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 

Abstract— A scale invariant model of statistical mechanics is 

applied to derive invariant forms of conservation equations.  A 

modified form of Cauchy stress tensor for fluid is presented that 

leads to modified Stokes assumption thus a finite coefficient of 

bulk viscosity. The phenomenon of Brownian motion is 

described as the state of equilibrium between suspended 

particles and molecular clusters that themselves possess 

Brownian motion.  Physical space or Casimir vacuum is 

identified as a tachyonic fluid that is “stochastic ether” of Dirac 

or “hidden thermostat” of de Broglie, and is compressible in 

accordance with Planck’s compressible ether.  The stochastic 

definitions of Planck h and Boltzmann k constants are shown to 

respectively relate to the spatial and the temporal aspects of 

vacuum fluctuations. Hence, a modified definition of 

thermodynamic temperature is introduced that leads to 

predicted velocity of sound in agreement with observations.  

Also, a modified value of Joule-Mayer mechanical equivalent of 

heat is identified as the universal gas constant and is called De 

Pretto number 8338 which occurred in his mass-energy 

equivalence equation. Applying Boltzmann’s combinatoric 

methods, invariant forms of Boltzmann, Planck, and 

Maxwell-Boltzmann distribution functions for equilibrium 

statistical fields including that of isotropic stationary turbulence 

are derived.   The latter is shown to lead to the definitions of 

(electron, photon, neutrino) as the most-probable equilibrium 

sizes of (photon, neutrino, tachyon) clusters, respectively.  The 

physical basis for the coincidence of normalized spacing between 

zeros of Riemann zeta function and the normalized 

Maxwell-Boltzmann distribution and its connections to Riemann 

Hypothesis are examined.  The zeros of Riemann zeta function 

are related to the zeros of particle velocities or “stationary 

states” through Euler’s golden key thus providing a physical 

explanation for the location of the critical line.  It is argued that 

because the energy spectrum of Casimir vacuum will be 

governed by Schrödinger equation of quantum mechanics, in 

view of Heisenberg matrix mechanics physical space should be 

described by noncommutative spectral geometry of Connes.  

Invariant forms of transport coefficients suggesting finite values 

of gravitational viscosity as well as hierarchies of vacua and 

absolute zero temperatures are described. Some of the 

implications of the results to the problem of thermodynamic 

irreversibility and Poincaré recurrence theorem are addressed.  

Invariant modified form of the first law of thermodynamics is 

derived and a modified definition of entropy is introduced that 

closes the gap between radiation and gas theory. Finally, new 

paradigms for hydrodynamic foundations of both Schrödinger 

as well as Dirac wave equations and transitions between Bohr 

stationary states in quantum mechanics are discussed. 
 

Index Terms— Kinetic theory of ideal gas; Thermodynamics; 

Statistical mechanics; Riemann hypothesis; TOE. 
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I. INTRODUCTION 

 It is well known that the methods of statistical mechanics 

can be applied to describe physical phenomena over a broad 

range of scales of space and time from the exceedingly large 

scale of cosmology to the minute scale of quantum optics as 

schematically shown in Fig. 1. All that is needed is that the 

system should contain a large number of weakly coupled 

particles. The similarities between stochastic quantum fields 

[1-17] and classical hydrodynamic fields [18-29] resulted in 

recent introduction of a scale-invariant model of statistical 

mechanics [30] and its application to thermodynamics [31, 

32], fluid mechanics [33], and quantum mechanics [34].   
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Fig. 1 Scale-invariant model of statistical mechanics. 

Equilibrium--Dynamics on the left-hand-side and 

non-equilibrium Laminar--Dynamics on the 

right-hand-side for scales = g, p, h, f, e, c, m, a, s, k, and 

t as defined in Section 2. Characteristic lengths of (system, 

element, “atom”) are (L β ) and  is the 

mean-free-path [32].  

 

 In the present study [35] the invariant model of statistical 

mechanics and its implications to the physical foundations of 

thermodynamics, kinetic theory of ideal gas [36-42], and 

quantum mechanics are further examined.  Whereas the 

outline of the main ideas are described in this introduction, 
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references to most of the specific literature will be presented 

in the corresponding Sections.    

 After a brief introduction of a scale invariant model of 

statistical mechanics the invariant definitions of density, 

―atomic‖, element and system velocities are presented in Sec. 

2.  The invariant forms of conservation equations for mass, 

energy, linear and angular momentum based on linearization 

of Boltzmann equation and in harmony with Enskog [43] 

methods are described in Sec. 3.  Because by definition fluids 

can only support normal stresses, following Cauchy a 

modified form of the stress tensor for fluids is introduced that 

leads to modified Stokes assumption thus a finite value of 

bulk viscosity such that in the limit of vanishing interatomic 

spacing all tangential stresses in the fluid vanish in 

accordance with the perceptions of Cauchy and Poisson.  In 

addition, the concept of absolute enthalpy and iso-spin are 

introduced and incorporated in the derivation of scale 

invariant forms of energy and angular momentum 

conservation equations following the classical method of 

summational invariants [33].  The nature of the equation of 

motion for (a) equilibrium flow in absence of iso-spin (b) 

laminar potential flow (c) viscous flow in presence of spin are 

identified.   

 In Sec. 4 hierarchies of embedded statistical fields from 

Planck to cosmic scales are described.  It is shown that the 

scale factor of 
17

10


 appears to separate the equilibrium 

statistical fields of chromodynamics (Planck scale), 

electrodynamics, hydrodynamics, planetary-dynamics 

(astrophysics), and galactic-dynamics (cosmology).  The 

phenomenon of Brownian motion is described in terms of the 

statistical field of equilibrium cluster-dynamics ECD.  The 

stochasticity of cascade of statistical fields is found to 

continue to Casimir vacuum that is identified as a tachyonic 

fluid that is Dirac stochastic ether or de Broglie hidden 

thermostat and is considered to be compressible in 

accordance with compressible ether of Planck.  Stochastic 

definitions of Planck h and Boltzmann k constants are 

presented and shown to be respectively associated with the 

spatial and the temporal aspects of vacuum fluctuations and 

lead to finite gravitational mass of photon.  Atomic mass unit 

is then identified as the total energy of photon thus suggesting 

that all baryonic matter is composed of light. It is shown that 

when thermodynamic temperature is modified by a factor of 

1/2 based on the energy kT/2 per degree of freedom in 

accordance with Boltzmann equipartition principle, one 

resolves the classical Newton problem and obtains the 

velocity of sound in close agreement with observations [32].  

The factor of 1/2 in the definition of temperature also results 

in modified Joule-Mayer mechanical equivalent of heat that 

is identified as the modified universal gas constant and is 

called De Pretto number 8338 (J/kcal) that appeared in the 

mass-energy equivalence equation of De Pretto [88]. 

 In Sec. 5 invariant Boltzmann distribution function is 

derived by application of Boltzmann combinatoric method.  

The invariant Planck energy distribution is then derived 

directly from the invariant Boltzmann distribution in Sec. 6.  

The universality of invariant Planck energy distribution law 

from cosmic to photonic scales is described.  Parallel to Wien 

displacement law for wavelength, a frequency displacement 

law is introduced and the connection between the speed of 

light and the root-mean-square speed of ideal photon gas is 

revealed.  The important role of Boltzmann combinatoric 

method to the foundation of quantum mechanics is discussed. 

It is suggested that at a given temperature the 

Maxwell-Boltzmann distribution function could be viewed as 

spectrum of stochastically stationary sizes of particle clusters.  

Since according to the scale invariant model of statistical 

mechanics the ―atom‖ of statistical field at scale  is 

identified as the most-probable cluster size of the lower scale 

 (Fig. 13), the definitions of (electron, photon, neutrino) 

are introduced as the most-probable equilibrium sizes of 

(photon, neutrino, tachyon) clusters.  Also, definitions of both 

dark energy (electromagnetic mass) and dark matter 

(gravitational mass) are introduced. 

 Next Maxwell-Boltzmann speed distribution is directly 

derived from invariant Planck energy distribution in Sec. 7. 

Hence, at thermodynamic equilibrium particles of statistical 

fields of all scales (Fig. 1) will have Gaussian velocity 

distribution, Planck energy distribution, and 

Maxwell-Boltzmann speed distribution.  

Montgomery-Odlyzko law of correspondence between 

distribution of normalized spacing of zeros of Riemann zeta 

function and those of eigenvalues of Gaussian unitary 

ensemble (GUE) is shown to extend to normalized 

Maxwell-Boltzmann distribution function in Sec. 8.   Thus, a 

connection is established between analytic number theory on 

the one hand and the kinetic theory of ideal gas on the other 

hand.  The spacing between energy levels are then related to 

frequency spacing through Planck formula for quantum of 

energy  = h.  Next, the frequencies of Heisenberg-Kramers 

virtual oscillators are taken as powers of prime numbers and 

expressed in terms of Gauss’s clock calculators or Hensel’s 

p-adic numbers.  Finally, the spacing between zeros of 

particle velocities are related to zeros of Riemann zeta 

function through Euler’s golden key.  In addition, it is argued 

that since physical space or Casimir vacuum is identified as a 

tachyonic quantum fluid with energy spectra given by 

Schrödinger equation and hence Heisenberg matrix 

mechanics, it should be described by noncommutative 

spectral geometry of Connes. 

 The implication of invariant model of statistical 

mechanics to transport phenomena is addressed in Sec. 9.  

Following Maxwell, invariant definition of kinematic 

viscosity is presented that gives Boussinesq eddy viscosity for 

isotropic turbulence at the scale of equilibrium 

eddy-dynamics. The scale invariance of the model suggests 

possible dissipative effects at the much smaller scales of 

electrodynamics and chromodynamics.  Hierarchies of 

―absolute zero‖ thermodynamic temperatures and associated 

vacua in harmony with inflationary models of cosmology are 

described.  Also, the impact of Poincaré [44]
 
recurrence 

theory on the problem of irreversibility in thermodynamics is 

discussed. 

 The derivation of invariant form of the first law of 

thermodynamics and modified definition of entropy per 

photon are presented in Sec. 10.  It is shown that space 

quantization leads to a modified expression for the number of 

photons in a given volume resulting in exact correspondence 

between photon gas and the classical monatomic ideal gas 

thus closing the gap between radiation and gas theory. 

 The derivation of invariant Schrödinger equation from 

invariant Bernoulli equation for potential incompressible 

flow is discussed in Sec. 11.  A new paradigm of physical 

foundation of quantum mechanics is presented according to 
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which Bohr stationary states correspond to statistically 

stationary sizes of particle clusters, de Broglie wave packets, 

which are governed by Maxwell-Boltzmann distribution 

function.   Finally, invariant Dirac relativistic wave equation 

and its derivation from invariant equation of motion in the 

presence of viscous effects hence iso-spin is described. 

II. A SCALE INVARIANT MODEL OF STATISTICAL MECHANICS  

 The scale-invariant model of statistical mechanics for 

equilibrium galactic-, planetary-, hydro-system-, 

fluid-element-, eddy-, cluster-, molecular-, atomic-, 

subatomic-, kromo-, and tachyon-dynamics corresponding to 

the scaleg, p, h, f, e, c, m, a, s, k, and t is schematically 

shown in Fig. 1 [32]. Each statistical field is identified as the 

"system" and is composed of a spectrum of "elements". Each 

element is composed of an ensemble of small particles called 

the "atoms" of the field that are governed by distribution 

function
i i i

( , , t )f
   

x u and viewed as point-mass. The most 

probable element (system) velocity of the smaller scale j 

becomes the velocity of the atom (element) of the larger scale 

j+1 [34].  Since invariant Schrödinger equation was recently 

derived from invariant Bernoulli equation [34], the entire 

hierarchy of statistical fields shown in Fig. 1 is governed by 

quantum mechanics. There are no physical or mathematical 

reasons for the hierarchy shown in Fig. 1 not to continue to 

larger and smaller scales ad infinitum.  Hence, according to 

Fig. 1 contrary to the often quoted statement by Einstein that 

God does not play dice; the Almighty appears to be playing 

with infinite hierarchies of embedded dice.  

  Following the classical methods [43, 45-49] the invariant 

definitions of density

  and velocity of ―atom” u, element 

v, and system w at the scale  are given as [33] 
 

mp 1
n m m f du        ,         ρ
      

   u v


      (1) 

1

mp 1
m f d              ,         ρ



       
 v u u w v    (2) 

 
 

Similarly, the invariant definition of the peculiar and 

diffusion velocities are introduced as  

 

          ,           
     
    V u v V v w

   (3) 
 

such that 

 
 

1 
V V

     (4) 
 

  For each statistical field, one defines particles that form the 

background fluid and are viewed as point-mass or "atom" of 

the field.  Next, the elements of the field are defined as 

finite-sized composite entities each composed of an ensemble 

of "atoms" as shown in Fig. 1.  According to equations (1)-(2) 

the atomic and system velocities of scale  ( , )
 

u w  are the 

most-probable speeds of the lower and upper adjacent scales 

mp 1 mp 1
( , )

 
v v  as shown in Fig. 13.  Finally, the ensemble of a 

large number of "elements" is defined as the statistical 

"system" at that particular scale. 

III. SCALE INVARIANT FORMS OF CONSERVATION 

EQUATIONS  

 Following the classical methods [43, 45-49] the 

scale-invariant forms of mass, thermal energy, linear and 

angular momentum conservation equations at scale  are given 

as [33, 50] 

 

 iβ

iβ iβ iβ

β

ρ
ρ

t


 


v    (5) 

 

 iβ

iβ iβ

β

ε
ε 0

t


 


v    (6) 

 

 iβ

iβ jβ ijβ

βt


  



p
p v P     (7) 

 

   

iβ

iβ iβ iβ β iβ

βt


  


v v


       (8) 

 
that involve the volumetric density of thermal 

energy
i i i i i

h h
    
    , linear momentum 

i i i  
 vp , 

i i i  
   , and vorticity

i i 
  v . Also, 

iβ
 is the 

chemical reaction rate, 
i

h


is the absolute enthalpy [33] 

 

 

  

T

iβ piβ β
0

h c dT    (9) 

 

and 
ij

P  is the stress tensor [45]  

 

ijβ β iβ iβ jβ jβ β β
m (  )(  ) duf  P u v u v    (10) 

 

Derivation of Eq. (7) is based on the definition of the peculiar 

velocity in Eq. (3) along with the identity 
 

i j i i i j j i j i j
( )( )

         
      V V u v u v u u v v  (11) 

 

The definition of absolute enthalpy in Eq. (9) results in the 

definition of standard heat of formation 
o

ifβ
h

 

for chemical specie 

i [33] 
 

 

  

oT
o

fiβ piβ β
0

h c dT     (12) 

 

where To is the standard temperature.  The definition in Eq. (12) 

helps to avoid the conventional practice of arbitrarily setting the 

standard heat of formation of naturally occurring species equal 

to zero.  Furthermore, following Nernst-Planck statement of the 

third law of thermodynamics one has 
β

0h   in the limit 

β
T 0  as expected. 

