

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 5 www.erpublication.org



Abstract— Methods of approximations are used to

approximate well-defined differentiable functions on a given

interval [a,b]. Further , some approximations can be used to

interpolate the values of functions whose statical values are

known at their corresponding points. This means that

approximation can be used as an interpolation or vice versa.

That is, some method can be used for an interpolation or

approximation such as Taylor's Series provided that the

function is differentiable at the given interval [a,b]. One

disadvantage of Taylor's Series is that it concentrates all the

information at a single point x0 and the evaluations of the nth

derivative is sometimes difficult .Other methods for

approximation that We shall consider are the Trigonometric

functions, Legendre's Polynomials and Cheybeshev function of

the first kinds. All these methods are the primary fundamental

methods that can generate more sophisticated methods.

Furthermore, Matlab Software Programs are written for each

one with the explanations in the Computational Remarks to

overcome some difficulties arise to approximate any particular

function such as exp(x) and .Chebyshev for

.

Index Terms— Chebyshev & Clenshaw–Curtis

I. TAYLOR SERIES EXPANSION

 Taylor series expansion is expressed with its error estimate

as

)(hxy  = 


n

k 0
!

(h)k

k

y xk

+

 1nR 

 (1)

where the error is given by

1nR 

=
 

 !1

)(
1





n

xy
n


)2(1nh

Example 1 Find a polynomial of degree three to

approximate the exponential e
x
 at x=0.5 . Compare the Actual

Error with Approximated Error.

Solution

 First , We expand the exponential e
x
 at x=0 using the

formula (1).

Now , let f(x)= e
x 

 f'(x)= e
x
 , f''(x) = e

x
 , f'''(x)= e

x
 , f''''= e

x

and f'(0)=

f''(0)= f'''(0)= f''''(0)=1

D.A.Gismalla, Present Address: Taif University , Riana College, Dept. of

Mathematics, Riana ,Sudai Arabia

Permanent Address : Gezira University , Faculty of Mathematics , P.O.Box

20, Wad Medani , SUDAN

Therefore, Eqn.(1) gives

xexf )( 


3

0k !

kx

k

which is a polynomial of degree three.

  xe 1+x+
6

3

2

2 xx
  21e


6

3)5.0(

2

2)5.0(
5.01 1.6458333333

  The Exact Error Ea=

abs(
21e -1.6458333333)

 = 2.8879373-03

 The Approximated Error by Eqn.(2) is

aE =

 

41
!4

)(

4

4

]1,0[

x
e

dx

d

Max





11326174.0
24


e

 Observe that the actual Error is less than the theoretical

Approximated Error that doesn't contradicts the theory of

approximations and the Power Series for the exponential e
x

about x=0 can expressed as

xe = 


0k !

kx

k
 (3)

and similarly the Power Series around the point x=0 for

sin(x) , cos(x) and tan(x) can be found by Eqn.(4) , Eqn.(5)

, and Eqn.(6), respectively .

sin(x) = 


0k)!12(

12kx(-1)k





k
 (4)

cos(x) = 


0k)!2(

2kx(-1)k

k
 (5)

tan(x) = 


1p

12p
x

)!2(

(2 1)-
2p

2
2p


pp

B (6)

where Bp are the Bernoulli numbers and the first Bernoulli

numbers are

 B1 = 1/6 B2 =1/30 B3 =1/42 B4 =1/30 B5=5/66

The three equations Eqn.(4) , Eqn.(5) , and Eqn.(6) lead

to what is known as approximation of trigonometric

functions as in the following Example 2.

Numerical Methods for Approximating Functions

Using MATLAB Program

D.A.Gismalla

Numerical Methods for Approximating Functions Using MATLAB Program

 6 www.erpublication.org

Example 2.

Approximate cos(0.5) using the first six terms from Eqn.(5)

 Solution

 Here ,We substitute , the angle 5.0 in radians in

Eqn.(5)

 cos(0.5) = 0.877582465 while the exact value is

0.8775825

II. MATLAB PROGRAM FOR TAYLOR'S METHOD

 Example 3 (a)

This Example 3(a) is meant as demonstration for Taylor

Series in MATLAB . The MATLAB command for a Taylor

polynomial is taylor(f,n+1,a), where f is the function, a is the

point around which the expansion is made, and n is the order

of thee polynomial. We can use the following code in Fig.(

1)to express the function sin(x)

Example 3(b) Find the Taylor polynomials of orders 1, 2, 3,

and 4

 near x = 1 for f(x) = ln x. as in Fig.(2)

Example 3(c). Use a Taylor polynomial around x = 0 to

approximate the ,with an accuracy of .0001

,Fig(3).First, we observe that for .

