisions that affect the

neighboring radio elements are taken at the controller. The

control decisions that depend on parameters that are known to

vary frequently are taken locally at the radio elements. For

example, handovers and power allocation fall under the

purview of the controller, while the downlink resource block

allocation is handled by the radio elements. The network state

is maintained at the controller in the form of a database,

known as RAN information base (RIB). The RIB maintains

information required by the control such as frequency, in

addition to the power allocation at the radio elements.

V. MULTIHOP WIRELESS NETWORKS

There have been multiple research efforts in multi hop

networks that are in the spirit of SDN while differing in

terminology. The following subsections provide an overview

of these works.

5.1. Mesh Networks

 Feasibility study of using OpenFlow in wireless mesh

networks was provided [24]. One of the primary challenges

that mesh networks have to face, is frequent changes in

topology. Nodes may be mobile, and nodes arrive and leave

more frequently. The proposed network architecture is as

follows. All nodes are OpenFlow-enabled mesh routers

complying with the IEEE 802.11 standard. A single-channel

single radio setup is assumed. Each wireless interface is used

for both control and data traffic. Separation between the two

is achieved using different SSIDs. A NOX controller is used

for managing the forwarding tables of individual nodes and

handling node mobility. Experiments conducted on the

KAUMesh testbed show that on increasing the complexity of

a rule, throughput suffers. A simple rule matches the port

number of an incoming packet, whereas a complex rule

consisted of matching the MAC and IP addresses for each

packet. This was shown to lead to a throughput degradation of

up to 15%. The control traffic was shown to be small, albeit

linearly increasing with the number of rules to be installed as

might be expected. It is not quite clear at what point the

control traffic begins to pose a significant overhead.

 A Road Map for SDN-Open Flow Networks

 45 www.erpublication.org

5.2. Wireless Sensor Networks

A wireless sensor network (WSN) is another multihop

wireless scenario where an SDN approach has been claimed

to be beneficial [25]. WSNs are subject to a unique set of

constraints. The nodes are typically low powered, small and

are often deployed without any particular attention to the

topology they form. In any case, a change in topology post

deployment is quite common due to node failures or physical

displacement of nodes. Nodes may also contain application

specific components. [25]propose a SDN-based architecture

that proposes to centralize network management and enable

running different applications on a single WSN. This

proposed architecture for WSNs is conceptually quite similar

to the various wireless SDN efforts described previously. The

control plane is decoupled from the data plane that runs on the

sensor nodes. A centralized controller uses a customized

version of OpenFlow to interact with the nodes. The nodes are

modified to enable this centralized control of their flow

tables. Various applications may be run on top of the

controller. The primary contribution of the article lies in the

specifics of extending OpenFlow to support WSN specific use

cases, such as flow creation using sensor attributes.As control

and data traffic share the same network, This increases the

average latency of the control channel. Another problem that

remains unaddressed is the reduced reliability of the control

channel. Compared to the data network, the control network is

typically subject to better standards of reliability. Particularly

in WSNs, as node and link failures are much more common,

sharing the network remains dubious. Other difficulties that

need to be worked around include the need to minimize

control overhead as communication is inherently costly.

There have been other efforts in centralizing control in WSNs

that are in the same spirit as SDN, but the terminology

pertaining to SDN has not been used. MCC [26] is

multichannel time-scheduled protocol aimed toward real-time

data collection in WSNs. MCC design features centralized

channel allocation and time scheduling to combat co-channel

interference, and routes from sources to the sink are centrally

computed using a capacitated minimal spanning (CMS) tree

heuristic. Thus, there is a centralized control plane that

obtains information about the network topology to configure

the transmission and routing decisions for all nodes to use for

the distributed data forwarding plane. This makes the protocol

design of MCC architecturally close to SDN. Tenet is another

architecture design that decouples control from the sensor

motes for a tiered architecture for WSNs. The lower tier

consists of resource constrained motes, whereas the upper tier

contains fewer but more capable nodes called masters. In the

words of the authors, the Tenet design principle may be stated

as: Multi-node data fusion functionality and multi-node

application logic should be implemented only in the master

tier. The cost and complexity of implementing this

functionality in a fully distributed fashion on motes outweighs

the performance benefits of doing so. In fact, Tenet represents

an extreme design point that severely constraints even the

type of communication allowed on the motes. Thus, the motes

only provide a limited set of generic functions and

applications, written in software in the master tier, combine

this functionality to achieve network objectives. These

properties are characteristic of SDN.

Table I. Focus Areas of Selected Papers

6. CONCLUSIONS

SDN opens many axes in the network design space. See Table

I for a comparison of selected projects. The most important of

these is the possibility of centralizing much of the intelligence

in a network. For wireless networks, this move comes with

obvious advantages. For example, the hidden terminal

problem ceases to be an issue if transmission decisions are

made centrally, based on a view of the entire network.