 The classical definition of vorticity involves the curl of 

linear velocity 
 

 v   thus giving rotational velocity of 

particle a secondary status in that it depends on its 

translational velocity v.  However, it is known that particle‘s 
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rotation about its center of mass is independent of the 

translational motion of its center of mass.  In other words, 

translational, rotational, and vibrational (pulsational) motions 

of particle are independent degrees of freedom that should not 

be necessarily coupled.  To resolve this paradox, the iso-spin 

of particle at scale  is defined as the curl of the velocity at the 

next lower scale of 
   

1 1     v u   (13) 

 

such that the rotational velocity, while having a connection to 

some type of translational motion at internal scale  

retains its independent degree of freedom at the external scale 

 as desired. A schematic description of iso-spin and vorticity 

fields is shown in Fig. 2. The nature of galactic vortices in 

cosmology and the associated dissipation have been 

discussed [25, 52]. 
 

            

      
 

Fig. 2 Description of internal (iso-spin) versus external 

vorticity fields in cosmology [51].  

 

 The local velocity 
v in equations (5)-(8) is expressed in 

terms of the convective 
w  and the diffusive 

V  velocities 

[33]  
 

g   w v V       ,     g ln( )D    V   (14a) 

tg   w v V       tg ln( )    V   (14b) 

hg   w v V           hg ln( )   V p  (14c) 

rhg   w v V        rhg ln( )   V π  (14d) 

 

where
β

D is mass diffusivity, 
β β β

/   is kinematic 

viscosity, 
β

 is dynamic viscosity, 
tβ β β p

/ ck   and 
β

k are 

thermal diffusivity and conductivity, and 

t h rh
( ,  , , )

g g g g   
V V V V are respectively the diffusive, the 

thermo-diffusive, the translational and rotational 

hydro-diffusive velocities. 

   Because by definition fluids can only support compressive 

normal forces, following Cauchy the stress tensor for fluids is 

first expressed as [33]
 

 

ij ii ij ij iβ iβ iβ ij

2
p ( )

3 3
=

    


    P v             (15) 

 

and the classical Stokes assumption [53]
 
of zero bulk viscosity 

b = 0 is modified such that the two Lame constants 

β β
( ,  )  lead to finite bulk viscosity [33] 

β β β

2

3 3
b    


   (16) 

 

that by Eq. (15) result in the total stress tensor [33] 
 

ij ij ij t h ij
p (p p )

3
        


     P v 

     

(17) 

 

involving thermodynamic pt and hydrodynamic ph pressures.   

 The expression for hydrodynamic pressure in Eq. (17) 

could also be arrived at directly by first noting that classically 

hydrodynamic pressure is defined as the mean normal stress 

 

h xx yy zz
p ( ) / 3

   
     (18) 

  

since shear stresses in fluids vanish by definition.  Next, normal 

stresses are expressed as diffusional flux of the corresponding 

momenta by Eq. (14c) as 

 

i i iii i h    
   v vV    (19) 

  

Substituting from Eq. (19) into Eq. (18) results in 

 

h xx yy zz
p ( )

3 3
     

 
    v     (20) 

 

that is in accordance with Eq. (17).  The occurrence of a single 

rather than two Lame constants in Eq. (16) is in accordance 

with the perceptions of Cauchy and Poisson who both assumed 

the limit of zero for the expression [54]  
 

β β

4

0
( )

R
Lim R f R


        (21) 

 

It is because of Eq. (21) that the Stokes assumption in Eq. (16) 

is equal to  3

  rather than zero and as the intermolecular 

spacing vanishes 0R   by Eq. (21) all stresses become 

normal in accordance with Eqs. (17)-(20).  Because in the limit 

given in equation (21) as was noted by Darrigol  [54] 

 
“Then the medium loses its rigidity since the transverse pressures 

disappear.”    

 
one may identify the medium in the limit in Eq. (21) as fluid 

requiring only a single Lame coefficient as anticipated by 

Navier [54]. 

 Following the classical methods [43, 45-47] by substituting 

from equations (14)-(17) into (5)-(8) and neglecting 

cross-diffusion terms and assuming constant transport 

coefficients the invariant forms of conservation equations are 

written as [33]  
 

i 2

i i i i

ρ
ρ ρ

t
D



    




  


+ w  

 

(22) 

 

i 2

i i i i i pi

T
T T / (ρ c )

t
h



       




   


+ w   (23) 
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i

i i2

i i i i

i

( )
3

p

t


 

    

 





  

 
v

v
+ w v v   


  

          
i i

i
ρ

 






v
   (24) 

 

i i i2

i i i i

i
t

  

     

 

 
   

 

ω ω
+ w ω ω ω v        (25) 

 

The modified form of the equation of motion in (24) is to be 

compared with the Navier-Stokes equation of motion 

 
2 p

( )
t

1

3


  

 


v
+ v v v v  


   (26) 

 

An important difference between equations (24) and (26) is 

the occurrence of the convective velocity w versus the local 

velocity v in the second term of the former similar to Carrier 

equation [33, 56].  One notes that in the absence of 

convection Eq. (24) reduces to nonhomogeneous diffusion 

equation similar to Eqs. (22) and (23). However, the absence 

of convention results in vanishing of almost the entire 

classical equation of motion (26).  Similarly, an important 

difference between the modified (25) and the classical forms 

of Helmholtz vorticity equation is the occurrence of 

convective velocity w  as opposed to local velocity v  in 

the second term of Eq. (25) [33, 56].  Because local vorticity 


  in (25) is itself related to the curl of local velocity it 

cannot be convected by this same velocity.  On the other hand, 

the advection of local vorticity by convective velocity w  is 

possible. Moreover, in absence of convection Eq. (25) 

reduces to the diffusion equation similar to that in (21)-(24) 

for mass, heat, and momentum, transport  [33, 56]. The 

solution of Eq. (24) for the problem of turbulent flow over a 

flat plate [56, 57] at LED, LCD, LMD, and LAD scales are 

given in Figs. 3a-3c. 

 

            
 

      (a)               

              
                                             (b)  
 

              
                     (c)  

 
Fig. 3 Comparison between the predicted velocity profiles 

(a) LED-LCD, (b) LCD-LMD, (c) LMD-LAD with 

experimental data in the literature over 10
8
 range of 

spatial scales [34].  

 
 The central question concerning Cauchy equation of 

motion Eq. (7) say at  = m is how many ―molecules‖ are 

included in the definition of the mean molecular 

velocity   

mj mj cj
   v u u .  One can identify three 

distinguishable cases:  

 (a) When 
m c
v u  is itself random then all three velocities 

m m m
( , , )u v V  in Eq. (3) are random in a stochastically 

stationary field made of ensembles of clusters and molecules 

with Brownian motions and hence Gaussian velocity 

distribution, Planck energy distribution, and 

Maxwell-Boltzmann speed distribution. If in addition both the 

vorticity 
m m

0  v   as well as the 

iso-spin
mm

0 u   are zero then for an incompressible 

flow the continuity Eq. (5) and Cauchy equation of motion (7) 

lead to Bernoulli equation.  In Sec. 11 it will be shown that 

under the above mentioned conditions Schrödinger equation 

(206) can be directly derived [34] from Bernoulli equation 

(202) such that the energy spectrum of the equilibrium field 

will be governed by quantum mechanics and hence by Planck 

law.  

 (b) When 
m c
v u  is not random but the vorticity 

vanishes 
m

0   the flow is irrotational and ideal, inviscid 

m= 0, and once again one obtains Bernoulli equation from 

equations (5) and (7) with the solution given by the classical 

potential flow. 

 (c) When 
m c
v u  is not random and vorticity does not 

vanish
m

0 v  the rotational non-ideal viscous 
m

0   

flow will be governed by the equation of motion (24) with the 

convection velocity 
β β+1
w v  obtained from the solution of 

potential flow at the next larger scale of .  In Sec. 11 it will 

be shown that the viscous equation of motion Eq. (24) is 

associated with Dirac relativistic wave equation.  In the 

sequel, amongst the three cases of flow conditions discussed 

in Ref. 34 only cases (a) and (b) will be examined. 

IV. HIERARCHIES OF EMBEDDED STATISTICAL FIELDS 

 The invariant model of statistical mechanics shown in Fig. 

1 and described by equations (1)-(4) suggests that all 

statistical fields are turbulent fields and governed by 

equations (5)-(8) [33, 34].  First, let us start with the field of 
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laminar molecular dynamics LMD when molecules, clusters 

of molecules (cluster), and cluster of clusters of molecules 

(eddy) form the “atom”, the “element”, and the “system” with 

the velocities m m m
( ,  , )u v w .  Similarly, the fields of laminar 

cluster-dynamics LCD and eddy-dynamics LED will have the 

velocities c c c
( ,  , )u v w  and e e e

( ,  , )u v w  in accordance with 

equations (1)-(2).  For the fields of EED, ECD, and EMD 

typical characteristic “atom”, element, and system lengths are 

[50]
 

 

EED     
5 3 1

e e e
( ,  , L ) (10 , 10 ,  10 ) m

  
   (27a) 

ECD    
7 5 3

c c c
( ,  , L ) (10 , 10 ,  10 ) m

  
   (27b) 

EMD   
9 7 5

m m m
( ,  , L ) (10 , 10 ,  10 ) m

  
 

 

(27c) 

 
If one applies the same (atom, element, system) = 

( ,  , L )
  
  relative sizes in Eq. (27) to the entire spatial 

scale of Fig. 1 and considers the relation between scales as 

1 2
  L=

  
  then the resulting cascades or hierarchy of 

overlapping statistical fields will appear as schematically 

shown in Fig. 4.  According to Fig. 4, starting from the 

hydrodynamic scale 
3 1 1 3

(10 10 10 10,  ,  ,  )
 

 after seven 

generations of statistical fields one reaches the 

electro-dynamic scale with the element size
17

10


 and exactly 

after seven more generations one reaches Planck length 

scale
353 1/2

( G / c 10) m


, where G is the gravitational 

constant. Similarly, seven generations of statistical fields 

separate the hydrodynamic scale 
3 1 1 3

(10 10 10 10, , , )
 

 from the 

scale of planetary dynamics (astrophysics) 
17

10 and the latter 

from galactic-dynamics (cosmology) 
35

10  m.   There are no 

physical or mathematical reasons for the hierarchy shown in 

Fig. 4 not to continue to larger and smaller scales ad 

infinitum.  Hence, according to Fig. 4 contrary to the often 

quoted statement by Einstein that God does not play dice; the 

Almighty appears to be playing with infinite hierarchies of 

embedded dices. 
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Fig. 4 Hierarchy of statistical fields with ( ,  , L )
  
  

from cosmic to Planck scales [34].  

 The left hand side of Fig. 1 corresponds to equilibrium 

statistical fields when the velocities of elements of the field 

are random since at thermodynamic equilibrium particles i.e. 

oscillators of such statistical fields will have normal or 

Gaussian velocity distribution.  For example, for stationary 

homogeneous isotropic turbulence at EED scale the 

experimental data of Townsend [58] confirms Gaussian 

velocity distribution of eddies as shown in Fig. 5. 

 

         
 
Fig. 5 Measured velocity distribution in isotropic 

turbulent flow [58].  

 

 According to Fig. 1, the statistical fields of equilibrium 

eddy-dynamics and molecular-dynamics are separated by the 

equilibrium field of cluster-dynamics at an intermediate scale.  

The evidence for the existence of the statistical field of 

equilibrium cluster-dynamics ECD (Fig. 1) is the phenomena 

of Brownian motions [25, 59-69].  Modern theory of 

Brownian motion starts with Langevin equation [25]  

 

p

p

d
(t)

dt
  

u
u A

  (28) 

 

where up is the particle velocity.  The drastic nature of the 

assumptions inherent in the division of forces in Eq. (28) was 

emphasized by Chandrasekhar [25].   

 To account for the stationary nature of Brownian motions 

fluid fluctuations at scales much larger than molecular scales 

are needed as noted by Gouy [59].  Observations have shown 

that as the size of the particles decrease their movement 

become faster [59]. According to classical arguments 

Brownian motions are induced by multiple collisions of a 

large number of molecules with individual suspended 

particle.  However, since the typical size of particle is about 

100 times larger than that of individual molecules, such 

collisions preferentially from one side of the particle could 

not occur in view of the assumed Maxwell-Boltzmann 

distribution of molecular motions.  On the other hand, if one 

assumes that Brownian motions are induced by collisions of 

particles with groups, i.e. clusters, of molecules then in view 

of the stationary nature of Brownian motions, the motions of 

such clusters themselves must also be governed by 

Maxwell-Boltzmann distribution.  But this would mean the 

existence of the statistical field of equilibrium cluster 

dynamics.  

 The description of Brownian motions as equilibrium 

between suspended particles and a spectrum of molecular 

clusters that themselves possess Brownian motions resolves 

the paradox associated with the absence of dissipation and 
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hence violation of the Carnot principle or Maxwell’s demon 

paradox emphasized by Poincaré [70] 

 
“M. Gouy had the idea of looking a little more closely, and 

thought he saw that this explanation was untenable; that 

the motion becomes more active as the particle become 

smaller, but that they are uninfluenced by the manner of 

lighting.  If, then, these motions do not cease, or, rather, if 

they come into existence incessantly, without borrowing 

from any external source of energy, what must we think?  

We must surely not abandon on this account the 

conservation of energy; but we see before our eyes motion 

transformed into heat by friction and conversely heat 

changing into motion, and all without any sort of loss, 

since the motion continues forever.  It is the contradiction 

of Carnot’s principle.  If such is the case, we need no 

longer the infinitely keen eye of Maxwell’s demon in 

order to see the world move backward; our microscope 

suffices.” 

 
Therefore, as was anticipated by Poincaré [70] the revolution 

caused by violation of the second law of thermodynamics due 

to Brownian motions namely Maxwell’s demon paradox is 

just as great as that due to his Principle of Relativity [70].   

The dynamic theory of relativity of Poincaré -Lorentz that is 

causal since it is induced by compressibility of tachyonic 

fluid that constitutes the physical space (ether) as opposed to 

the kinematic theory of relativity of Einstein were described 

in a recent study [34]. 

 Clearly, the concept of spectrum of molecular clusters 

undergoing Brownian motions in ECD (Fig. 1) is in harmony 

with the perceptions of Sutherland [62]
 
regarding ―ionic 

aggregates‖ or large ―molecular masses‖.  The central 

importance of the work of Sutherland [62] on Brownian 

motion and its impact on the subsequent work of Einstein is 

evidenced by the correspondence between Einstein and his 

friend Michele Besso in 1903 described in the excellent study 

on history and modern developments of the theories of 

Brownian motion by Duplantier [71] 

 

“In 1903, Einstein and his friend Michele Besso discussed 

a theory of dissociation that required the assumption of 

molecular aggregates in combination with water, the 

“hypothesis of ionic aggregates”, as Besso called it.  This 

assumption opens the way to a simple calculation of the 

sizes of ions in solution, based on hydrodynamical 

considerations.  In 1902, Sutherland had considered in 

Ionization, Ionic Velocities, and Atomic Sizes
38

 a 

calculation of the sizes of ions on the basis of Stokes’ law, 

but criticized it as in disagreement with experimental 

data
39

.  The very same idea of determining sizes of ions by 

means of classical hydrodynamics occurred to Einstein in 

his letter of 17 March 1903 to Besso
40

,  where he reported 

what appears to be just the calculation that Sutherland 

had performed,” 

 

The importance of Sutherland’s earlier 1902 work [62] on 

ionic sizes have also been emphasized [71] 

 

“However, upon reading these letters of 1903, one cannot 

refrain from wondering whether Besso and Einstein were 

not also acquainted with and discussing Sutherland’s 

1902 paper on ionic sizes.  In that case, Sutherland 

suggestion to use hydrodynamic Stokes’ law to determine 

the size of molecules would have been a direct inspiration 

to Einstein’s dissertation and subsequent work on 

Brownian motion!” 