 >> syms x;

 >> f=inline('sin(x)') ;

 >>taylor(f(x),2,0)

 ans = x

 >>taylor(f(x),4,0)

 ans = x-1/6*xˆ3

 >>taylor(f(x),6,0)

 ans = x-1/6*xˆ3+1/120*xˆ5

 ans

=x-1/6*xˆ3+1/120*xˆ5-1/5040*xˆ7

Fig.(1) Command window to express

 the function sin(x) using Taylor series

 >> syms x

 >> f=inline('exp(x)');

 >> taylor(f(x),7,1)

 Fig.(3) Taylor polynomials of order 6

 near x = 1 for f(x) = exp(x)

 >> syms x

 >> f=inline('log(x)')

 f = Inline function: f(x) = log(x)

 >> taylor(f(x),2,1)

 ans = x-1

 >> taylor(f(x),3,1)

 ans = x-1-1/2*(x-1)ˆ2

 >> taylor(f(x),4,1)

 ans = x-1-1/2*(x-1)ˆ2+1/3*(x-1)ˆ3

 >> taylor(f(x),5,1)

 ans =x-1-1/2*(x-1)ˆ2+1/3*(x-1)ˆ3-1/4*(x-1)ˆ4

Fig.(2) Taylor polynomials of

 orders 1, 2, 3, and 4 near

 x = 1 for f(x) = ln x

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 7 www.erpublication.org

we have

Consequently, the Taylor expansion for is

+

If we take an n
th

 order approximation, the error is

 where c (a, b). Taking a = 0 and

 b = 1 this is less than

)!1(

3

)!1()!1()1,0(





 nn

e

n

e
SUP

x

c

Notice that we are using a crude bound on e, because if we are

trying to estimate it, we should not assume we know its value

with much accuracy. In order to insure that our error is less

than .0001, we need to find n such

% The taylor function with m_file :-taylor11.m

% command windows:- f(x)=exp(x) , n=5 ,xo=2?

% >>syms x;

% >>f=exp(x);

% >>n=5;

% >>xo=2;

% >> format short

% >> pn=taylor11(f,5,2)

function pn=taylor11(f,n,xo)

syms x;

y=f;

p(1)=feval(y,xo);

for j=1:n

 t(j)=(x-xo)^(j);

end

tt=[1 t]

for i=1:n

 g=inline(diff(y(x),i));

 p(i+1)=feval(g,xo)/factorial(i);

end

p

pptt=tt.*p

pn=sum(pptt);

end

disp('the taylor function approximately=');

Fig.(5) The file taylor11.m

Different from Taylor(f ,n+1,x0)

 % function maclorin with m_file :-

 % command windows:- f(x)=exp(x) ,n=8 ?

 % syms x;

 % f=inline('exp(x)');

 % n=8;

 % pn=maclor(f,n)

 function pn=maclor(f,n)

 syms x;

 y=f;

 for i=1:n

 g=inline(diff(y(x),i));

 pn(i)=feval(g,0)/factorial(i);

 end

 disp(' The Macularin series =');

 >> syms x;

 >> f=inline('exp(x)');

 >> n=8;

 >> pn=maclor(f,n)

The Macularin series =

 pn =

 1.0000 0.5000 0.1667 0.0417

 0.0083 0.0014 0.0002 0.0000

Fig.(4) shows Maclurain’s series

 for e
x
 at x0=0

Numerical Methods for Approximating Functions Using MATLAB Program

 8 www.erpublication.org

0001.0
)!1(

3


n

Trying different values for n in MATLAB, we eventually find

>>3/factorial(8)

 ans = 7.4405e-05

which implies that the maximum error for a 7th order

polynomial with a = 0 and b = 1 is .000074405. That is, we

can approximate e with

 +

which we can compare with the correct value to five decimal

places

e = 2.71828.

The error is 2.71828 − 2.71825 = .00003. △

Further, We know when x0=0 then Taylor’s series expansion

is called Maclurain’s series. Fig.(4) shows Maclurain’s series

for e
x
 at x0=0

Furthermore, instead of the Built-in function for Taylor(f

,n+1,x0),We wrote another function in the file taylor11.m as

can be seen in the Fig.(5)

III. ORTHOGONAL POLYNOMIALS APPROXIMATION

The set of linearly independent polynomials

njx
j

)1(0)(








are called Orthogonal Polynomials with respect to the

weight function w(x) on the i

nterval [a , b] whenever the following condition holds.

That is whenever 
b

a
xw)()(x

j
)(x

k
 dx

= jk=













kjif

kjif

1

0
 (7)

where  jk is called the kronecker delta.