Virtualization of network resources is now possible, enabling

sharing of resources across vendors, thereby reducing cost.

However, the increased channel variability and the latency

sensitive nature of key network parameters, such as power

allocation in a channel, increases the complexity of the design

space. In fact, while research thus far has focused on enabling

choice in different design axes, the larger question of how to

make use of this new-found freedom optimally for different

scenarios remains unanswered.

REFERENCES

[1] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick

McKeown, and Scott Shenker. 2007.

Ethane: Taking control of the enterprise. SIGCOMM Comput. Commun.

Rev. 37, 4 (Aug.

2007),12.DOI:http://dx.doi.org/10.1145/1282427.1282382.

[2] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,

Aman Shaikh, and Jacobus van derMerwe. 2005.

Design and implementation of a routing control platform. In Proceedings

of the 2ndConference on Symposium on Networked Systems Design &

Implementation - Volume 2 (NSDI’05).USENIX Association, Berkeley,

CA, 1528.

[3] Albert Greenberg, Gisli Hjalmtysson, David A.Maltz, AndyMyers,

Jennifer Rexford, Geoffrey Xie, Hong Yan, Jibin Zhan, and Hui Zhang.

2005. A clean slate 4D approach to network control and management.

SIGCOMM Comput. Commun. Rev. 35, 5 (Oct. 2005),

41–54.DOI:http://dx.doi.org/10.1145/1096536.1096541

[4] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,

Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.

2008. OpenFlow: Enabling innovation in campus networks. SIGCOMM

Comput. Commun. Rev. 38, 2 (March 2008), 69–74.

[5] TR10. 2009. Software Defined Networking. Retrieved from

http://www.technologyreview.com/article/412194/tr10-software-define

d-networking/.

[6] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2013. The road to

SDN. Queue 11, 12 (Dec. 2013), 20 pages.

[7] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry

Peterson, Mike Wawrzoniak, and Mic Bowman. 2003. PlanetLab: An

overlay testbed for broad-coverage services. SIGCOMM Comput.

Commun.Rev. 33, 3 (July 2003), 3–12.

[8] Nicira. 2012. It’sTime to Virtualize the Network. Retrieved Jan 16,2014

from

http://www.netfos.com.tw/PDF/Nicira/ItisTimeToVirtualizetheNetwor

kWhite Paper.pdf.

http://www.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www.technologyreview.com/article/412194/tr10-software-defined-networking/

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-6, June 2015

 46 www.erpublication.org

[9] Aruba. 2013. Aruba Networks. Retrieved from

http://www.arubanetworks.com.

[10] Meraki. 2011. Meraki Whitepaper: Meraki Hosted Architecture.

Retrieved Jan 21, 2014

fromhttps://meraki.cisco.com/lib/pdf/meraki_whitepaper_architecture.

pdf.

[11] Meraki. 2013. CloudManagedWireless by

Meraki.Retrievedfromhttp://www.meraki.com/products/wireless.

[12] Ericsson. 2012. The Cloud and Software Defined Networking.

Retrieved Jan 16, 2014

fromhttp://www.ericsson.com/res/investors/docs/2012/ericsson-cloud-

and-sdn.pdf.

[13] Rob Sherwood, Michael Chan, Adam Covington, Glen Gibb, Mario

Flajslik, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian,

Masayoshi Kobayashi, Jad Naous, Srinivasan Seetharaman, David

Underhill, Tatsuya Yabe, Kok-Kiong Yap, Yiannis Yiakoumis, Hongyi

Zeng, Guido Appenzeller, Ramesh Johari,Nick McKeown, and Guru

Parulkar. 2010. Carving research slices out of your production networks

with OpenFlow. SIGCOMM Comput. Commun. Rev. 40, 1 (Jan. 2010),

129–130..

[14] Kok-Kiong Yap, Masayoshi Kobayashi, Rob Sherwood, Te-Yuan

Huang, Michael Chan, Nikhil Handigol, and Nick McKeown. 2010.

OpenRoads: Empowering research in mobile networks. SIGCOMM

Comput. Commun. Rev. 40, 1 (Jan. 2010), 125–126. Kok-Kiong Yap,

Masayoshi Kobayashi, David Underhill, Srinivasan Seetharaman,

Peyman Kazemian, andNick McKeown. 2009. The stanford openroads

deployment. In Proceedings of the 4th ACM International Workshop on

Experimental Evaluation and Characterization (WINTECH’09). ACM,

New York, NY, 59– 66.