 

 Because of Sutherland‘s pioneering contributions to the 

understanding of Brownian motion the dual name 

Sutherland-Einstein is to be associated with the expression 

for diffusion coefficient [62, 64] 
 

o

o

a

R T 1

N 6 r
D 


   (29a) 

 

as discussed by Duplantier  [71]
 

 

“In this year 2005, it is definitely time, I think, for the 

physics community to finally recognize Sutherland’s 

achievements, and following Pais’ suggestion, to 

re-baptize the famous relation (2) with a double name!” 
 

In equation (29a) ra is ―atomic‖ radius, R
o
 is the universal gas 

constant, and N
o
 is the Avogadro-Loschmidt number.  

According to the ultra-simplified model of ideal gas [49] the 

diffusion coefficient becomes identical to the molecular 

kinematic viscosity  =  D given by Maxwell relation 

x x
/ 3u

   


 
from Eq. (146) of Sec. 9.  It is therefore 

interesting to examine if the equality D   is also satisfied by 

Sutherland-Einstein relation in Eq. (29a).  Although equation 

(29a) at first appears to suggest that D and are inversely 

related, the equality of mass and momentum diffusivity 

becomes evident when Eq. (29a) is expressed as 

 

o o 2 o

a a a

RT 1 p p

N 6 r 6 r N 6 r N
D


  

  



  
  

 

 

2 o 2 o 2 2 o

a a a

p p p

6 r N 6 r N 6 r N


  

  

 

 
 

 

2 2 o 2 o

mx mx a mx a

2

mx

p p

1
6 ( u ) r N r N ( u )

3 3


 




 

  
 

 

2 o 2 o

ax a ax a

2

m

p p

1
r N ( u ) r N p

3 3 3

 
 

 

   
  

 

       

o o
3 o

a

4 ˆN (amu)N
r N

3

v
   



  






    (29b) 

 

In Eq. (29b) substitutions have been made for the kinematic 

viscosity
m mx mx

/ 3u


 , the Avogadro-Loschmidt number 

N
o
 from Eq. (38), and

2 2

mx mx
u 2u


 .  Also, when the atomic 
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mean free path is taken as atomic diameter
mx ax a

2r  , 

atomic volume 
3

a
ˆ 4 r / 3v   results in v̂ = amu that is the 

atomic mass unit defined in Eq. (40).  
 Because at thermodynamic equilibrium the mean velocity 

of each particle or Heisenberg-Kramers [72]
 
virtual oscillator 

vanishes <u> = 0, the translational kinetic energy of particle 

oscillating in two directions (x+, x) is expressed as  

 
2 2 2

x x x
m u / 2 m u / 2 m u

         
           

 

                                              

2 1/2 2 1/2
 p

  
        (30) 

 

where 
2 1/2

x
m u< p

   
     is the root-mean-square 

momentum of particle and <u
2
x> =<u

2
x> by Boltzmann 

equipartition principle.  At any scale  the result in Eq. (30) 

can be expressed in terms of either frequency or wavelength  

 
2 2 1/2 2 1/2

 m u hp
       

            
 (31a) 

 

2 2 1/2 2 1/2
 m u kp

       
            

 (31b) 

 

when the definition of stochastic Planck and Boltzmann 

factors are introduced as [34] 

 
2 1/2

 h p
  

    
 (32a) 

2 1/2
 k p

  
    

 (32b) 

 

 At the important scale of EKD (Fig. 1) corresponding to 

Casimir [73] vacuum composed of photon gas, the universal 

constants of Planck [74, 75] and Boltzmann [31] are 

identified from equations (31)-(32) as 

 
2 1/2 34

k k k
J/sh h m c 6.626 10  

     
 (33a) 

2 1/2 23

k k k
J/Kk k m c 1.381 10   

     
   (33b) 

 

Next, following de Broglie hypothesis for the wavelength of 

matter waves [2]  

 

h / p
 

 
 (34) 

 

the frequency of matter waves is defined as [31] 

 

k / p
 

 
 (35) 

 

For matter and radiation in the state of thermodynamic 

equilibrium equations (32) and (33) can be expressed as 

 

 k
h h h

 

       ,         k
k k k

 

 (36) 

 

 The definitions in equations (34)-(35) result in the 

gravitational mass of photon [31] 
 

3 1/2 41

k
m (hk / c ) 1.84278 10 kg  

  
 (37) 

that is much larger than the reported [76] value of 
51

4 10


  kg.  

The finite gravitational mass of photons was anticipated by 

Newton [77] and is in accordance with Einstein-de Broglie 

[78-82]
 
theory of light. Avogardo-Loschmidt number was 

predicted as [31] 

 
o 2 23

kN 1/(m c ) 6.0376 10      (38) 

 
leading to the modified value of the universal gas constant  
 

o o
R N k 8.338 J/(kmol-k)     (39) 

 
Also, the atomic mass unit is obtained from equations 

(37)-(38) as 
 

2 1/2 27

k
kg/kmolamu m c (hkc) 1.6563 10   

       (40) 

Since all baryonic matter is known to be composed of atoms, 

the results in equations (38) and (40) suggest that all matter in 

the universe is composed of light [83]. From equations 

(32)-(33) the wavelength and frequency of photon in vacuum 
2 1/2 2 1/2

k k
c      are   

 
2 1/2 o

k k 1/ R 0.119935       m    ,     

     
2 1/2 9

k k 2.49969 10        Hz        (41) 

 

 The classical definition of thermodynamic temperature 

based on two degrees of freedom  

 
2 2

x x
3kT 2mv m v


        (42) 

 

was recently modified to a new definition based on a single 

degree of freedom [32, 83] 

 
2

x3kT m v     (43) 

 

such that  

 

T 2T            ,               p 2p                                (44) 

 

The factor 2 in Eq. (44) results in the predicted speed of sound 

in air [32, 83]  

 
 

rmsxv p / (2ρ)a 
     

 

 

   3kT / (2m) 3kT / m 357 m/s      (45) 

 
 

in close agreement with observations.  Also, Eq. (45) leads to 

calculated root-mean-square molecular speeds (1346, 336, 

360, 300, 952, 287) m/s that are in reasonable agreement with 

the observed velocities of sound (1286, 332, 337, 308, 972, 

268) m/s in gases: (H
2
, O

2
, N

2
, Ar, He, CO

2
) [84]. 
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 The square root of 2 in Eq. (45) resolves the classical 

problem of Newton concerning his prediction of velocity of 

sound as 

 

p / ρa     (46) 

 

discussed by Chandrasekhar [85]  

 

 “Newton must have been baffled, not to say 

disappointed.  Search as he might, he could find no flaw 

in his theoretical framework—neither could Euler, 

Lagrange, and Laplace; nor, indeed, anyone down to the 

present” 

 

Indeed, predictions based on the expressions introduced by 

Euler
2

p v / 3ρ , Lagrange 
4/3

p ρ  as well as Laplace‘s 

assumption of isentropic relation p


  , where   is a 

constant and
p v

c / c  , that leads to the conventional 

expression for the speed of sound in ideal gas 

 

RTa  
 (47) 

 

are all found to deviate from the experimental data [32, 39]. 

 The factor of 2 in Eq. (44) also leads to the modified value 

of Joule-Mayer mechanical equivalent of heat J introduced in 

[32, 83] 

 

c  J/kcalJ 2J 2 4.169 8338     
    (48) 

 

where the value cJ 4.169 4.17 [kJ/kcal] is the average 

of the two values Jc = (4.15, 4.19) reported by Pauli [86].  The 

number in Eq. (48) is thus identified as the universal gas 

constant in Eq. (39) when expressed in appropriate MKS 

system of units [32] 
 

o o
J/(kmol.K)R kN J 8338    

       (49) 

 

The modified value of the universal gas constant in Eq. (49) 

was recently identified [87] as De Pretto number 8338 that 

appeared in the mass–energy equivalence equation of De 

Pretto [88] 
 

2 2
Joules E mc      = mc / 8338  kcal       (50) 

 
 Unfortunately, the name of Olinto De Pretto in the history 

of evolution of mass energy equivalence is little known.  

Ironically, Einstein’s best friend Michele Besso was a relative 

and close friend of Olinto De Pretto’ s brother Augusto De 

Pretto.   The relativistic form of Eq. (50) was first introduced 

in 1900 by Poincaré [89] 

 
2

rE m c                (51) 

where
2 2

r o
m m / 1 v / c  is the Lorentz relativistic mass 

[83].  Since the expression (50) is the only equation in the 

paper by De Pretto [88], the exact method by which he 

arrived at the number 8338 is not known even though one 

possible method was recently suggested [87].  The important 

contributions by Hasenöhrl [90] and Einstein [91] as well as 

the principle of equivalence of the rest or gravitational mass 

and the inertial mass were discussed in a recent study [83].    

V. INVARIANT BOLTZMANN DISTRIBUTION FUNCTION 

 The kinetic theory of gas as introduced by Maxwell [36] 

and generalized by Boltzmann [37-38] is based on the nature 

of the molecular velocity distribution function that satisfies 

certain conditions of space isotropy and homogeneity and 

being stationary in time. However, in his work on 

generalization of Maxwell’s result Boltzmann introduced the 

important concept of ―complexions‖ and the associated 

combinatoric [41] that was subsequently used by Planck in 

his derivation of the equilibrium radiation spectrum [74, 75].  

In the following the invariant model of statistical mechanics 

and Boltzmann‗s combinatoric will be employed to arrive at 

Boltzmann distribution function.   

 To better reveal the generality of the concepts, rather than 

the usual scale of molecular-dynamics, we consider the 

statistical field of equilibrium eddy-dynamics EED at the 

scale  = e.  According to Fig. 1, the homogenous isotropic 

turbulent field of EED is a hydrodynamic system 
h

h  

composed of an ensemble of fluid elements  

 

EED k

k

System Hydro System h f     (52) 

Next, each fluid element 
k

f  is an ensemble of a spectrum of 

eddies 

 

EED k jk

j

Element Fluid Element = f e   (53) 

Finally, an eddy or the ―atom‖ of EED field is by definition in 

Eq. (1) the most probable size of an ensemble of molecular 

clusters (Fig. 1)  

 

EED j ij

i

Atom Eddy e c    (54) 

At the lower scale of ECD each eddy of type j will correspond 

to the energy level j and is composed of ensemble of clusters 

or quantum states cij within the energy level j.  Cluster of type 

cij does not refer to different cluster ―specie‖ but rather to its 

different energy. The above procedure could then be 

extended to higher and lower scales within the hierarchy 

shown in Fig. 1 

 

1
System Element Elements

  
   (55) 

1
Element Atom Atom

  
   (56) 

 
It is noted again that by Eq. (27) typical system size of (EED, 

ECD, EMD) scales are 
1 3 5

e c m
(L ,  L , L ) (10 , 10 ,  10 ) m

  
 . 

 Following Boltzmann [37, 38] and Planck [74] the 

number of complexions for distributing Nj indistinguishable 

eddies among gj distinguishable cells or ―quantum states‖ or 

eddy-clusters of ECD scale is [32] 
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j j

j

j j

(N g 1)!
W

N ! (g 1)!

 



 (57) 

 

The total number of complexions for system of independent 

energy levels Wj is obtained from Eq. (57) as  
 

 

j j

j j j

(N g 1)!
W

N ! (g 1)!

 





         (58) 
 

 As was discussed above, the hydrodynamic system is 

composed of gj distinguishable fluid elements that are 

identified as energy levels of EED system.  Each fluid 

element is considered to be composed of eddy clusters made 

of indistinguishable eddies. However, the smallest cluster 

contains only a single eddy and is therefore considered to be 

full since no other eddy can be added to this smallest cluster.  

Because an empty cluster has no physical significance, the 

total number of available cells or quantum states will 

be
j

(g 1) .  Therefore, Planck-Boltzmann formula (57) is the 

exact probability of distribution of 
j

N  indistinguishable 

oscillators (eddies) amongst 
j

(g 1)  distinguishable 

available eddy clusters.  The invariant model of statistical 

mechanics (Fig. 1) provides new perspectives on the 

probabilistic nature of Eq. (57) and the problem of 

distinguishability discussed by Darrigol [41].   

 Under the realistic assumptions 
  

j j
g N

     ,            j
N 1

 (59) 
 

it is known that the number of complexions for Bose-Einstein 

statistics in Eq. (57) simplifies such that all three types namely 

―corrected‖ Boltzmann, Bose-Einstein, and Fermi-Dirac 

statistics will have [92] 
 

j

j

N

j j
W g / N !

 (60) 
 

The most probable distribution is obtained by maximization 

of Eq. (60) that by Sterling’s formula results in  

 

j j j j j j
ln W N ln g N ln N N  

 (61) 

and hence  

 
 

j j j j
d(ln W ) dN ln(g / N ) 0 

 (62) 

 

 In the sequel it will be argued that at thermodynamic 

equilibrium because of the equipartition principle of 

Boltzmann the energy of all levels 
j

U  should be the same and 

equal to the most probable energy that defines the 

thermodynamic temperature such that  

 

j j j j j
d dN N d 0U     

 (63) 

 

or 

 

j j

j j j j

j

N d
d dN dN

dN
U


  

j j

j j j

j

d(N )
dN dN

dN


     

   
j

j j j

j S,V

d
dN dN

dN

U
  

 
 
 

j j j j
ˆdN dN     (64) 

 

where Gibbs chemical potential is defined as 

 

  i j

j

j j j j

j S, V, N

ˆ ˆ / N
N

U
g G



 
     

  (65) 

 

Introducing the Lagrange multipliers  and one obtains 

from equations (62) and (64)   

 
 

j j j j j
ˆdN {ln(g / N ) ( )} 0   

 (66) 

  

that leads to Boltzmann distribution 

 
 

j j j jˆ ˆ( ) ( )/kT

j j jN g e g e
     

 
 

 (67) 

 

It is emphasized that as opposed to the common practice in 

the above derivation the constant Lagrange multiplier  is 

separate and distinct from the chemical potential 
j

̂  that is a 

variable as required.  Hence, for photons 
k

ˆ 0  one can 

have 
k

ˆ 0   without having to require  = 0 corresponding 

to non-conservation of the number of photons.  Following the 

classical methods [92-94] the first Lagrange multiplier 

becomes 1 / kT  . In Sec. 10 it is shown that the second 

Lagrange multiplier is = 1.     

VI. INVARIANT PLANCK ENERGY DISTRIBUTION FUNCTION  

 In this section, the invariant Planck energy distribution 

law will be derived from the invariant Boltzmann statistics 

introduced in the previous section. To obtain a 

correspondence between photon gas at EKD scale and the 

kinetic theory of ideal gas in statistical fields of other scales, 

by equations (29)-(30) particles with the energy 
2

h ν hν m v
     
    are viewed as virtual oscillator [72] 

that act as composite bosons [95] and hence follow 

Bose-Einstein statistics.  It is well known that the 

maximization of the thermodynamic probability given by 

Planck-Boltzmann formula Eq. (57) leads directly to 

Bose-Einstein distribution [92-94]  

 

j

j

j /kT

g
N

e 1





 (68) 

 
 

However, since Boltzmann distribution in Eq. (67) was 

derived by maximization of Eq. (57) as discussed in the 

previous section, it should also be possible to arrive at Eq. 