Now any function f(x) that

is integrable with respect to the weight function w(x) on the

interval [a , b] can be approximated with these Orthogonal

Polynomials . Expand f(x) as

)8()(
0

)(x
n

j
jj

axf 


 

Hence , from Eqn.(7) the coefficients
j

a j=0(1) n can be

determined using the orthogonality process by multiplying

Eqn.(8) with the weight function w(x) and the polynomials

)(x
k

 k=0(1) n to get

 
b

a
xw)(

k
a)(xf)(x

k
 dx

k=0(1)n (9)

 There are many orthogonal polynomials that can be

found depending on the weight

function w(x) by the Gram-Schmidt Process in [1]

,page(380) . Some of these polynomials

 function, Legendre's and Chebyshev

 polynomials

IV. TRIGONOMETRIC POLYNOMIALS

Approximation

 The set of orthogonal trigonometric polynomials with

respect to the weight

function w(x)=1 on the interval [-π , π] can found to be




2

1
)(

0
x

nkeachforkxx
k

,...,2,1)cos(
1

)(




and

1)1(1)sin(
1

)( nkeachforkxxkn


 Now if

We combine these orthogonal trigonometric polynomials in

the

Set   12
0

)(



nk

k
x

k
 , then many function can be

approximated if they are represented by an equation Eqn.(10)

similar to

>> syms x;

>> f=inline('exp(x)');

>> n=5;

>> xo=2;

>> format short

>> pn=taylor11(f,n,2)

tt = [1, x-2, (x-2)^2, (x-2)^3,

 (x-2)^4, (x-2)^5]

p = 7.3891 7.3891 3.6945

 1.2315 0.3079 0.0616

pptt =[4159668786720471/562949953421312,

4159668786720471/562949953421312*x-

4159668786720471/281474976710656,

4159668786720471/1125899906842624*(x-2)^2,

……..]

the taylor function approximately=

pn =-4159668786720471/562949953421312+

4159668786720471/562949953421312*x+

4159668786720471/1125899906842624*(x-2)^2+…….

.]

Fig.(5) The Command Window for The file taylor11.m

Different from Taylor(f ,n+1,x0)

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 9 www.erpublication.org

Eqn.(8) as)10()(
12

0
)(x

n

j
jj

axf 



 

 which implies that

 





k
a)(xf)(x

k
 dx k=0,1,2,…,2n-1

(11)

Eqn.(10) is called the trigonometric polynomial for

approximation

Example 4(a) Find the trigonometric polynomial to

approximate

  xforxxf )(

 Solution







2

1
0

a x dx = 


 02

2
 x dx =





2

22

]1)1[(
2

2
 k

k
 for each k=0,1,2,…,n











1
nk

a x dxkx)sin(

 = 0 for each k=0,1,2,,n-1











1
nk

a x dxkx)sin(

 = 0 for each k=0,1,2,…,n-1

Example 4(b) Find the trigonometric polynomial to

approximate

 cos()

 Solution The solution in Fig.(6)

4.1 Matlab Program for Trigonometric functions

% This the Method for approximation by the

 % trigonometric function in the file

 % trigonometric_polynomail_app.m

 % command windows:-

 % >> syms x;

 % >> f=cos(x);

 % >> n=6;

 % >> xo=-pi;

 % >> fnx=trigonometric_polynomail_app(f,n,xo)

function fnx=trigonometric_polynomail_app(f,n,xo)

syms x;

q11=(1/sqrt(pi));

q0=1/sqrt(2*pi);

for i=1:n

 q1(i)=q11*cos(i*x);

end

for j=1:n-1

 q2(j)=q11*sin(j*x);

end

 d=[q0 q1 q2]

 d1=f*d

 k=inline(f*d)

 a=int(k(x),x,-pi,pi)

 fn=a.*d

 g=inline(fn);

 g1=feval(g,xo);

 fnx=sum(g1);

>> syms x;

>> f=cos(x);

>> n=6;

>> xo=-pi;

>> fnx=trigonometric_polynomail_app(f,n,xo);

fnx = -1.0000

Fig.(6) approximation by the trigonometric functions using

file trigonometric

_polynomail_app.m

Numerical Methods for Approximating Functions Using MATLAB Program

 10 www.erpublication.org

V. LEGENDRE POLYNOMIALS

 Legendre functions are solutions to Legendre's

differential equation:

These solutions for n = 0, 1, 2, ... (with the normalization

Pn(1) = 1) form a polynomial sequence of orthogonal

polynomials called the Legendre polynomials. Each

Legendre polynomial Pn(x) is an nth-degree polynomial. It

may be expressed using Rodrigues' formula

That these polynomials satisfy the Legendre differential

equation (12) follows by differentiating (n+1) times both

sides of the identity

 (14)

and employing the general Leibniz rule for repeated

differentiation.