[15] Kok-Kiong Yap, Rob Sherwood, Masayoshi Kobayashi, Te-Yuan

Huang, Michael Chan, Nikhil Handigol,Nick McKeown, and Guru

Parulkar. 2010. Blueprint for introducing innovation into wireless

mobile networks. In Proceedings of the 2nd ACM SIGCOMM

Workshop on Virtualized Infrastructure Systems and Architectures

(VISA’10). ACM, New York,NY,25 -32..

[16] Yiannis Yiakoumis, Manu Bansal, Sachin Katti, and Nick McKeown.

2014. SDN for Dense WiFi Networks.USENIX Association, Santa

Clara, CA.

[17] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip Levis. 2012.

OpenRadio: A programmable wireless dataplane. In Proceedings of the

1st Workshop on Hot topics in Software Defined Networks

(HotSDN’12). ACM, New York, NY, 109–114.

[18] Ahmed Khattab, Joseph Camp, Chris Hunter, Patrick Murphy,

Ashutosh Sabharwal, and Edward W.Knightly. 2008. WARP: A flexible

platform for clean-slate wireless medium access protocol design.

SIGMOBILE Mob. Comput. Commun. Rev. 12, 1 (Jan. 2008), 56–58.

[19] P. Dely, J. Vestin, A. Kassler, N. Bayer, H. Einsiedler, and C. Peylo.

2012. CloudMAC - An openflow based architecture for 802.11 MAC

layer processing in the cloud. In Proceedings of the 2012 IEEE

GlobecomWorkshops (GC Wkshps’12).186–191.

[20] Xin Jin, Li Erran Li, Laurent Vanbever, and Jennifer Rexford. 2013.

SoftCell: Scalable and flexible cellular core network architecture. In

Proceedings of the 9th ACM Conference on Emerging Networking

Experiments and Technologies (CoNEXT’13). ACM, New York,

NY,163–174.

[21] L. E. Li, Z. M. Mao, and J. Rexford. 2012. Toward software-defined

cellular networks. In Proceedings ofthe 2012 Eurpean Workshop on

Software Defined Networking (EWSDN’12).

7–12.DOI:http://dx.doi.org/10.1109/EWSDN.2012.28.

[22] Lalith Suresh, Julius Schulz-Zander, Ruben Merz, Anja Feldmann, and

Teresa Vazao. 2012. Towards programmable enterprise WLANS with

Odin. In Proceedings of the 1st Workshop on Hot Topics in Software

Defined Networks (HotSDN’12). ACM, New York, NY, 115–120.

[23] Aditya Gudipati, Daniel Perry, Li Erran Li, and Sachin Katti. 2013.

SoftRAN: Software defined radio access network. In Proceedings of the

2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking (HotSDN’13). ACM, New York, NY, 25–30..

[24] P. Dely, A. Kassler, and N. Bayer. 2011. OpenFlow for wireless mesh

networks. In Proceedingsof 20th International Conference on

Computer Communications and Networks (ICCCN’11).1-6.

[25] Tie Luo, Hwee-Pink Tan, and T. Q. S. Quek. 2012. Sensor OpenFlow:

Enabling software-definedwirelesssensornetworks.Communications

Letters,IEEE 16, 11 (2012), 1896–1899.

[26] Ying Chen and Bhaskar Krishnamachari. 2011. MCC: A

High-Throughput Multi-Channel Data Collection Protocol for

Wireless Sensor Networks. Technical Report, USC Computer

Engineering, Los Angeles, CA.

 N. Venkata Ramana Gupta been working as

Assistant Professor in the Department of

Computer Science and Engineering Prasad V.

Potluri Siddhartha Institute of

Technology(Autonomous) Vijayawada, Andhra

Pradesh and is affiliated to JNTU-K, Kakinada,.

He obtained M.Tech (Computer Science and

Technology with specialization in computer

Networks) from Andhra University College of

Engineering, Visakhapatnam, AP. He had more

than 15 Years of teaching experience. He had

published 3 research papers in various International Journals. His areas

of interest are Computer Networks, Distributed Systems. He is member

of ACM and ISTE.,Ph.No:9849578292

Dr. M.V. Ramakrishna has been working as

Professor in the Department of Computer

science and Engineering, Prasad V. Potluri

Siddhartha Institute of

Technology(Autonomous) Vijayawada, Andhra

Pradesh and is affiliated to JNTU-K,

Kakinada,. He obtained B.Tech, M.Tech and

Ph.D. from NIT- Suratkal, Jawaharlal Nehru

Technological University, Hyderabad and

Acharya Nagarjuna University, Guntur

respectively. He has 23 Years of Teaching and 4

Years of Industry Experience. He had published 7 research papers in

various International Journals and conferences. His areas of research

include Computer Networks and Distributed Systems. He is a member

of ACM and IEEE Computer Society. Ph.No: 9440672590

http://www.arubanetworks.com/