(68) directly from Eq. (67).   
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 The analysis is first illustrated for the two consecutive 

equilibrium statistical fields of EED scale  = e when 

(―atom‖, cluster, system) are (eddy, fluid element, 

hydrodynamic system) identified by (e, f, h) with indices (j, k, 

h) and ECD at scale  = c when (―atom‖, element, system) are 

(molecule, cluster, eddy) identified by (m, c, e) with indices 

(m, i, j).   

 The statistical field of EED is a hydrodynamic system 

composed of a spectrum of fluid elements (energy levels) that 

are eddy clusters of various sizes as shown in Fig. 1.  For an 

ideal gas at constant equilibrium temperature internal energy 

f
U  will be constant and by Eq. (65) one sets 

f
ˆ 0  and the 

number of fluid element of type f (energy level f) in the 

hydrodynamic system from Eq. (67) becomes 

 
 

f /kT

fh fhN g e


  (69) 

 

Assuming that the degeneracy of all levels f is identical to a 

constant average value
fh fh

g g , the average number of fluid 

elements in the hydrodynamic system h from Eq. (69) 

becomes 

 

f f/kT /kT
fh fh fh

f f

 N g e g e
 

    

 

       
j

j j j
N

N /kT /kT

fh fh

j j

g e g e
  

    

 
 

                                                   
j

fh

/kT

g

1 e





 (70) 

 

In the derivation of Eq. (70) the relation 

 

f jf j jf j

j

N U       (71) 

 
for the internal energy of the fluid element f has been 

employed that is based on the assumption that all eddies of 

energy level f are at equilibrium and therefore stochastically 

stationary indistinguishable eddies with stationary size and 

energy.  
 At the next lower scale of ECD, the system is a fluid 

element composed of a spectrum of eddies that are energy 

levels of ECD field. Eddies themselves are composed of a 

spectrum of molecular clusters i.e. cluster of 

molecular-clusters hence super-cluster. Again, following the 

classical methods of Boltzmann [92-94], for an ideal gas at 

constant temperature hence 
j

U  by Eq. (65) 
j

ˆ 0 and from 

Eq. (67) the number of eddies in the energy level j within the 

fluid element f becomes 

 

j /kT

jf jfN g e


  (72) 

 

The result in Eq. (72) is based on the fact that all eddies of 

element jf are considered to be indistinguishable with 

identical energy 

 

j ij i ij i

i

N U     
 (73) 

 

that is in harmony with Eq. (71). 

 It is now possible to determine the distribution of eddies 

as Planck oscillators (Heisenberg-Kramers virtual 

oscillators) among various energy levels (fluid elements) 

with degeneracy under the constraint of a constant energy of 

all levels in Eq. (63).  From equations (70)-(72), the average 

number of eddies in the energy level f of hydrodynamic 

system can be expressed as 

 

j

j
jh fh jfj /kT

g
N N N N

e 1


  


  (74) 

 

that is Bose-Einstein distribution in Eq. (68) when the total 

degeneracy is defined as
j jh jf fh

g g g g  .   

 In the sequel it will be shown that the relevant degeneracy 

ge for ideal gas at equilibrium is similar to the classical 

Rayleigh-Jeans [96-97]
 

expression for degeneracy of 

equilibrium radiation here expressed as  

 

2

j j j3

j

8
dg d

u


  

V
 (75) 

 

At thermal equilibrium Eq. (75) denotes the number of eddies 

(oscillators) at constant mean ―atomic‖ velocity uj in a 

hydrodynamic system with volume V within the frequency 

interval j to j + dj.  The results in equations (74) and (75) 

lead to Planck [34, 74] energy distribution function for 

isotropic turbulence at EED scale 

 

j

3

j j j

jh /kT3

j

dN 8 h
d

u e 1


 
 

V
 (76) 

 

when the energy of each eddy is
j j

h   .  The calculated 

energy distribution from Eq. (76) at T = 300 K is shown in 

Fig. 6.   

 
     

 2 1013 4 1013 6 1013 8 1013
0

1. 10 19

2. 10 19

3. 10 19

4. 10 19

 
 
 
 

Fig. 6 Planck energy distribution law governing the 

energy spectrum of eddies at the temperature T = 300 K.  
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 The three-dimensional energy spectrum E(k) for isotropic 

turbulence measured by Van Atta and Chen [98-99] and 

shown in Fig. 7 is in qualitative agreement with Planck 

energy spectrum shown in Fig. 6 [34].   

 

 

 
 
 

Fig. 7 Normalized three-dimensional energy spectra for 

isotropic turbulence [98]. 
 

 

In fact, it is expected that to maintain stationary isotropic 

turbulence both energy supply as well as energy dissipation 

spectrum should follow Planck law in Eq. (76).  The 

experimental data [100] obtained for one dimensional 

dissipation spectrum along with Planck energy distribution as 

well as this same distribution shifted by a constant amount of 

energy are shown in Fig. 8.  

 

     

     
 

 

Fig. 8 One-dimensional dissipation spectrum [100] 

compared with (1) Planck energy distribution (2) Planck 

energy distribution with constant displacement. 

 
 

 Similar comparison with Planck energy distribution as 

shown in Fig. 8 is obtained with the experimental data for 

one-dimensional dissipation spectrum of isotropic turbulence 

shown in Fig. 9 from the study of Saddoughi and Veeravalli 

[101]   

 
 

Fig. 9 One-dimensional dissipation spectra (a) 

u1-spectrum (b) u2-spectrum (c) u3-spectrum [101]. 

 

 In a more recent experimental investigation the energy 

spectrum of turbulent flow within the boundary layer in close 

vicinity of rigid wall was measured by Marusic et al. [102] 

and the reported energy spectrum shown in Fig. 10 appear to 

have profiles quite similar to Planck distribution law.  

 

 
 

Fig. 10 Reynolds number evolution of the pre-multiplied 

energy spectra of stream wise velocity at the inner-peak 

location (z+ = 15) for the true measurements (A) and the 

prediction based on the filtered u signal measured in the 

log region (B) [102]. 

 

Also, the normalized three-dimensional energy spectrum for 

homogeneous isotropic turbulent field was obtained from the 

transformation of one-dimensional energy spectrum of Lin 

[103] by Ling and Huang [104] as 

 

2

2

( ) exp(- )
3

E K K K
   


 

 


 
 (77) 

with the distribution comparable with Fig. 6.  

  A most important aspect of Planck law is that at a given 

fixed temperature the energy spectrum of equilibrium field is 
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time invariant.  Since one may view Planck distribution as 

energy spectrum of eddy cluster sizes this means that cluster 

sizes are stationary. Therefore, even though the number of 

eddies 
jf

N  and their energy 
jf
  in different fluid elements 

(energy levels) are different their product that is the total 

energy of all energy levels is the same 

 

j j j j j 1 mpj

j

 N ...U U U U


       
 (78) 

 

in accordance with Eq. (63).  Thus Boltzmann’s equipartition 

principle is satisfied in order to maintain time independent 

spectrum (Fig. 6) and avoid Maxwell’s demon paradox [35].  

Therefore, in stationary isotropic turbulence, energy flux 

occurs between fluid elements by transition of eddies of 

diverse sizes while leaving the fluid elements stochastically 

stationary in time. A schematic diagram of energy flux across 

hierarchies of eddies from large to small size is shown in Fig. 

11 from the study by Lumley et al. [105]. 

 

        
 
 

 Fig. 11 A realistic view of spectral energy flux [105]. 

 

 In Sec. 11, it will be suggested that the exchange of eddies 

between various size fluid elements (energy levels) is 

governed by quantum mechanics through an invariant 

Schrödinger equation (206).  Therefore, transition of an eddy 

from a small rapidly oscillating fluid element to a large slowly 

oscillating fluid element results in energy emission by 

―subatomic particle‖ that for EED will be a molecular cluster 

cji as schematically shown in Fig. 12. 
 

 

   

   fluid  

element-j

eddy

   fluid  

element-i

f j

f i

eji

cluster

cji

 
 
 

Fig. 12 Transition of eddy eij from fluid element-j to fluid 

element-i leading to emission of cluster cij. 

 

Hence, the stochastically stationary states of fluid elements 

are due to energy exchange through transitions of eddies 

according to 

 

ji j i j i
h( )

    
      

 (79) 

 

parallel to Bohr’s stationary states in atomic theory [72] to be 

further discussed in Sec. 11.  

   The above procedures in equations (68)-(76) could be 

applied to other pairs of adjacent statistical fields 

(ECD-EMD), (EMD-EAD), (EAD-ESD), (ESD-EKD), 

(EKD-ETD), … shown in Fig. 1 leading to Planck energy 

distribution function for the energy spectrum of respectively 

molecular-clusters, molecules, atoms, sub-particles 

(electrons), photons, tachyons, . . . at thermodynamic 

equilibrium.  Therefore, Eq. (76) is the invariant Planck 

energy distribution law and can be written in invariant form 

for any scale  as [34] 

 
3

h /kT3

dN 8 h
d

u e 1V 

  





 
 


 (80) 

 

with the spectrum shown in Fig. 6. 

 The invariant Planck energy distribution in Eq. (80) is a 

universal law giving energy spectra of all equilibrium 

statistical fields from cosmic to sub-photonic scales shown in 

Fig. 1. Such universality is evidenced by the fact that the 

measured deviation of Penzias-Wilson cosmic background 

radiation temperature of about 2.73 K from Planck law is 

about 
5

10


K.  In view of the finite gravitational mass of 

photon in Eq. (37), it is expected that as the temperature of the 

radiation field is sufficiently lowered photon condensation 

should occur parallel to superconductivity, BEC, and 

superfluidity at the scales of electro-dynamics, 

atomic-dynamics, and molecular-dynamics [51].  Such 

phenomena have indeed been observed in a recent study 

[106] reporting on light condensation and formation of 

photon droplets.  Furthermore, one expects a hierarchy of 

condensation phenomena to continue to tachyonic [107], or 

sub-tachyonic fields … ad infinitum.  

 The important scales ESD  = s and EKD  = k are 

respectively associated with the fields of stochastic 

electrodynamics SED and stochastic chromo-dynamics SCD 

[1-17].  For EKD scale of photon gas  = k, also identified as 

Casimir [73]
 
vacuum or the physical space with the most 

probable thermal speed of photon in vacuum uk = vmpt = c 

[83], the result in Eq. (80) corresponds to a spectrum of 

photon clusters with energy distribution given by the classical 

Planck energy distribution law [74] 

 
3

3 h /kT

dN 8 h
d

c e 1V

 



  
 

  (81) 

 
The notion of ―molecules of light‖ as clusters of photons is in 

accordance with the perceptions of de Broglie [41, 108, 109].  

It is emphasized that the velocity of light is therefore a 

function of the temperature of Casimir [73]
 
vacuum, i.e. the 

tachyonic fluid [83] that is Dirac [110] stochastic ether or de 

Broglie [3] hidden thermostat.  However since such vacuum 

temperature changes by expansion of the cosmos through 

eons [35], one may assume that c is nearly a constant for the 

time durations relevant to human civilization.  

 The historical evolution of Planck law of equilibrium 

radiation, his spectral energy distribution function (81), and 

the central role of energy quanta  = h are all intimately 

related to the statistical mechanics of Boltzmann discussed in 
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the previous section.  This is most evident from the following 

quotation taken from the important 1872 paper of Boltzmann 

[37, 39] 

 
“We wish to replace the continuous variable x by a series 

of discrete values , 2, 3 … p.  Hence we must assume 

that our molecules are not able to take up a continuous 

series of kinetic energy values, but rather only values that 

are multiples of a certain quantity .  Otherwise we shall 

treat exactly the same problem as before. We have many 

gas molecules in a space R.  They are able to have only the 

following kinetic energies: 

 

 , 2, 3, 4,  . . .   p.   

 

No molecule may have an intermediate or greater energy. 

When two molecules collide, they can change their kinetic 

energies in many different ways.  However, after the 

collision the kinetic energy of each molecule must always 

be a multiple of .  I certainly do not need to remark that 

for the moment we are not concerned with a real physical 

problem.  It would be difficult to imagine an apparatus 

that could regulate the collisions of two bodies in such a 

way that their kinetic energies after a collision are always 

multiples of .  That is not a question here. ” 

 
The quotation given above and the introduction of the 

statistical mechanics of complexions discussed in the 

previous section are testimony to the significant role played 

by Boltzmann in the development of the foundation of 

quantum mechanics as was also emphasized by Planck in his 

Nobel lecture [61, 111]. 

 Similarly, Boltzmann gas theory had a strong influence on 

Einstein in the development of the theory of Brownian 

motion even though Boltzmann himself made only a brief 

passing remark about the phenomena [61] 

 

“. . . likewise, it is observed that very small particles in a 

gas execute motions which result from the fact that the 

pressure on the surface of the particles may fluctuate.” 

 

Although Einstein did not mention the importance of 

Boltzmann’s gas theory in his autobiographical sketch [61] 

 
“Not acquainted with the earlier investigations of 

Boltzmann and Gibbs which appeared earlier and which 

actually exhausted the subject, I developed the statistical 

mechanics and the molecular kinetic theory of 

thermodynamics which was based on the former.  My 

major aim in this was to find facts which would guarantee 

as much as possible the existence of atoms of definite 

finite size.  In the midst of this I discovered that, 

according to atomic theory, there would have to be a 

movement of suspended microscopic particles open to 

observation, without knowing that observations 

concerning Brownian motion were long familiar” 

 

much earlier in September of 1900 Einstein did praise 

Boltzmann’s work in a letter to Mileva  [61, 112]
 
 

 

 “The Boltzmann is magnificent.  I have almost finished it.  

He is a masterly expounder.  I am firmly convinced that 

the principles of the theory are right, which means that I 

am convinced that in the case of gases we are really 

dealing with discrete mass points of definite size, which 

are moving according to certain conditions.  Boltzmann 

very correctly emphasizes that the hypothetical forces 

between the molecules are not an essential component of 

the theory, as the whole energy is of the kinetic kind.  This 

is a step forward in the dynamical explanation of physical 

phenomena” 

 

Similar high praise of Boltzmann’s theory appeared in April 

1901 letter of Einstein to Mileva [112] 

 

 “I am presently studying Boltzmann’s gas theory again.  

It is all very good, but not enough emphasis is placed on a 

comparison with reality.  But I think that there is enough 

empirical material for our investigation in the O. E. 

Meyer. You can check it the next time you are in the 

library. But this can wait until I get back from 

Switzerland. In general, I think this book deserves to be 

studied more carefully.”  

 

The central role of Boltzmann in Einstein’s work on statistical 

mechanics has also been recently emphasized by Renn [113]
 

 

“In this work I argue that statistical mechanics, at least in 

the version published by Einstein in 1902 (Einstein 

1902b), was the result of a reinterpretation of already 

existing results by Boltzmann.”   

 

 In order to better reveal the nature of particles versus the 

background fields at (ESD-EKD) and (EKD-ETD) scales, we 

examine the normalized Maxwell-Boltzmann speed 

distribution in Eq. (119) from Sec. 8 shown in Fig. 13.   
 