The Pn can also be defined as the coefficients in a Taylor

series expansion:

In physics, this generating function is the basis for multiple

expansions

A. 5.1 Recursive Definition

 Expanding the Taylor series in equation (15) for the

first two terms gives

for the first two Legendre Polynomials. To obtain further

terms without resorting to direct expansion of the Taylor

series, equation (15) is differentiated with respect to t on both

sides and rearranged to obtain

Replacing the quotient of the square root with its definition in

(15), and equating the coefficients of powers of t in the

resulting expansion gives Bonnet’s recursion formula

This relation, along with the first two polynomials P0 and P1,

allows the Legendre Polynomials to be generated recursively

and can found using the program in Fig.(7)

5.2 Matlab Program for Legendre polynomials

The first few Legendre polynomials are:

 n

0

1

2

3

4

5

6

% The Legendre polynomials are a basis for the set of

polynomials,

% on the interval [-1,1].and the first few Legendre

polynomials are:

% P0(x) = 1

% P1(x) = x

% P2(x) = (3*x^2 - 1) / 2

% P3(x) = (5*x^3 - 3*x) / 2

% P4(x) = (35*x^4 - 30*x^2 + 3) / 8

% command windows:-

% >> c=rlegendre(0)

% >> c=rlegendre(2)

% >> c=rlegendre(4)

function c= rlegendre(k)

if k==0

 c = 1;

elseif k==1

 c = [1 0];

else

 c = ((2*k-1)*[rlegendre(k-1),0] -

(k-1)*[0,0,rlegendre(k-2)])/k;

end

>> c=rlegendre(0)

 c = 1

 >> c=rlegendre(2)

 c = 1.5000 0 -0.5000

 >> c=rlegendre(4)

 c = 4.3750 0 -3.7500 0

0.3750

Fig.(7) Legendre Polynomials

to be generated recursively

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 11 www.erpublication.org

The graphs of these polynomials (up to n = 5) are shown

below:

A. 5.3 Orthogonality

 An important property of the Legendre polynomials is that

they are orthogonal with respect to the L
2
 inner product on the

interval −1 ≤ x ≤ 1

(where δmn denotes the Kronecker delta, equal to 1 if m = n

and to 0 otherwise).

Example 5 Prove the Legendre polynomials are

orthogonal with respect to the weight function w(x)=1 on the

interval −1 ≤ x ≤ 1. That is

(where δmn denotes the Kronecker delta, equal to 1 if m = n

and to 0 otherwise).

Solution First , We have to prove that

)18(1)1(0,0)(
1

1



nrfordxxnPrx

Apart from a constant factor , this can be written

  
0

1

1

)1
2

(
1

1

)12(
1

1











 











n

x
n

dx

n
dr

xdxnx
n

dx

n
drx

dxnx
n

dx

n
drrx)12(

1

11

1

1 









 =….=(-1)
r
.

r! 0)12(
1

1









dxnx
rndx

rnd

 If r=n , We obtain

dxnxndxnxnn)21(
1

0
!2)12(

1

1
!)1(





= 


dnn)(12cos
2

0
!2 



=
3)......12)(12(

2).......22(2
!2





nn

nn
n

=
)!12(

3)!(122





n

nn

Now , if n≠m We have 0)(
1

1
)(


dxxnPxmP

,since if m<n , then)(xmP is a polynomial of degree less

than n and the integral vanishes in view of the relation for

Eqn.(18) above . Finally, We also compute

 dxxnP 2)]([
1

1





= .
3)!(22

)!2(

nn

n

)!12(

3)!(122




n
nn

)19(
12

2




n

Since powers below x
n

give no contributions to the integral.

Hence We have the following relations

)20(1)1(0,0)(
1

1



nrfordxxnPrx

)21(,
)!12(

2)!(12
)(

1

1
nrfor

n

nn
dxxnPnx 








dxxnP 2)]([
1

1




= .

3)!(22

)!2(

nn

n

)19(
12

2

)!12(

3)!(122








nn

nn

Numerical Methods for Approximating Functions Using MATLAB Program

 12 www.erpublication.org

 In fact, an alternative derivation of the Legendre

polynomials is by carrying out the Gram-Schmidt process

on the polynomials {1, x, x
2
, ...} with respect to the L

2
 inner

product on the interval −1 ≤ x ≤ 1 .

Example 6(a)

 Expand x
n
 as a series of Legendre polynomials on the

interval −1 ≤ x ≤ 1 .