          
 

Fig. 13 Maxwell-Boltzmann speed distribution for ESD, 

EKD, and ETD fields. 

 

According to Fig. 13, in ETD field one starts with tachyon 

[107] ―atom‖ to form a spectrum of tachyon clusters.   Next, 

photon or de Broglie ―atom of light‖ [108] is defined as the 

most probable size tachyon cluster of the stationary ETD field 

(Fig. 13).  Moving to the next larger scale of EKD, one forms 
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a spectrum of photon clusters representing ideal photon gas of 

equilibrium radiation field. Finally, one identifies the 

―electron‖ as the most probable size photon cluster (Fig. 13) 

of stationary EKD field.  From ratio of the masses of electron 

and photon in Eq. (37) the number of photons in an electron is 

estimated as  

 
31

10

41ke

9.1086 10
N 4.9428 10 Photons

1.84278 10
   








  

  (82) 

 

The above definition of electron suggests that not all 

electrons may be exactly identical since by Eq. (82) a change 

of few hundred photons may not be experimentally detectable 

due to small photon mass. 

 With electron defined as the ―atom‖ of electrodynamics, 

one constructs a spectrum of electron clusters to form the 

statistical field of equilibrium sub-particle dynamics ESD 

(SED) as ideal electron gas in harmony with the perceptions 

of Lorentz [114] 

 

“Now, if within an electron there is ether, there can also 

be an electromagnetic field, and all we have got to do is to 

establish a system of equations that may be applied as 

well to the parts of the ether where there is an electric 

charge, i.e. to the electrons, as to those where there is 

none.” 
 

The most probable electron cluster of ESD field is next 

identified as the ―atom‖ of EAD field. As shown in Fig. 13, 

the most probable element of scale  becomes the ―atom‖ of 

the higher scale  and the ―system‖ of lower scale  

 

mp 1 2w v u   
 (83) 

 

 in accordance with equations (1)-(2). 

 At EKD scale Planck law (81) gives energy spectrum of 

photon conglomerates, Sackur’s ―clusters‖, or Planck’s 

“quantum sphere of action‖ as described by Darrigol [41] 

with sizes given by Maxwell-Boltzmann distribution (Fig. 13) 

in harmony with the perceptions of de Broglie [109] 
 

 “Existence of conglomerations of atoms of light whose 

movements are not independent but coherent”   

 

Thus photon is identified as the most probable size tachyon 

cluster (Fig. 13) of stationary ETD field.  From ratio of the 

masses of photon in Eq. (37) and tachyon 
69

t g
m m 3.08 10


    kg [83, 115] the number of tachyons 

in a photon is estimated as  

 
41

27

tk 69

1.84278 10
N 5.983 10 Tachyons

3.08 10
   






  

  (84) 

 

Comparison of equations (82) and (84) suggests that there 

may be another particle (perhaps Pauli’s neutrino) with the 

approximate mass of 
55

10m



kg between photon and 

tachyon scales.  Also, as stated earlier, the ―atoms‖ of all 

statistical fields shown in Figs. 1, 4, and 13 are considered to 

be ―composite bosons‖ [95] made of ―Cooper pairs‖ of the 

most probable size cluster of the statistical field of the 

adjacent lower scale (Fig. 13).  Indeed, according to de 

Broglie as emphasized by Lochak [109],  

 

“Photon cannot be an elementary particle and must be 

composed of a pair of particles with small mass, maybe 

“neutrinos”.” 

 

Therefore, one expects another statistical field called 

equilibrium neutrino-dynamics END to separate EKD and 

ETD fields shown in Figs. 1 and 13. 

 The invariant Planck law in Eq. (80) leads to the invariant 

Wien [93] displacement law  

 

w 2
T 0.2014c


 

 (85) 

 

For = k by equations (29) and (30) the second radiation 

constant c2 is identified as the inverse square of the universal 

gas constant in Eq. (39) 

 
 

2 4

k
2 2 2 2 o2 o2

m chc hkc 1 1
c

k k k k N R
      (86) 

  
such that one may also express Eq. (85) as 

 
 

m o2

0.2014
T 0.002897 m-deg

R
    (87) 

   
It is also possible to express Eq. (87) in terms of the root mean 

square wavelength of photons in vacuum 

 

2k k k
2 k

k k k

m cc chc
c

k m c

 
    

 
 (88) 

 

from Eq. (41) 

 

k m0.119933      (89) 

 

By the definition of Boltzmann constant in equations (31b), 

(33), and (36) the absolute thermodynamic temperature 

becomes the root mean square wavelength of the most 

probable state 

 
2 1/2

w mp
T

 
    

 (90) 

 

Therefore, by equations (87) and (89) Wien displacement law 

in Eq. (85) may be also expressed as 

 
2 2

wk mp,k k
T 0.2014    

  (91) 

 

relating the most probable and the root mean square 

wavelengths of photons in radiation field at thermodynamic 

equilibrium. 
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 It is possible to introduce a displacement law for most 

probable frequency parallel to Wien’s displacement law for 

most probable wavelength in Eq. (85).  By setting the 

derivative of Planck energy density to zero one arrives at the 

transcendental equation for maximum frequency as 

 

2 wc /kcT 2 w
c

e 1 0
3kcT

 
  

 (92) 

 

From the numerical solution of Eq. (92) one obtains the 

frequency displacement law 

 

2

w

cT h
0.354428 0.354428

c k
 


 (93) 

 

or 

 
5

w
5.8807375 10 T  

 (94) 

 

From Eq. (94) one obtains the frequency at the maxima of 

Planck energy distribution at temperature T such as  
13

w
1.764 10   Hz at T = 300K in accordance with Fig. 6 and  

14

w
3.5284 10   Hz at T = 6000K in agreement with Fig. 6.1 

of  Baierlein [94].  

 From division of Wien displacement laws for wavelength 

in Eq. (85) and frequency in Eq. (93) one obtains 

 

wk wk
0.5682 c  

 (95) 

 

Because by Eq. (41) the speed of light in vacuum is 

k k  c  
     (96) 

one can express Eq. (95) as 

 

mp,kmk mk mk

k k r.m.s,k

v v
0.57 

v c

 
 

 
  (97) 

 
The result in Eq. (97) may be compared with the ratio of the 

most probable speed 
mp

v kT / m  and the root mean 

square speed 
r.m.s

v 3kT / m  that is 

 

mp r.m.sv / v 1/ 3 0.577   (98) 

 
The reason for the difference between equations (97) and (98) 

requires further future examination.  

 At thermodynamic equilibrium each system of Fig. 13 will 

be stationary at a given constant temperature.  The total 

energy of such equilibrium field will be the sum of the 

potential and internal energy expressed by the modified form 

of the first law of thermodynamics [31] to be further 

discussed in Sec. 10  

 

p VQ H U
    
  

 (99) 

In a recent investigation [83] it was shown that for monatomic 

ideal gas with 
o

v
c 3R and 

o

p
c 4R one may express Eq. 

(99) as [32] 

 

3 1

4 4
PVQ U H H H             

                                              de dmE E     (100) 

 

Therefore, the total energy (mass) of the atom of  scale is the 

sum of the internal energy (dark energy
1

DE


) and potential 

energy (dark matter
1

DM


) at the lower scale  [32, 83] 

 

1 1 1 1 1 1
pE V DMU + DE +

      
  

 (101) 

 

 To better reveal the origin of the potential energy 
1 1

p V
 

 

in Eq. (101) one notes that by Eq. (30) the dimensionless 

particle energy in Maxwell-Boltzmann distribution in Eq. 

(111) could be expressed as 
 

 

 

2 2

j j j j

2

mp mp mp

h

h

mv mv

kT mv

 

 
        (102) 

 

that by 
j j j

v    gives 

 
1

j mp j mpvv / ( / )   (103) 

 

Therefore Maxwell-Boltzmann distribution in Eq. (111) may 

be expressed as a function of inverse of dimensionless 

wavelength by Eq. (103) thus revealing the relative (atomic, 

element, and system) lengths 
β β

( , , L) (0,1, )    of the 

adjacent scales  and as shown in Fig. 14.  
 

 

            
 

Fig. 14 Maxwell-Boltzmann speed distribution as a 

function of oscillator wavelengths (j/mp)
1

. 
 

According to Fig. 14, the interval (0, 1)

 of scale  becomes 

(1, )


 of  scale.   However, the interval (0, 1)


 is only 
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revealed at  scale and is unobservable at the larger scale  

(Figs. 14, 18). Therefore, in three dimensions such coordinate 

extensions results in volume generation leading to release of 

potential energy as schematically shown in Fig. 15.   

 

               
 

Fig. 15 Effects of internal versus external potential 

energy as the system volume is increased. 
 

 

Hence by equations (102)-(103) as one decompactifies the 

atom of scale , ¾ of the total mass (energy) of the atom 

―evaporates” into energy due to internal translational, 

rotational, and vibrational (pulsational) motions and is 

therefore none-baryonic and defined as dark energy 

(electromagnetic mass) [83].  The remaining ¼ of the total 

mass that appears as potential energy (dark matter), [83]  in 

part ―evaporates‖ as new volume generation (Figs. 15, 18) 

and in part forms the gravitational mass (dark matter) of the 

next lower scale [32, 83]  

 

1 2 2 2
DM E DMDE +

   
 

 (104) 

 

The concepts of internal versus external potential energy are 

further discussed in the following section.   

 As an example, to determine the total energy of a photon 

one starts from the thermodynamic relation for an ideal 

photon gas 

 

h u pv   (105) 

 

with specific molar enthalpy, internal energy and volume 

(h, , ) (H, , ) / Nu v U V  that can also be expressed as 

 
o

p vc c R   (106) 

 

where
o

N N / N , and 
o

NW m  is the molecular weight.  

Since Poisson coefficient  of photon gas 

is
p v

c c 4 / 3/  , one arrives at 
o

p
c 4R  and 

o

v
c 3R  

such that by Eq. (105) the total energy of the photon could be 

expressed as 

de dm

2 2

k kE (3 / 4)m c (1/ 4)m c E E
               (107) 

 

From Eq. (107) one concludes that of the total energy 

constituting a photon, ¾ is associated with the 

electromagnetic field (dark energy Ede) and ¼ with the 

gravitational field (dark matter Edm) [32, 83].  Hence, as one 

decompactifies atoms of smaller and smaller scales by Eqs. 

(38), (40), and (100)-(107) ultimately all matter will be 

composed of dark energy or electromagnetic mass as was 

anticipated by both Lorentz [116] and Poincaré [117-119]. 

 It is known that exactly ¾ and ¼ of the total energy of 

Planck black body equilibrium radiation falls on > w and 

< w sides of w given by the Wien displacement law in Eq. 

(85).  Indeed, the first part of Eq. (107) confirms the apparent 

mass  = 4E/3c
2
 that was measured for the black body 

radiation pressure in the pioneering experiments by 

Hasenöhrl [90]
 
in 1905.  According to Eq. (107), the finite 

gravitational mass of the photon in Eq. (37) that is associated 

with Poincaré [117-119]
 
stress accounts for the remaining ¼ 

of the total mass as dark matter. This longitudinal component 

would be absent if photon gravitational mass were zero in 

harmony with the perceptions of Higgs [120].  The result in 

Eq. (107) is also consistent with the general theory of 

relativity of Einstein [121] according to which of the total 

energy constituting matter ¾ is to be ascribed to the 

electromagnetic field and ¼ to the gravitational field. 

VII. INVARIANT MAXWELL-BOLTZMANN SPEED 

DISTRIBUTION FUNCTION 

 Because of its definition, the energy spectrum of particles 

in an equilibrium statistical field is expected to be closely 

connected to the spectrum of speeds of particles. Indeed, it is 

possible to obtain the invariant Maxwell-Boltzmann 

distribution function directly from the invariant Planck 

distribution function in Eq. (80) that in view of equations (34) 

and (37) can be written as 

 
2 3 2 2

/kT /kT3 3 3 3

d 8  m d8
dN

u u me 1 e 1

VV

 

      

  

   

      
 

 
 

 

                                    

/kT3 2

/kT3

8 m u du e

h 1 e

V 





  







   (108) 

 

Substituting for the partition function 

cj
/ kT / kT

mc mc
Z N g e g / (1 e )

 

     from Eq. (70), and the 

degeneracy for speed 
sβ mcβ

g g
 

  
2 3/2

sg 2 [(2 m kT) / h ]  V    (109) 

 

obtained from the normalization condition 

 
 

v
0

dN / N 1


     (110) 

 

into Eq. (108) results in the invariant Maxwell-Boltzmann 

speed distribution function 
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/kTu 3/2 2
dN m

4  ( ) u  e du
N 2 kT

  

 



 


   (111) 

 

By Eq. (111), one arrives at a hierarchy of embedded 

Maxwell-Boltzmann distribution functions for EED, ECD, and 

EMD scales shown in Fig. 16.  

 As stated earlier, the invariant results in equations (80) and 

(111) suggest that particles of all statistical fields (Fig. 1) will 

have Gaussian velocity distribution, Planck energy 

distribution, and Maxwell-Boltzmann speed distribution.  

 

 
 

 

Fig. 16 Maxwell-Boltzmann speed distribution viewed as 

stationary spectra of cluster sizes for EED, ECD, and 

EMD scales at 300 K [32]. 

 
 It is possible to express the number of degeneracy 

commonly obtained from field quantization [92-94] for 

particles, Heisenberg-Kramers [72]
 
virtual oscillators in a 

spherical volume 
S

V  as 

 
3

S2g /  V         (112) 

 

where 
3

  is the rectangular volume occupied by each 

oscillator 
3

o
V


   when due to isotropy 

2 1/2 2 1/2 2 1/2

x y z              and the factor 2 

comes from allowing particles to have two modes either (up) 

or (down) iso-spin (polarization). The system spherical VS 

and rectangular V volumes are related as 

 
 

3

S

4 4
R

3 3

 
 V V           (113) 

 

 

 For systems in thermodynamic equilibrium the 

temperature 
2

β β β
3kT m <u >  will be constant and hence 

2 1/2 2 1/2 2 1/2

β β β
<u > <λ > <ν >=  or 

 

β β βλ u /ν=  (114) 

 
 

Substituting from equations (113)-(114) into Eq. (112) results 

in 

3

38
g

3u


 


 

V
              (115) 

 

that leads to the number of oscillators between frequencies 

β
ν  and 

β β
ν ν+d

 
 

3

28
dg d

u


  


  

V
              (116) 

 

in accordance with Rayleigh-Jeans expression in Eq. (75). 

 The expression in Eq. (116) for degeneracy is for 

application to Planck law involving frequency as the variable 

for energy quanta = h.  It is also possible to arrive at the 

degeneracy in Eq. (109) for Maxwell-Boltzmann speed 

distribution from Eq. (112). However, because only positive 

values of speeds (ux, uy, uz) are allowed one must take 1/8 of 

the total volume of the velocity space and Eq. (112) in terms 

of the relevant volume gives 

 
3 3 3/2

3

s 3 3
2

2(L ) 2(2L / )
g /

8
 

 


   

  
 

V  

 
3 2 2 3/2 3 2 2 3/2

3 3 3 3

2(2L / ) ( m u ) 2L ( m u )

8 m u 8h

   

   

   
 


   

 

3/2 3/2

c 2 2

m kT 2 m kT
2 ( ) 2 ( )

h h

   



 
 V V               (117) 

  
 

that is in accordance with Eq. (109). In Eq. (117) the correct 

relevant volume of the speed space is
3

c
= (2L / ) / 8V   , 

while
3

= (L / )2V   , and h = h by Eq. (36).  The 

coordinate L  in Eq. (117) was first normalized as 

L 2L /   with a measure based on Gauss’s error 

function as discussed in Ref. 122 and shown in Fig. 18.  The 

result in Eq. (117) is twice the classical translational 

degeneracy [92]   
 
 

3/2

t 2

2 mkT
g V( )

h


      (118) 

 

The additional factor of two arises from the fact that similar to 

Boltzmann factor 
h /kT

e
 

 in Planck distribution law in Eq. 