Solution

Now Eqn.(8) gives

)22()(
0

x
n

j
j

p
j

anx 




and Eqn.(9) when using Eqn.(19) gives

 







1

12

12
k

a
k

nx)(x

k
p dx k=0(1)n

(23)

 to simplify the problem we take n=4 this implies







1

12

1
a 0

4x)(0 xp dx

 





1

12

1

4x dx =
2

1

5

2
=

5

1







1

12

3
a1

4x)(1 xp dx







1

12

3

4x .x. dx = 0

1

1
6

6

2

3






x







1

12

5
2

a
4x)(

2
xp dx







1

12

5

4x
2

123 x
dx

 =

35

20

35

8

2

5

1

1

5

5

7

73

2

5

2







xx







1

12

7
3

a
4x)(

3
xp dx 






1

12

7

4x

2

335 xx 
dx =0

and Eqn.(6.19) gives

35

8

315

16

2

9

!9

2)!4(52
4 2

9
a

)24()(0
35

7
)(2

35

20
)(4

35

84 xpxpxpx 

 Put x=1 then x
4
 is approximated to 1 ,exactly,

because Legendre polynomials are orthonormal , i.e.

0)1(
n

p

 Alternatively instead of the derivation for ak' s x
4
 can

be expressed exactly when using ,recursively , the definition

of Legendre polynomials as

)24()](07)(220)(48[

35

14 xpxpxpx 

 Eqn.(24) shows that any powers of x can be similarly

expressed as a series of Legendre polynomials exactly .

5.4 Matlab Program to Express a function

 f(x) as a series of Legendre polynomials

Example 6(b)

 Write a Matlab program to express
4x as a series of

Legendre polynomials exactly and evaluate it at x0=1. The

program in Fig.(8) is the file Legendre_polynomail_app.m

with the command window that shows the value of
4x at

x0=1 is equal to one.

Example 6(c)

 Expand e
x
 as a series of Legendre polynomials on the

interval −1 ≤ x ≤ 1 .

Solution

 Now Eqn.(8) gives

)25()(
0

x
n

j
j

p
j

axe 




and Eqn.(9) when using Eqn.(19) gives









1

12

12
ka

n

xe)(x
k

p dx k=0(1)n (26)

Since , the integral in Eqn.(26) is difficult to be computed

analytically and We can evaluated it using a Quadrature

Formulae such as Simpson's Rule . To express exp(x) as a

Legendre Series by applying the File

Legendre_polynomail_app.m in Fig.(8) , unfortunately the

program does not work because We really need a quadrature

formula instead of INT Built-in Matlab function .

VI. CHEBYSHEV POLYNOMIALS

Chebyshev polynomials, named after Pafnuty Chebyshev
[1]

are a sequence of orthogonal

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 13 www.erpublication.org

polynomials which are related to de Moivre's formula and

which can be defined recursively. One usually distinguishes

between Chebyshev polynomials of the first kind which are

denoted Tn and Chebyshev polynomials of the second kind

which are denoted Un. The letter T is used because of the

alternative transliterations of the name Chebyshev as

Tchebycheff (French) or Tschebyschow (German).

The Chebyshev polynomials Tn or Un are polynomials of

degree n and the sequence of Chebyshev polynomials of

either kind composes a polynomial sequence.

Chebyshev polynomials are important in approximation

theory because the roots of the Chebyshev polynomials of the

first kind, which are also called Chebyshev nodes, are used

as nodes in polynomial interpolation. The resulting

interpolation polynomial minimizes the problem of Runge's

phenomenon and provides an approximation that is close to

the polynomial of best approximation to a continuous

function under the maximum norm. This approximation leads

directly to the method of Clenshaw–Curtis quadrature. In

the study of differential equations they arise as the solution

to the Chebyshev differential equations

and

 for the polynomials of the first and second kind, respectively.

A. 6.1 Recurrence relation

 The Chebyshev polynomials of the first kind are defined

by the recurrence relation

 The conventional generating function for Tn is

 The exponential generating function is

 The generating function relevant for 2-dimensional

potential theory and multipole expansion is

 The Chebyshev polynomials of the second kind are

defined by the recurrence relation

 One example of a generating function for Un is

 6.2 Trigonometric definition

 The Chebyshev polynomials of the first kind can be

defined compactly in an orbit through the trigonometric

conjugac

 Where

 % This the Method for approximation by the

 % Lgendre polynomial in the file

 % Legendre_polynomail_app.m

 % command windows:-

 % >> syms x; % >> f=x^4; % >> n=4;

 % >> xo=1;

 % >> fnx=Legendre_polynomail_app(f,n,xo)

 function fnx=Legendre_polynomail_app(f,n,xo)

 syms x;

 for i=0:n

 C=rlegendre(i)

 k=(2*i+1)/2;

 p(i+1)=poly2sym(C)

 q(i+1)=k*poly2sym(C)

 end

 d=f*p

 d1=f*q

 k=inline(d1)

 a=int(k(x),x,-1,1)

 fn=a.*d

 g=inline(fn);

 g1=feval(g,xo);

 fnx=sum(g1);

 % The Legendre polyonomials are a basis for the

set of polynomials,

 % on the interval [-1,1].and the first few Legendre

polynomials are:

 % P0(x) = 1

 % P1(x) = x

 % P2(x) = (3*x^2 - 1) / 2

 % P3(x) = (5*x^3 - 3*x) / 2

 % P4(x) = (35*x^4 - 30*x^2 + 3) / 8

 % command windows:-

 % >> c=rlegendre(0)

 % >> c=rlegendre(2)

 function c= rlegendre(k)

 if k==0 c = 1;

 elseif k==1 c = [1 0];

 else

 c = ((2*k-1)*[rlegendre(k-1),0] -

(k-1)*[0,0,rlegendre(k-2)])/k;

 end

Fig.(8) File Legendre_polynomail_app.m

 with the command windows that shows

 the value of
4x at x0=1 is equal to one.

 >> syms x;

 >> f=x^4;

 >> n=4;

 >> xo=1;

 >>

fnx=Legendre_

polynomail_

app(f,n,xo)

 fnx = 1.0000

Numerical Methods for Approximating Functions Using MATLAB Program

 14 www.erpublication.org

 for n = 0, 1, 2, 3, ... which is a variant (equivalent

transpose) of Schröder's equation, viz. Tn(x) is functionally

conjugate to nx, codified in the nesting property below. The

polynomials of the second kind satisfy:

 Evaluating the first two Chebyshev polynomials:

 and

 one can straightforwardly determine that:

 and so forth.

 ((37)

The first few Chebyshev polynomials

 of the first kind are

A beautiful plot can be obtained by plotting Tn(x)

radially, increasing the radius for each value of n , and

filling in the areas between the curves (Trott 1999, pp. 10

and 84).

The Chebyshev polynomials of the first kind are defined

through the identity

(38)

The Chebyshev polynomials of the first kind can be obtained

from the generating functions

 and

for and (Beeler et al. 1972, Item 15). (A

closely related generating function is the basis for the

definition of Chebyshev polynomial of the second kind.)

A direct representation is given by

The polynomials can also be defined in terms of the sums

where is a binomial coefficient and is the floor

function, or the product

 Zeros occur when

for , 2, ..., . Extrema occur for

The Graphs of these polynomials

(up to n=5) are shown below

http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/FloorFunction.html
http://mathworld.wolfram.com/FloorFunction.html

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 15 www.erpublication.org

where k=0,…,n. At maximum, , and at minimum,

.

The Chebyshev polynomials are orthogonal polynomials with

respect to the weighting function

where is the Kronecker delta. Chebyshev polynomials

of the first kind satisfy the additional discrete identity

where xk for k=1,…., m are the m zeros of Tm(x) and a

Rodrigues representation

Example 8

 Prove that Chebyshev polynomials are orthogonal

polynomials with respect to the weighting

function and satisfies Eqn.(39)




 dnmdx

x

xnTxmT




  0
)cos()cos(

1

1 21

)()(

where nm is the Kronecker delta .

Solution Substitute x= cos() into Eqn.(39) to get




 dnmdx

x

xnTxmT




  0
)cos()cos(

1

1 21

)()(

where nm is the Kronecker delta .

Example 9 Express the successive powers of x in terms of

Chebyshev polynomials.

 Solution We find

1=T0

x=T1

x
2
=½(T0+T2)

x
3
=¼(3T1+T3)

x
4
=

8

1
(3T0+4T2+T4)

x
5
=

16

1
(10T1+5T3+T5)

x
6
=

32

1
(10T0+15T2+6T4+ T6)

x
7
=

64

1
(35T1+21T3+7T5+T7)

 and the general coefficient in the expansion

 nTnckx can be

proved to be







dnkdx

x

xnTkx
n

c 


 


0

)cos()(cos
21

1 21

)(2




















k

kn

k

2)(

12 (40)

where n=1,3,5,….,k if k is odd and n=0,2,4,….,k if k is even

1) Example 10

Consider the Chebyshev expansion of .

One can express

One can find the coefficients either through the

application of an inner product or by the discrete

orthogonality condition. For the inner product,

which gives

Alternatively, when you cannot evaluate the inner product of

the function you are trying to approximate, the discrete

orthogonality condition gives

where

ij
 is the Kronecker delta function and the are the

N Gauss–Lobatto zeros of

http://mathworld.wolfram.com/KroneckerDelta.html
http://en.wikipedia.org/wiki/Inner_product
http://en.wikipedia.org/wiki/Kronecker_delta

Numerical Methods for Approximating Functions Using MATLAB Program

 16 www.erpublication.org

This allows us to compute the coefficients very efficiently

through the discrete cosine transform

2) Example 11

 Write a Matlab program to generate the sequence of

Chebyshev polynomial. Express each ChebT as power of x

with its coefficients.