(81) by equations (42)-(44) the modified Maxwell-Boltzmann 

distribution in Eq. (111) will also involve 
2

/kT mv /kT
e e  

  

rather than the classical expression
2

mv /2kT
e


. 

VIII. CONNECTIONS BETWEEN RIEMANN HYPOTHESIS AND 

NORMALIZED MAXWELL-BOLTZMANN DISTRIBUTION 

FUNCTION 

 Because Maxwell-Boltzmann speed distribution in Eq. 

(111) may be also viewed as distribution of sizes of particle 

clusters, if expressed in dimensionless form it can also be 
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viewed as the sizes of ―clusters of numbers‖ or Hilbert 

―condensations‖.  Therefore, a recent study [123] was focused 

on exploration of possible connections between the result in 

Eq. (111) and the theoretical findings of Montgomery [124] 

and Odlyzko [125] on analytical number theory that has 

resulted in what is known as Montgomery-Odlyzko  [124-125]
 

law   

 
 “The distribution of the spacing between successive non-trivial 

zeros of the Riemann zeta function (suitably normalized) is 

statistically identical with the distribution of eigenvalue spacing 

in a GUE operator” 

 

The pair correlation of Montgomery [124] was subsequently 

recognized by Dyson to correspond to that between the energy 

levels of heavy elements [126-127] and thus to the pair 

correlations between eigenvalues of Hermitian matrices 

[128].  Hence, a connection was established between quantum 

mechanics on the one hand and quantum chaos [129]
 
on the 

other hand.  However, the exact nature of the connections 

between these seemingly diverse fields of quantum 

mechanics, random matrices, and Riemann hypothesis 

[126-127] is yet to be understood. 

 When the oscillator speeds (cluster sizes) in Eq. (111) are 

normalized through division by the most probable speed (the 

most probable cluster size) one arrives at Normalized 

Maxwell-Boltzmann NMB distribution function [123] 
 

j

2[(2/ ) ]j2

j

x
8 /  x( ) (2 / )  e[ ] 



  

                                (119) 

 

The additional division by the ―measure‖ 
β

π 2/ in Eq. 

(119) is for coordinate normalization as discussed in Ref. 122 

and shown in Fig. 18.  Direct comparisons between Eq. (119) 

and the normalized spacing between the zeros of Riemann 

zeta function and the eigenvalues of GUE calculated by 

Odlyzko [125] are shown in Fig. 17.  Therefore, a definite 

connection has been established between analytic number 

theory, the kinetic theory of ideal gas, and the normalized 

spacing between energy levels in quantum mechanics [123].  
   

 
Fig. 17 Probability density of normalized spacing between 

zeros of Riemann zeta function [125] 
12 12

n
n 

      , normalized spacing between 

eigenvalues of GUE [125], and the NMB distribution 

function in Eq. (119). 
 

 To further examine the connection between Riemann 

hypothesis and Maxwell-Boltzmann kinetic theory of ideal 

gas the speed distribution is first related to distribution of 

sizes or wavelengths of number clusters (Fig. 14).  According 

to equations (29)-(30) and (36) particle energy and frequency 

are related by  

 
2

tj j j
νε mv h 

         (120) 

 

Therefore, the normalized spacing between energy levels can 

be expressed in terms of the normalized spacing between 

frequencies of virtual oscillators as 

 

tj ti mp j i mp
(ε ε ) / ε = ( ) /   

         (121) 

 

 Because of Boltzmann’s equipartition principle the 

particles‘ random rotational and vibrational (pulsational) 

kinetic energy in two directions (θ ,θ )  and (r , r )   will 

be equal to their translational kinetic energy in Eq. (120) and 

follow Planck law in Eq. (80).  Also, the corresponding 

momenta of all three degrees of freedom will be randomly 

distributed and once properly normalized should follow 

NMB distribution in Eq. (119).  Therefore, parallel to Eq. 

(30) the rotational counterpart of Eq. (120) is expressed as 

 
2 2 2

rjβ jβθ+ jβθ jβθ+ε ω / 2 ω / 2 ωI I I          
 

   
2 2 1/2 2 2 1/2

jβθ+ jβm r ω > (2πr) >    
 

   
2 1/2 2 1/2 2 1/2

jβ jβ jβ jβ(m u > λ > ) > hν              (122) 

 

where I is the moment of inertia and by equipartition principle 

<
2
> =<

2
>.  By Eq. (122) the normalized spacing 

between rotational energy levels will also be related to the 

normalized spacing between frequencies of oscillators in Eq. 

(121). 

 Following the classical methods [92] for the vibrational 

degree of freedom the potential energy of harmonic oscillator 

is expressed as 

 
2 2 2

vjβ jβ+ jβ jβ+ε x / 2 x / 2 x            

  
2 2 2 2

jβ+ jβ+ jβ jβm ω x m 2πx ν          

 
2 1/2 2 1/2 2 1/2

jβ jβ jβ jβ(m u λ ) ν hν          (123) 

 

where   is the spring constant and ω /m   (Ref. 92).  

Similar to equations (120) and (122), by Eq. (123) the 

normalized spacing between potential energy levels of 

harmonic oscillator are also related to the normalized spacing 

between frequencies of virtual oscillators in Eq. (121).  In 

summary, the normalized spacing between energy levels for 

translational, rotational, and vibrational motions are related to 

their corresponding normalized frequencies by 

 

qj qi qmp qj qi qmp
ν q = t, r, v(ε ε ) / ε = ( ν ) / ν    ,     

     (124) 

 

Therefore, the classical model of diatomic molecule with 

rigid-body rotation and harmonic vibration [92] is herein 
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considered to also possess an internal translational harmonic 

motion. The internal translational degree of freedom is 

associated with thermodynamic pressure and may therefore 

be called internal potential energy.  In addition to this internal 

harmonic translation there will be an external harmonic 

motion due to the peculiar translational velocity in Eq. (3) and 

a corresponding external potential energy (Fig. 15).  In Sec. 

11, it will be shown that the external potential energy appears 

in Schrödinger equation (206) and acts as Poincaré stress 

[117-119] that is responsible for ―particle‖ stability.  The 

particle trajectory under all four degrees of freedom namely 

the three internal translational, rotational and vibrational 

motions and the external peculiar motion will be quite 

complicated.  Clearly, addition of radial oscillations about the 

center of mass to the rigid rotator will result in particle motion 

on a radial wave, de Broglie wave, along the circumference of 

the otherwise circular particle trajectory.             

 Now that the normalized spacing between energy levels 

have been related to the normalized spacing between 

oscillator frequencies j in Eq. (124), the latter should be 

connected to the zeros of Riemann zeta function.  The zeros 

of Riemann zeta function are related to prime numbers 

through Euler‘s Golden Key [126] 

 

j

s 1

js

1
ζ(s) (1 )

n p

p
n

 
   

 (125) 

 

where s = a +ib is a complex number.  Clearly, the zeros of 

zeta function in Eq. (125) will coincide with the zeros of the 

powers of primes 
 

s a ib

j j
0p p


 

 (126) 
 

It is most interesting that according to his Nachlass [127] 

Riemann was working on the problem of Riemann 

Hypothesis and the hydrodynamic problem of stability of 

rotating liquid droplets simultaneously.  In view of Eq. (119) 

and the connections between normalized energy and 

frequency spacing shown in Fig. 17, it is natural to consider 

the situation when particle frequencies are given by integral 

powers of prime numbers as 
 

j

1 2 3

j j j j j
, , ...

N

p
p p p p   

 (127) 
 

in harmony with Gauss’s clock calculator [127] and Hensel’s 

pj-adic numbers 
j

p
 (Ref. 126).   

 Now, since the atomic energy of particles must be 

quantized according to Planck formula ε h  by Eq. (127) 

one writes   

 

j

2

j j j
mv  = h h h

N

p
p 

 (128) 
 

that by equations (30)-(31) and (36) suggest that the particle 

velocity may be expressed as 

 
N/2+iNblnN/2 1/2+ ib

j j j

iθ
h/m h/m h/mj

j

p

p
p e p


  v

 
 (129) 

where the angle 
j

Nb lnθ p  corresponds to the direction of 

velocity vector.  Therefore, by Eq. (129) the particle energy 

consistent with Eq. (128) becomes 

 

j

* N

j j j j
ε = m( . ) h h

p
p v v

 (130) 

 

Also, the dependence of particle speed on 
j

p
will be 

obtained from equations (128) and (129) as 

 

j

N/2 1/2

j j
v h/m h/m

p
p


 

 (131) 

that by the relation 
j j j

v = λ  gives particle wavelength  

 

j

1/2

j
λ h/m

p






 (132) 

 

 In the following it is shown that with the value a = ½ as the 

position of the critical line in accordance with Riemann 

Hypothesis  [126, 127] the zeros of particle velocities from 

Eq. (129) will coincide with the zeros of Riemann zeta 

function in Eq. (126).  One also expects the zeros of particle 

velocity from Eq. (129) to coincide with the zeros of particle 

speed in Eq. (131), and those of particle energy and hence 

frequency in Eq. (128). Thus, at thermodynamic equilibrium 

all points of the normalized Maxwell-Boltzmann distribution 

in Fig. 17 correspond to stochastically stationary states of 

clusters of particles undergoing random translational, 

rotational, vibrational motions while satisfying the principle 

of detailed balance of quantum mechanics through 

continuous transitions between clusters (energy levels) 

further discussed in Sec. 11. 

 At thermodynamic equilibrium Maxwell-Boltzmann 

speed distribution in Eq. (119) corresponds to translational, 

rotational, and vibrational particle velocities that must follow 

Gaussian distribution like Fig. 5. Also, space isotropy 

requires that the translational, rotational, and vibrational 

momenta of particles in two directions
+

( , )x x


, 
+

(θ θ, )


, 

+
(r r, )


 be equal in magnitude and opposite in direction such 

that by Eq. (129) at the zeros of particle velocity  

 
b

jln ( )1/2

j

1/N 2N

j h/m
i p

p e


  v

1/2 b b

j j j

2N [cos(ln ) sin(ln )] 0h/mp p i p   (133a) 

 

the corresponding particle momenta become identically zero.  

Therefore, one expects ―stationary states‖ at mean 

translational position ( 0)x  , mean angular 

position (θ 0) , and mean radial position ( r 0)  at which 

particle velocities 
t θ v

(v , v , v )  and hence energies 

t θ v
(ε , ε , ε )  vanish.  Hence, another argument for the position 

of the critical line being at a = ½ could be based on symmetry 

requirements for passage across stationary states and the 

Gaussian velocity distribution (Fig. 5) at equilibrium.  

Because by Eq. (124) all three forms of energy could be 

expressed as products of Planck constant and frequency, one 

identifies the zeros of velocities in Eq. (129) as the 
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―stationary states‖ of particle‘s translational, rotational, and 

vibrational momenta.  The connection between the kinetic 

theory of ideal gas and Montgomery-Odlyzko law shown in 

Fig. 17 involves spacing between particle speeds in Eq. (131) 

whereas the zeros of Riemann zeta function are related to 

stationary states or the zeros of particle velocities in Eq. 

(129).  However, the zeroes of particle speeds must coincide 

with the zeros of particle velocities that from Eq. (133a) are 

given by 

 
1/2 ib

j
0p

   (133b) 

 

Comparison between the zeros of particle velocity at 

stationary states in Eq. (133b) and the zeros of Riemann zeta 

function in Eq. (126) shows that they will coincide if a = ½ 

namely on the critical line in accordance with Riemann 

hypothesis. 

 It is interesting to examine the connection between 

analytical number theory and Riemann hypothesis in terms of 

particle wavelengths in Eq. (132) hence quantized spatial 

coordinates rather than particle speeds in Eq. (131).  In a 

recent study [122] a logarithmic system of coordinates was 

introduced as  
 

Ax ln N 
   (134) 

 

whereby the spatial distance of each statistical field (Fig. 1) is 

measured on the basis of the number of ―atoms‖ of that 

particular statistical field NA.  With definition in Eq. (134) 

the counting of numbers must begin with the number zero 

naturally since it corresponds to a single atom.  The number of 

atoms in the system is expressed as [122] 
 
 

 

  ESN

AS AEN N


   (135) 

 

where 
AS ES AE

(N , N N ),
  

respectively refer to the number of 

atoms in the system, number of elements in the system, and 

number of atoms in the element. The hierarchy of the resulting 

normalized coordinates is shown below [122] 
 

 

     .  . .
     

L _________________1 ______ 0  

    

                                          1L ___ 11  10  


                                                                       . . . (136) 

 
                                                                           

 The exact connections between spatial coordinates of 

hierarchies of statistical fields (Fig. 1) will involve the 

important concept of re-normalization [130,131]. 

Normalization in Eq. (136) is based on the concept of 

―dimensionless‖ or ―measureless‖ numbers [122] 

 

ESx x / N   
    (137) 

 

where the ―measure‖   is defined by Gauss’s error function 

as 

 

 

2
1 1

1

x

1 1
0

e dx / 2
 





       (138) 

 

In view of equations (137)-(138), the range ( 1 ,1 )
 

  of the 

outer coordinate x will correspond to the range 
1 1

( , )
 

   

of the inner coordinate 1x
  leading to the coordinate 

hierarchy schematically shown in Fig. 18.  

 

      

 +  1 1 +  1 0 +  1 1 +1

0 1    1 
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 = 
2 

 = 
2 

 
 

 

Fig. 18 Hierarchy of normalized coordinates associated 

with embedded statistical fields [122]. 

 

 As discussed above and in [123] one naturally considers 

the prime numbers p1 = 2, p2 = 3, p3 = 5, …, to be the 

―atoms‖ of the statistical field at scale  that may also be 

viewed as different atomic ―species‖.  However in view of 

equations (127) and (132) space quantization will be based on 

the inverse power of pj-adic numbers such that by Eq. (135) 

  

   ESj ESjN /2 N /21/2

ASj AEj j
N N p

 

  
 

 (139) 

 

that parallel to Eq. (132) is expressed as 

 
ESjN /2 1/2

j j m j
h / m h / m

p
p  

  
  

 (140) 

 

The reason for the choice of primes is that they represent 

indivisible ―atoms‖ of arithmetic out of which all natural 

numbers at any scale could be constructed.  The quantized 

wavelengths in Eq. (140) like Eq. (132) will correspond to 

quantized frequencies in Eq. (127), energies in Eq. (130), and 

speeds in Eq. (131) all involving pj-adic numbers 
jβ

p
that 

were employed in the construction of Adele space of 

noncommutative spectral geometry of Connes [126, 127, 

132].   