Solution is in Fig.(8(b)).

Fig.(9) Matlab file ChebySumSeries1.m with its Command

Window to evaluate

 ln[(1+0.5)/(1-0.5)].

Fig.(10) Matlab file ChebySumSeries2.m with its Command

Window to evaluate

 ln[(1+0.75)/(1-0.75)].

Fig.(11) Matlab file echebser3with its Command Window

to evaluate exp(x) and its three derivatives at x=0

 function [y0, y1, y2, y3] = echebser3 (x, coef, nc)

%**80

%% ECHEBSER3 evaluates a Chebyshev series and three derivative

% Parameters:

% Input, real X, the evaluation point. -1 <= X <= +1.

% Input, real COEF(NC), the Chebyshev series.

% Input, integer NC, the number of terms in the series. 0 < NC.

% Output, real Y0, the value of the Chebyshev series at X.

% Output, real Y1, the value of the 1st derivative of the

% Chebyshev series at X.

% Output, real Y2, the value of the 2nd derivative of the

% Chebyshev series at X.

% Output, real Y3, the value of the 3rd derivative of the

% Chebyshev series at X.

 b0 = coef(nc);

 b1 = 0.0;

 b2 = 0.0;

 c0 = coef(nc);

 c1 = 0.0;

 c2 = 0.0;

 d0 = coef(nc);

 d1 = 0.0;

 d2 = 0.0;

 e0 = coef(nc);

 e1 = 0.0;

 e2 = 0.0;

 x2 = 2.0 * x;

 for i = nc - 1 : -1 : 1

 b2 = b1;

 b1 = b0;

 b0 = coef(i) - b2 + x2 * b1;

 if (1 < i)

 c2 = c1;

 c1 = c0;

 c0 = b0 - c2 + x2 * c1;

 end

 if (2 < i)

 d2 = d1;

 d1 = d0;

 d0 = c0 - d2 + x2 * d1;

 end

 if (3 < i)

 e2 = e1;

 e1 = e0;

 e0 = d0 - e2 + x2 * e1; end

 end

 y0 = 0.5 * (b0 - b2);

 y1 = c0 - c2;

 y2 = (d0 - d2) * 4.0;

 y3 = (e0 - e2) * 24.0;

 return

 end

>> format long

>> nc = 18;

>> table5 = [...

 2.53213175550401667120, ...

 1.13031820798497005442, ...

 0.27149533953407656237, ...

 0.04433684984866380495, ...

 0.00547424044209373265, ...

 0.00054292631191394375, ...

 0.00004497732295429515, ...

 0.00000319843646240199, ...

 0.00000019921248066728, ...

 0.00000001103677172552, ...

 0.00000000055058960797, ...

 0.00000000002497956617, ...

 0.00000000000103915223, ...

 0.00000000000003991263, ...

 0.00000000000000142376, ...

 0.00000000000000004741, ...

 0.00000000000000000148, ...

 0.00000000000000000004];

>> [y0, y1, y2, y3] = echebser3 (x,table5,nc)

 y0 = 1.000000000000000

 y1 = 1

 y2 = 1

 y3 = 1

Fig.(11) The Matlab file ECHEBSER3.m

 with its Command Widow evaluates a

 Chebyshev series and three derivative

http://en.wikipedia.org/wiki/Discrete_cosine_transform

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015

 17 www.erpublication.org

x=chebfun('x');

format long

disp('Cheb coeffs of exp(x) :')

a=chebpoly(exp(x))' ; a=a(end:-1:1)

Fig.(12) Matlab fileChebySumSeries2.m

 with its Command Window

function [ChebyT,T]= ChebT(n)

% Coefficients T of the nth Chebyshev

% polynomial of the first kind.

% They are stored in the descending

% order of powers.

 t0 = 1;

 t1 = [1 0];

 if n == 0

 T = t0;

 elseif n == 1;

 T = t1;

 else

 for k=2:n

 T = [2*t1 0] - [0 0 t0];

 t0 = t1;

 t1 = T;

 end

 ChebyT=poly2sym(T);

 end

1)

>> [ChebyT,T]= ChebT(3)

 ChebyT = 4*x^3-3*x

 T = 4 0 -3 0

>> [ChebyT,T]= ChebT(4)

 ChebyT = 8*x^4-8*x^2+1

 T = 8 0 -8 0 1

Fig.(8(b)) Matlab file ChebT.m with its command window

 shows the Coefficients of Chebshev polynomial and

 its powers of x.

function [sum]=ChebySumSeries1(n,x)

% Direct Chebyshev Seris Summation for

 %ln[(1+x)/(1-x)] & nc is number of terms

%executed .The exact ln[(1+0.5)/(1-0.5)]