 The wavelength in Eq. (140) is next normalized with 

respect to the most probable cluster size 

 
N/2 1/2

mj j m j
h / m h / m

p
p

 

  
  

 (141) 

 

and since at thermodynamic equilibrium the entire 

distribution function (Fig. 17) is stochastically stationary at 
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all particle speeds 
j j j

v cons tan t
  

     equations (102), 

(103), (140), and (141) give 

 

j

mp j j

j j jm

1/2N /2

pj1

j 1/2N/2

mpj

v
x

v

p

p

  

  





 






     (142) 

 

With pj-adic numbers 
jβ

p
incorporated into the quantized 

wavelengths in Eq. (142) one arrives at dimensionless speeds 

in Eq. (131) and hence the Normalized Maxwell-Boltzmann 

(NMB) distribution in Eq. (119) for the prime ―specie‖ pj. 

 To summarize, first the normalized spacing between 

energy levels were related to the normalized spacing between 

oscillator frequencies in Eq. (124). Next, oscillator 

frequencies were taken as pj-adic numbers in Eq. (127) and 

the spacing between frequencies and zeros of energy levels in 

Eq. (128) were related to the spacing between ―stationary 

states‖ or zeros of particle velocity in Eq. (129), that were in 

turn related to the zeros of Riemann zeta function by Eq. 

(126) through Euler’s golden key in Eq. (125).  The model 

therefore provides a physical explanation of 

Montgomery-Odlyzko [126, 127]
 

law as well as 

Hilbert-Polya [126]
 
conjecture that spacing between the 

zeros of Riemann zeta function are related to spacing between 

eigenvalues of Hermitiam matrices.  The close agreement 

shown in Fig. 17 is because at equilibrium by Eq. (124) the 

distribution of normalized particle energy in Eq. (130) and 

speed in Eq. (131) are related by Maxwell-Boltzmann 

distribution in Eq. (119).   Moreover, because particle energy 

vanishes at the stationary states given by Eq. (133b) the 

energy spectrum will correspond to absorption spectrum in 

accordance with the prediction of noncommutative spectral 

geometry of Connes [132].  For complete resolution of 

Riemann Hypothesis one must now identify the appropriate 

normalization method to relate the zeros of Riemann zeta 

function by Eq. (125) hence Eq. (126) to the zeros of particle 

velocity in Eq. (129) hence Eq. (133b) that is simpler than the 

Riemann-Siegel formula [126].  

 Since each partial density in Eq. (119) corresponds to 

single ―prime‖ specie, one next constructs a mixture density 

by summing all the partial probability densities of all ―prime‖ 

species  

 
 

j

j

ρ ρ   (143) 

 

to arrive at 
 

 

2[(2/ ) ]2 x
8 /  x( ) (2 / )  eρ [ ] 


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where  
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v
x
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



   (145) 

 

because the mean energy of all species are identical at 

thermodynamic equilibrium
2 2

mj mij im v m v kT
 
  . The 

grand ensemble of NMB pj-adic statistical fields in Eq. (144) 

will have a corresponding GUE that could be identified as 

Connes [124-127, 132] Adele space Aat a particular 

scale.  Therefore, the normalized Adele space Aat any 

particular scale is constructed from superposition of 

infinite NMB distribution functions like Fig. 17 

corresponding to atomic specie pj and cluster sizes in the 

form of pj-adic numbers.   

 With prime numbers pj as atomic species the spacing 

between wavelengths of number clusters or Hilbert 

condensations [126] are related to the spacing between 

particle speeds by Eq. (142) that are in turn related to the 

normalized spacing between energy levels by Eq. (124).  The 

connection to quantum mechanics is further evidenced by 

direct derivation of Maxwell-Boltzmann speed distribution in 

Eq. (111) from Planck distribution in Eq. (80) discussed in 

Sec. 7.  Also, because the GUE associated with Eq. (144) is 

based on pj-adic type numbers, the normalized spacing 

between its eigenvalues should be related to the normalized 

spacing between the zeros of Riemann zeta function 

according to the theory of noncommutative geometry of 

Connes [132]. Although the exact connection between 

noncommutative geometry and Riemann hypothesis is yet to 

be understood according to Connes [127] 

 

 “The process of verification can be very painful: one’s 

terribly afraid of being wrong…it involves the most 

anxiety, for one never knows if one’s intuition is right- a 

bit as in dreams, where intuition very often proves 

mistaken” 

 

the model suggested above may help in the clarification of the 

physical foundation of such a mathematical theory. 

 The scale invariance of the model, possible 

electromagnetic nature of all matter discussed in Sec. VI, as 

well as the connection between analytic number theory and 

the kinetic theory of ideal gas (Fig. 17) all appear to confirm 

the perceptions of Sommerfeld [133] 
 

"Our spectral series, dominated as they are by integral 

quantum numbers, correspond, in a sense, to the ancient 

triad of the lyre, from which the Pythagoreans 2500 years 

ago inferred the harmony of the natural phenomena; and 

our quanta remind us of the role which the Pythagorean 

doctrine seems to have ascribed to the integers, not merely 

as attributes, but as the real essence of physical 

phenomena." 

 
as well as those of Weyl [134]. 

 Since the physical space or Casimir [73] 
 
vacuum itself is 

identified as a fluid and described by a statistical field [34, 

83], it will have a spectrum of energy levels given by 

Schrödinger equation (206) that in view of Heisenberg [135, 

34, 83] matrix mechanics will be described by 

noncommutative spectral geometry of Connes [132].  Hence, 

the above results in harmony with the perceptions of 

Pythagoras and Plato suggest that pure ―numbers‖ maybe the 

basis of all that is physically ―real‖ [34, 136]. 
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IX. INVARIANT TRANSPORT COEFFICIENTS AND 

HIERARCHIES OF ABSOLUTE ZERO TEMPERATURES AND 

VACUA 

 Following Maxwell [36, 39] the scale invariant definition 

of kinematic viscosity 
β β β

/   may be expressed as 

 

β β β β 1 β 1

1 1
u v

3 3
λ

 
 

 (146) 

 

At the scale of  = e corresponding to equilibrium eddy 

dynamics EED (Fig. 1) equation (146) gives Boussinesq eddy 

diffusivity [137] 
 

e e e c c

1 1
u v

3 3
λ 

 (147) 

 

On the other hand, the kinematic viscosity at LCD scale 

involves the ―atomic‖ length 
c
or the molecular mean free 

path m that appears in Maxwell’s formula for kinematic 

viscosity [30] 

  

c c c m m

1 1
u λ v

3 3
     (148) 

 
associated with viscous dissipation in fluid mechanics.  It is 

important to note that the model predicts a finite kinematic 

viscosity for the scale  = s i.e. electrodynamics scale when 

energy can be dissipated to Casimir [73] vacuum at the lower 

chromodynamics scale 

 

k k k
s s s k k

k

λ v m1 1 1
u λ v

3 3(2π) 3(2π) m
    

 

 

                                       k

k k

h1

3(2π) m 3m
   (149) 

 
in exact agreement with the result of de Broglie [3] provided 

that the equality of particle mean free path and 

wavelength
k k

λλ  holds. Therefore, Ohmic dissipation could 

occur by transfer of energy from electrons into photon gas 

constituting Casimir [73]
 
vacuum.  In view of Fig. 1, it is 

natural to expect that energy of photon field at 

chromodynamics scale could be dissipated into a 

sub-photonic tachyon field that constitutes a new vacuum 

called vacuum-vacuum. According to the model 

electromagnetic waves propagate as viscous flow due to 

―viscosity‖ of radiation [41] or gravitational viscosity [138]
 

in harmony with the well-known concept of ―tired light‖. 

 In view of the definition of Boltzmann constant in 

equations (30b), (33) and (36), Kelvin absolute temperature is 

related to the most probable wavelength of oscillations by Eq. 

(90) and hence becomes a length scale. Therefore, Kelvin 

absolute temperature approaches zero through an infinite 

hierarchy of limits as suggested by Eq. (136) and Fig. 18.  In 

other words, one arrives at a hierarchy of ―absolute zero‖ 

temperatures defined as 

                           . . .  

                                 
β β β 1 β 1

T 0 T 1
 

    

       β-1 β-1 β-2 β-2
T 0 T 1             

        .  .  .   (150) 

 

 As discussed in Sec.VI, physical space could be identified 

as a tachyonic fluid [139]   that is the stochastic ether of Dirac 

[111] or "hidden thermostat" of de Broglie [3].  The 

importance of Aristotle’s ether to the theory of electrons was 

emphasized by Lorentz [140-141]
 
 

 
"I cannot but regard the ether, which is the seat of an 

electromagnetic field with its energy and its vibrations, 

as endowed with certain degree of substantiality, 

however different it may be from all ordinary matter" 

 
Also, in Sec. 6 photons were suggested to be composed of a 

large number of much smaller particles [139], like neutrinos 

that themselves are composed of large numbers of tachyons 

[107]. Therefore, following Casimir [73] and in harmony with 

Eq. (150) one expects a hierarchy of vacua   

 

β β-1
(vacuum-vacuum) ( acuum)v

    (151) 

 

as one attempts to resolve the granular structure of physical 

space and time at ever smaller scales described by the 

coordinates in Eq. (136). 

 The hierarchies of coordinates in Eq. (136) and vacua in 

Eq. (151) will have an impact on the important recurrence 

theory of Poincaré [44] and its implication to Boltzmann’s 

expression of thermodynamic entropy 

 

k lnS W  (152) 

 
In particular, the conflict between Poincaré recurrence theory 

and thermodynamic irreversibility emphasized by Zermelo 

[142] should be reexamined. As was emphasized by 

Boltzmann [143]
 
Poincaré [44] recurrence theory cannot be 

applied to thermodynamic systems because such systems 

cannot be truly isolated. That is, the unattainable nature of 

absolute vacuum-vacuum in Eq. (151) makes isolation of all 

physical systems impossible. The same limitation will apply 

to the entire universe when our universe is considered to be 

just one universe as an open system among others according 

to Everett’s many universe theory described by DeWitt [144]. 

The hierarchy of vacua in Eq. (151) is in harmony with the 

inflationary theories of cosmology [145-148] and the finite 

pressure of Casimir [73]
 
vacuum given by the modified van 

der Waals law of corresponding states [149]
 

 

r

r c2

c r r

T1 9 3
p Z

Z v 1/ 3 8v 8
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

 
 
 

    (153) 

 
 

where Zc is the critical compressibility factor.  

 Clearly, the nature of thermodynamic irreversibility will 

be impacted by both the hierarchical definition of time 

discussed in [34] as well as the cascade of embedded 
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statistical fields shown in Fig. 1.  For example, let us consider 

at EED scale a hydrodynamic system composed of 
2

10  fluid 

elements each of which composed of 
2

10  clusters of eddies.  

Next, let eddy, defined as the most probable size ensemble of 

molecular-clusters at ECD scale, be composed of 
2

10  mean 

molecular-clusters each containing 
8

10  molecules.  Let us 

next assume that only the cluster i of the eddy j of the fluid 

element f contains molecules of type B and that all other 

clusters of all other eddies are composed of molecules of type 

A.  The system is then allowed to fully mix at the molecular 

level. The thermodynamic reversibility will now require that 
8

10  type B molecules to first become unmixed at 

hydrodynamic scale by leaving (
2

10 -1) fluid elements and 

collecting in the fluid element f.  Next, all 
8

10  type B 

molecules must leave (
2

10 -1) eddies and collect in the eddy 

ejf.  Finally 
8

10  type B molecules must leave (
2

10 -1) clusters 

of eddy j and collect in the cluster cijf.  Clearly the probability 

of such preferential motions to lead to immixing against all 

possible random motions will be exceedingly small.  When 

the above hierarchy of mixing process is extended to yet 

smaller scales of molecular-dynamics, electrodynamics, and 

chromo-dynamics, the probability for reversibility becomes 

almost zero bordering impossibility in harmony with 

perceptions of Boltzmann [38]. The broader implications of 

the hierarchy of coordinate limits in Eq. (136) to the internal 

set theory of Nelson [150] and the recurrence theory of 

Poincaré [44] require further future investigations. 

X. INVARIANT FORMS OF THE FIRST LAW OF 

THERMODYNAMICS AND DEFINITION OF ENTROPY 

 In this section, Boltzmann statistical mechanics for ideal 

monatomic gas discussed in Sec. 7 will be applied to arrive at 

invariant forms of Boltzmann equation for entropy and the 

first law of thermodynamics.  The results also suggest a new 

perspective of the nature of entropy by relating it to more 

fundamental microscopic parameters of the thermodynamic 

system.  

 As stated in Sec. 3, when the three velocities 
m m m

( , , )Vu v  

in Eq. (3) are all random the system is composed of an 

ensemble of molecular clusters and single molecules under 

equilibrium state and one obtains from Eq. (3)  

 
2 2 2

x x x
m m m

  
      u v V

 
 

                                t tke pe tke
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  (154) 

 

as the sum of the internal translational kinetic and ―external‖ 

potential energies since
x x

2 0
 

 v V .  One next allows the 

monatomic particles to also possess both rotational 
rke
̂

 
and 

vibrational (pulsational) 
vke
̂ kinetic energy [31] and invokes 

Boltzmann‘s principle of equipartition of energy such that 

 

 

2

t x tke rke vke pe
ˆ ˆ ˆ ˆm

 
         v

   (155) 

 

With the results in Eqs. (154)-(155) the total energy of the 

particle could be expressed as [32] 

 

ˆ ˆ ˆh pu v   
   (156) 

where ĥ
  

is the enthalpy, v̂

is the volume and  

 

tke rke ke tke
ˆ ˆ ˆ ˆˆ 3u      

 
  (157) 

is the internal energy per molecule such that by Eq. (156) 

 

pH U V
   
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   (158) 

 

where N ˆV v
  
 , N ĥH

  
  , and N ˆU u

  


 
are 

respectively volume, enthalpy, and internal energy.  

 In accordance with the perceptions of Helmholtz, one may 

view Eq. (158) as the first law of thermodynamics  

 

Q U W
  
 

 

 
  (159) 

when reversible heat and work are defined as  [31]  

 

TQ H S    
 

 
  (160) 

and  

 

pW V
  


   (161) 

and S  is the entropy.  For an ideal gas equations (159) and 

(160) lead to 

 

T p HQ S U =V
         

  

                       
3N kT N kT 4N kT+ =

     
    (162) 

 When photons are considered as monatomic ideal gas 

integration of Eq. (81) and maximization of Eq. (58) are 

known to lead to internal energy and entropy [92-94]  

  
4 5 4 3

3 3

8 kT) 32 k T

) )

(
     ,     

15(hc 45(hc

V V
U S

 

 

 
         (163) 

 

Since Poisson coefficient of photon is 
p v

ˆ ˆc c 4 / 3/   the 

result in Eq. (162) leads to  

 

T
4

3
S U

  
        (164) 

 

in accordance with Eq. (163).  Also, since for an ideal gas 

equations (157) and (159) give 

 

tke
3 3p 3N kTU V

   
   

   (165) 

 

by Eq. (162) entropy per photon 
k

ˆ / Ns S becomes [32] 
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k
ˆ 4ks 

 

  (166) 

   

as compared to  

 

k
ˆ 3.6ks 

 

 (167) 

 

based on the classical model [94].    