 % valule is 1.098612288668110

for j=1:n

 coef(j)=4/(2*j-1);

 end

 sum=coef(1)*x;

for j=2:n

 [ChebyT,T]= ChebT(2*j-1);

 sum=sum+polyval(T,x)*coef(j);

end

>> format long

>> syms x

>> x=0.5;

>> n=30;

>> [sum]=ChebySumSeries1(n,x)

 sum =1.098242634663975

Fig.(9) Matlab file

ChebySumSeries1.m with

its Command Window

Numerical Methods for Approximating Functions Using MATLAB Program

 18 www.erpublication.org

I. COMPUTATIONAL REMARKS

 Chebyshev Expansion for can been seen in [] & [] as

ln[(1+x)/(1-x)]=)(
121 12

4
x

k
T

k k 


 

 (41)

while Chebyshev Expansion for exp(x) is given by

If one compares between the two coefficients in Eqn.(41) and Eqn.(42) , he can observe that each coefficient in Eqn.(41)

followed by Chebyshev polynomial of odd degree and equals

,...23,1
12

4



 k

k
ak (43)

While the coefficients in Eqn.(42) can't be evaluated unless one uses a quadraure formula ((which is usually the general

case for all three methods discussed)). The coefficients in Eqn.(42) are evaluated up n=18 or so as in Table5 by a matlab

program uses CHEBFUN as in [5].

Numerical Methods for Approximating Functions Using MATLAB Program

 19 www.erpublication.org

7.1 Clenshaw’s algorithm. Let a polynomial p P be

given by a finite Chebyshev series (42) and let x [−1, 1] be

given. Show that p(x) can be evaluated by the following

process. Set un+1 = 0 and un = an and

uk = 2x uk+1 − uk+2 + ak, k = n − 1, n − 2, . . . , 0. (3.18)

Then p(x) = (a0 + u0 − u2).

The program in Fig.(11) evaluates exp(x) efficiently for

x with its three derivatives . However , when We

runs the same program to valuates for x=0.5 and

x=0.75 We can't evaluates correctly for any few decimals

places of accuracy . Alternatively , We run two different

programs ChebySumSeries1.m and ChebySumSeries2.m as

in Fig.(9) and Fig.(10) ,respectively. The accuracy evaluation

is correct to four decimals and we are surprise WHY they

don't compute to a very high decimal places as the Matlap

Program in Fig.(11). We conclude that Clenshaw’s algorithm

need to be adjusted to evaluate series of odd monomials and

perhaps for even ones. Second ,our two programs needs only

to investigate the evaluations of Chevbyshev Polynomial of

degree n for large n and whether it oscillates or the sum does.

 ACKNOWLEDGEMENT

 I would like to thank My Son , the Chemical Engineering

,Ahmed Dafalla for sending me the Matlab Software

MATLAB R2013a and My Daughter , the Medical doctor ,

Shemia Dafalla to setup it together . Second , Lambert

Academic Publishing , Germany for publishing , My book

Numerical Methods and Algorithms using Matlab

Programming Language[1], 2015.

REFERENCES

[1] Dafalla Awadalla Gismalla , Numerical Methods and Algorithms using

Matlab Programming Language , LAMBERT Academic Publishing

, https://www.lap-publishing.com/site/how-to-publish/14

[2] D. A. Gismalla , Chebyshev Approximation for COS (½ חX4) &SIN (½

 (X4ח

Proceedings of the International Conference on Computing, pp.37, ICC

2010, INDIA

[3] D. A. Gismalla, MATLAB programs for some Numerical Methods and

Algorithms, International Journal of Algorithms,

Computing and Mathematics, Vol. 5 Number 1, pp.58, Feb. 2012

[4] D.A.Gismalla , Summation Method for Some Special Series Exactly ,

International Journal of Mathematics,Science,Technology and

 Management, (ISSN:2319-8125) Vol.1 Issue2

[5] The Internet

 http://www.maths.ox.ac.uk/chebfun.

 http://www.math.technion.ac.il/hat/

 http://www.maths.ox.ac.uk/chebfun/ATAP

 D.A.Gismalla, B.Sc.H. Mathematics

,Khartoum University ,1976,Sudan. M.Sc.in Computing 1982

,Ph.D.in Numerical Analysis 1984 both Wales University,

U.Kindom.I Worked at Gezira Sudan,Philadfia Jordan,

Hadrmout Yamen and Taif &Tabouk Saudia Arabia

Universities. D.A.Gismalla in I.J.C.M., & I.J.E.T.R

&Member in N.Y.A.S

https://www.lap-publishing.com/site/how-to-publish/14
http://www.maths.ox.ac.uk/chebfun
http://www.math.technion.ac.il/hat/
http://www.maths.ox.ac.uk/chebfun/ATAP