 The discrepancy between equations (166) and (167) is due 

to the classical formulation [94] for the number of photons in 

a given volumeV

.  It is possible to express the total potential 

energy from the integration of mean energy and number 

density of oscillators over for spherical number density space 

as 

 
  

  

N N

0 0
dN kTdN NkT       

 

         
  

  

2
N N

2 x
x h /kT0 0

h (8 N )
n (4 N )dN dN

e 1





 
   

   

 

                        
 

 

2
N

h /kT0

h (8 N / 3)
dN

e 1

 


    (168) 

 
One next considers the relation between the number of 

quantized oscillators in a cube of size L = Lx = Ly = Lz as  

 

x
N L / L / c


   

   (169) 

and the  isotropy condition 

 
2 2 2 2 2

x y z x
N N N N 3N

   
   

   (170) 

 

Because de Broglie [2]
  

―matter wave packets‖ or 

Heisenberg-Kramers [72]
  

virtual oscillators are now 

considered to represent actual particles of ideal gas according 

to Eq. (169) one requires integral numbers N of the full 

wavelength , as opposed to the conventional half 

wavelength 2 to fit within the cavity of length L.  

Substituting from equations (169)-(170) into Eq. (168) gives 

 

 

 

2 2

h /kT0

8 h (L / c)
NkT (L / c)d

3 e 1





  
 

 = 

  
 

 

3 3

3 h /kT0

8 hL
d

3c e 1





 



 

 

4 3

3 x0

kT)

)

8 ( x
dx

3 (hc e 1





V

 

                        

5 4

3

kT)

)

8 (

45 (hc




V
 (171) 

 
 Hence, the number of photons in volume V is given by Eq. 

(171) as 

 
35

kT8
N

45 hc

V


 
 
   (172) 

 

as compared to the classical result [94]  

 
3

kT
N 8 2.404

hc
V  
 
 
   (173) 

 

Also, from equations (172) and (162) one obtains the internal 

energy [32] 

 

3NkTU   (174) 

 

that leads to the expected specific heat at constant volume 

 
o

vc 3R
 (175) 

 

that is in accordance with Eq. (106) 

 The result in Eq. (174) only approximately agrees with the 

classical expression for the internal energy [93-94] 

 
4

NkT

30 (3)
U





 (176) 

 

that leads to 

 
 

2.701NkTU   (177) 

 

According to Eq. (171) the expression in Eq. (176) should 

involve zeta function of 4 rather than 3 such that 

 
4

NkT
3NkT

30 (4)
U


 


 (178) 

 

that agrees with Eq. (174) and by Eq. (162) leads to the ideal 

gas law [32] 

 
p NkTV 

 (179) 

 

instead of the classical result [93] 

 

p 0.900NkTV 
 (180) 

 

for equilibrium radiation.  

 Concerning the results in equations (177) and (180) it 

was stated by Yourgrau et al. [93]  

 

“The reader will not fail to recognize the close 

resemblance between relations and their counterparts 

pertaining to a classical ideal gas” 

 

With the modified results in equations (174) and (179) the 

correspondence between photon gas and classical ideal gas 

becomes exact thus closing the gap between radiation and gas 

theory discussed by Darrigol [151] and Stachel [152]. The 

important relation between radiation pressure and internal 

energy [92-94]  
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ˆ ˆp / 3 / 3 / 3U V u v u  
 (181) 

 

is exactly satisfied by equations (174) and (179) and closely 

but only approximately satisfied by equations (173) and 

(180). 

 Since Kelvin absolute temperature scale is identified as a 

length scale by Eq. (90), thermodynamic temperature relates 

to spatial and hence temporal ―measures‖ of the physical 

space [34] or Casimir [73]
 
vacuum. Therefore, the hierarchy 

of limiting zero temperatures in Eq. (150) will be related to 

hierarchy of ―measures‖ that are employed to renormalize 

[130, 131] ―numbers‖ by equations (137)-(138) and arrive at 

―dimensionless‖ coordinates (Fig. 18) as discussed earlier 

[122].  For an ideal monatomic gas one has the 
o

p
c 4R and 

o

v
c 3R such that Eq. (162) reduces to the identity 

 

4 3 1
  
 

 (182) 

 

Therefore, the mathematical relation (182) always holds for 

statistical fields of any scale (Fig. 1) as the thermodynamic 

temperature in Eq. (150) approaches the ―absolute zero‖ 

0T
 
 (

1 1
1T

 
 ) associated with coordinates of that 

particular scale in Eq. (136). 

 The result in Eq. (162) could be also obtained from the 

Gibbs equation  

 

j j

j

ˆT d p dNdS U dV
     

  

 (183) 

, Gibbs-Duhem equation 

 

j j

j

ˆdT dp N dS V         (184) 

and the equality of molar Gibbs free energy and chemical 

potential 
j j

ˆ ˆg    of j specie.  Addition of equations (183) and 

(184) leads to Euler equation 

 

j j

j

ˆd(T ) d d(p ) d NS U V g           

                           d d(p ) dU V G       (185) 

 

At the state of thermodynamic equilibrium dG = 0 equation 

(185) leads to Eq. (162) upon integration and application of 

Nernst-Planck third law of thermodynamics requiring 

βh 0  in the limit 
β

T 0  (Ref. 31). 

 Next, the invariant Boltzmann equation (152) for entropy 

is introduced as 

 

j j
k ln WS

 


   (186) 

Hence 

 

jβ j j

j j j

k ln W k ln WS
 

   
   (187) 

or 

β k ln WS 
   (188) 

 

Substituting in Eq. (186) from Eq. (60) and applying 

Stirling’s formula gives  

 

jN

j j j jk ln W k ln(g / N !)S 

      

            j j j j jk[N ln g N ln N N )         

                              j j jkN [ln(g / N ) 1]       (189) 

 

Also, substituting for Boltzmann distribution from Eq. (67) 

into Eq. (189) leads to  

 

j j j j
ˆkN [ / kT / kT 1]S

   
   

   (190) 

 

or 

 

j j j j j j
ˆT N N kT NS

     
       

           
j j j j j j

ˆp NU V g H G
      
     (191) 

 

Since Gibbs free energy is by definition  

 

j j j
TG H S

  
 

 (192) 

 one obtains from equations (191) and (185) 

 

1   (193) 

 

The results in equations (191) and (193) lead to Euler 

equation  

 

j j j j
T pS U V G

   
  

 (194) 

 

Summation of Eq. (194) over all energy levels results in 

 

T pS U V G
   
  

 (195) 

 

 Since the principle of equipartition of energy of 

Boltzmann by equations (155) and (162) leads to [32] 
 

j j j j j j jtke
T 4N k T 4NH Q S

     
    

 (196) 

 

in view of Eq. (30b) the definition of entropy is introduced as 

Boltzmann factor    
2 1/2 2 1/2

j j j j ˆ 4k 4m us          
 (197) 

 

that by Eq. (36) when multiplied by ―temperature‖ 
2 1/ 2

jj
T


  gives the ―atomic‖ enthalpy of the energy level j 

at equilibrium [32] 
 

j j j j j j j
ˆ ˆ ˆh 4k T 4kT T Ts s

       
   

 (198) 

At EKD scale  = k, the results in equations (196)-(198) are 

in accordance with Eq. (166) for photon gas.  Also, Eq. (198) 
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is parallel to the way the universal Boltzmann constant k 

times equilibrium temperature T relates to the most probable 

atomic internal energy 

 
2

mp mp
ˆ 3kT m uu

   
   

 (199) 

 

At thermodynamic equilibrium the temperatures of all energy 

levels are identical 
j

T T
 
  such that both Planck energy 

spectrum (Fig. 6) and Maxwell-Boltzmann speed spectrum 

(Fig. 16) correspond to an isothermal statistical field at a 

given thermodynamic temperature T.  Hence, in Eq. (199) 

the most probable atomic internal energy is given as the 

product of temperature and the universal Boltzmann constant 

k from Eq. (36).  In Eq. (198) the atomic enthalpy is given as 

product of temperature and atomic entropy defined in Eq. 

(197) for the energy level j. 

 The invariant first law of thermodynamics in Eq. (162) 

when expressed per molecule, per unit mole, and per unit 

mass appears as [32] 

 

ˆ ˆˆ ˆ ˆ ˆh u RT u kT u p v
       
       (200a) 

 

o
h u RT u R T u p v
       
       (200b) 

 

 

j j j j j j j
h u R T u R T u p v

       
       (200c) 

 

Thus one may express the universal gas constant per 

molecule, per mole, and per unit mass 
j

ˆ(R, R, R ) as 

 
o oR̂ R / N k   (201a) 

 

 

o oR = R = kN  (201b) 
 

 

o o o

j j j jR R R/ W / (N m ) k / m     (201c) 

XI. INVARIANT SCHRODINGER AND DIRAC WAVE 

EQUATIONS 

 The fact that the energy spectrum of equilibrium isotropic 

turbulence is given by Planck distribution (Figs. 6-10) is a 

strong evidence for quantum mechanical foundation of 

turbulence, [33, 34].  This is further supported by derivation 

of invariant Schrödinger equation from invariant Bernoulli 

equation in [34].  Hydrodynamic foundation of Schrödinger 

equation suggests that Bohr stationary states in quantum 

mechanics are connected to stationary sizes of clusters, de 

Broglie wave packets, in equilibrium fields.  When both 

vorticity and iso-spin defined in Eq. (13) are zero one has a 

Hamiltonian non-dissipative system and for non-reactive 

incompressible fluid the flow field will be potential with 





 v  and the continuity Eq. (5) and Cauchy equation 

of motion (7) lead to invariant Bernoulli equation [34]  

 
2

( ) [ ( )]
p cons tan t 0

t 2

   



   




 
   


 (202) 

 

The constant in Eq. (202) is set to zero since pressure acts as a 

potential that is only defined to within an additive constant.  

Comparison of Eq. (202) with Hamilton-Jacobi equation of 

classical mechanics [2] written in invariant form 

 
2

S ( S )
U 0

t 2m

 



 

 
  


 (203) 

 
resulted in the introduction of the invariant action [34, 153]   

 

S ( , t)


 x
 


 (204) 

 
The gradient of the action in Eq. (203) gives volumetric 

momentum density in harmony with the classical results [3] 

 
S ( , t)
  

   x v
  
    p

 (205) 

 

   In a recent study [34] it was shown that one can directly 

derive from the invariant Bernoulli equation (202) the 

invariant time-independent Schrödinger equation [34, 154, 

155]  

 
2

2

2

8 m
(E U ) 0

h



   


       (206) 

 
as well as the invariant time-dependent Schrödinger equation 

 
 

2

2

oi U 0
t 2m

 

   




     


 (207) 

 
that governs the dynamics of particles from cosmic to 

tachyonic [34, 155] scales (Fig. 1).  Since E T U
  
   (Ref. 

34) Schrödinger equation (206) gives the stationary states of 

particles that are trapped within de Broglie wave packet under 

the potential acting as Poincaré stress.  In view of the fact that 

pressure U p n U
   
   [34] plays the role of potential in 

Eq. (206), anticipation of an external pressure or stress as 

being the cause of particle stability by Poincaré [117-119] is 

a testimony to the true genius of this great mathematician, 

physicist, and philosopher. 

 One may now introduce a new paradigm of the physical 

foundation of quantum mechanics according to which Bohr 

[72] stationary states will correspond to the statistically 

stationary sizes of atoms, de Broglie atomic wave packets, 

which will be governed by Maxwell-Boltzmann distribution 

function in Eq. (111) as shown in Fig. 13. Different energy 

levels of quantum mechanics are identified as different size 

atoms (elements).  For example, in ESD field one views the 

transfer of a sub-particle (electron) from a small rapidly 

oscillating atom j to a large slowly oscillating atom i as 

transition from the high energy level j to the low energy level 

i, see Fig. 16, as schematically shown in Fig. 19. 
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atom-j

atom-i

subparticle

aj

ai

s j i

photon

kj i

 
 
 

Fig. 19 Transition of electron eij from atom-j to atom-i 

leading to emission of photon kij  [51]. 
 

Such a transition will be accompanied with emission of a 

―photon‖ that will carry away the excess energy [32, 34]  

 

ji j i j i
h( )

    
        

 (208) 

 

in harmony with Bohr [72] theory of atomic spectra.  

Therefore, the reason for the quantum nature of ―atomic‖ 

energy spectra in equilibrium isotropic electrodynamics field 

is that transitions can only occur between atoms with energy 

levels that must satisfy the criterion of stationarity imposed 

by Maxwell-Boltzmann distribution function, [34, 139].   

 The results in equations (80) and (111) as well as Figs. 12, 

16, and 19 suggest a generalized scale invariant description of 

transitions between energy levels of a statistical field at 

arbitrary scale  schematically shown in Fig. 20. 
 

 

               

j

i

ji
2 ji

element-j

element-i

atom-ji
subatom-ji

 
 

 

Fig. 20 Transition of “atom” aij from element-j to 

element-i leading to emission of sub-atomic particle sij. 
 

 

According to Fig. 20, transition from high energy level j to 

low energy level i of ―atomic‖ particle will lead to emission of 

a ―sub-particle‖ at  scale.  If such emissions are induced or 

stimulated rather than spontaneous then one obtains coherent 

tachyon rays, neutrino rays, photon rays (laser), sub-particles 

rays (electron rays), atomic rays, molecular rays, . . .  as 

discussed in Ref. 51. 

 For non-stationary relativistic fields, it was recently shown 

that by relating Schrödinger and Dirac wave functions as 

β β Dβ
( ) ( ),

j j
z x t     with 

 

2

β β-1 β-1 j
exp[( m w / ) ]i z 

 (209) 

 

,
Dβ

exp( exp( w / )t / ) 
m j jm

E i xi  


  , and the total 

energy defined as
2

β-1 β-1 β-1
2m wE  , one can derive from the 

equation of motion (24) the scale invariant relativistic wave 

equation [34] 

 

Dβ Dβ

j m β-1 β-1

β-1 j

Dβ
0

1
( ) ( m w )
w t

i
x


 

 
 

   (210) 

 
At the scale below Casimir [73]

 
vacuum (ETD in Fig. 1) when 

β-1 t k
w v u c  

 
is the speed of light, equation (210) 

becomes Dirac relativistic wave equation for electron [156, 

34] 

 

Dβ Dβ

j m Dβ

j

0
1

( ) ( mc)
t

i
c x

 


 
  

 
   (211) 

 
Therefore, the theory further described in [34] also provides a 

hydrodynamic foundation of Dirac relativistic wave equation 

for massive particles in the presence of spin. 

XII. CONCLUDING REMARKS 

 A scale invariant model of statistical mechanics and its 

implications to the physical foundations of thermodynamics 

and kinetic theory of ideal gas were examined.  Boltzmann’s 

combinatoric method was employed to derive invariant forms 

of Planck energy and Maxwell-Boltzmann speed distribution 

functions. The impact of Poincaré recurrence theory on the 

problem of irreversibility in thermodynamics was discussed. 

The coincidence of normalized spacing between zeros of 

Riemann zeta function and normalized Maxwell-Boltzmann 

distribution and its connection to Riemann hypothesis were 

examined. Finally, hydrodynamic foundations of the 

invariant forms of both Schrödinger as well as Dirac wave 

equations were described. The universal nature of turbulence 

across broad range of spatio-temporal scales is in harmony 

with occurrence of fractals in physical science emphasized by 

Takayasu [157]. 
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