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Abstract— Methods of approximations are used to 

approximate well-defined differentiable functions on a given 

interval [a,b]. Further , some approximations can be used to 

interpolate the values of functions whose statical   values are 

known at their corresponding points. This means that 

approximation can be used as an interpolation or vice versa. 

That is, some method can be used for an interpolation or 

approximation such as Taylor's Series provided that the 

function is differentiable at the given interval [a,b]. One 

disadvantage of Taylor's Series is that it concentrates all the 

information at a single point x0 and the evaluations of the nth 

derivative is sometimes difficult .Other methods for 

approximation that We shall consider are the Trigonometric 

functions, Legendre's Polynomials and Cheybeshev function of 

the first kinds. All these methods are the primary fundamental 

methods that can generate more sophisticated methods. 

Furthermore, Matlab Software Programs are written for each 

one with the explanations in the Computational Remarks to 

overcome some difficulties arise to approximate any particular 

function such as exp(x) and .Chebyshev for  

. 

 

Index Terms— Chebyshev & Clenshaw–Curtis 

 

I. TAYLOR SERIES EXPANSION 

    Taylor series expansion is expressed with its error estimate 

as 
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where the error is given by  
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Example 1    Find a polynomial of degree three to 

approximate the exponential e
x
  at x=0.5 . Compare the Actual 

Error with Approximated   Error. 

Solution  

       First , We expand the exponential e
x
  at x=0 using the 

formula ( 1). 

Now , let f(x)= e
x  

 f'(x)= e
x 
 , f''(x) = e

x  
 , f'''(x)= e

x  
 , f''''= e

x  

and  f'(0)=
 
f''(0)= f'''(0)= f''''(0)=1 
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Therefore, Eqn.( 1) gives  
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which is a polynomial of degree three.  
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    The Exact Error  Ea= 

abs(
21e -1.6458333333) 

                                            = 2.8879373-03  

    The Approximated Error by Eqn.( 2) is 
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     Observe that the actual Error is less than the theoretical  

Approximated Error that doesn't contradicts the theory of 

approximations  and the Power Series for the exponential  e
x 
   

about x=0  can expressed as 

xe  = 
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k
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and similarly the Power   Series around the point x=0 for 

sin(x) , cos(x) and tan(x) can be found  by Eqn.( 4)  , Eqn.( 5)  

, and Eqn.( 6), respectively .   
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where Bp are the Bernoulli numbers  and the first Bernoulli 

numbers   are 

        B1  = 1/6     B2   =1/30    B3   =1/42   B4  =1/30      B5=5/66 

The three equations  Eqn.( 4)  , Eqn.( 5)  , and Eqn.( 6)   lead 

to what is known as approximation of trigonometric 

functions as in the following Example 2. 
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Example 2. 

Approximate  cos(0.5) using the first six terms from Eqn.( 5) 

 Solution  

    Here  ,We substitute , the angle 5.0  in radians in 

Eqn.( 5) 

        cos(0.5) = 0.877582465  while the exact value is 

0.8775825 

II. MATLAB PROGRAM FOR TAYLOR'S METHOD 

 Example  3 (a) 

This Example  3(a) is meant as demonstration for Taylor 

Series in MATLAB . The MATLAB command for a Taylor  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

polynomial is taylor(f,n+1,a), where f is the function, a is the 

point around which the expansion is made, and n is the order 

of thee polynomial. We can use the following code in Fig.( 

1)to express the function sin(x) 

Example  3(b) Find the Taylor polynomials of orders 1, 2, 3, 

and 4  

     near x = 1  for f(x) = ln x.  as in Fig.( 2) 

Example  3(c). Use a Taylor polynomial around x = 0 to 

approximate the ,with an accuracy of .0001  

,Fig(3).First, we observe that for  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     >>   syms x; 

     >> f=inline('sin(x)') ;     

     >>taylor(f(x),2,0) 

       ans = x 

      >>taylor(f(x),4,0) 

        ans = x-1/6*xˆ3 

       >>taylor(f(x),6,0) 

       ans =  x-1/6*xˆ3+1/120*xˆ5 

   

     ans 

=x-1/6*xˆ3+1/120*xˆ5-1/5040*xˆ7 

 
 

Fig.( 1) Command window to express 

    the function sin(x) using Taylor series 

 

   >> syms x  

   >> f=inline('exp(x)'); 

    >> taylor(f(x),7,1) 

 
 

   Fig.( 3) Taylor polynomials of order   6 

      near  x = 1 for f(x) = exp(x)  

 

    >>  syms x 

    >> f=inline('log(x)') 

        f = Inline function: f(x) = log(x) 

    >>  taylor(f(x),2,1) 

         ans = x-1 

      >> taylor(f(x),3,1) 

        ans = x-1-1/2*(x-1)ˆ2 

     >> taylor(f(x),4,1) 

       ans =  x-1-1/2*(x-1)ˆ2+1/3*(x-1)ˆ3 

     >>  taylor(f(x),5,1) 

       ans =x-1-1/2*(x-1)ˆ2+1/3*(x-1)ˆ3-1/4*(x-1)ˆ4 

 
 

Fig.( 2) Taylor polynomials of  

          orders 1, 2, 3, and 4  near  

                 x = 1 for f(x) = ln x  
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we have  

Consequently, the Taylor expansion for   is 

+  

If we take an n
th

 order approximation, the error is 

 

             where c (a, b). Taking a = 0 and 

 b = 1 this is less than  
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Notice that we are using a crude bound on e, because if we are 

trying to estimate it, we should not assume we know its value 

with much accuracy. In order to insure that our error is less 

than .0001, we need to find n such 

% The taylor function with m_file :-taylor11.m 

% command windows:- f(x)=exp(x)  , n=5 ,xo=2? 

% >>syms x; 

% >>f=exp(x); 

% >>n=5; 

% >>xo=2; 

% >> format short 

% >> pn=taylor11(f,5,2) 

function pn=taylor11(f,n,xo) 

syms x; 

y=f; 

p(1)=feval(y,xo); 

for j=1:n 

   t(j)=(x-xo)^(j); 

end 

tt=[1 t] 

for i=1:n 

    g=inline(diff(y(x),i)); 

    p(i+1)=feval(g,xo)/factorial(i);  

end 

p 

pptt=tt.*p 

pn=sum(pptt); 

end 

disp('the taylor function approximately='); 

Fig.( 5)  The file taylor11.m 

Different from Taylor(f ,n+1,x0) 

 % function maclorin with m_file :- 

 % command windows:-    f(x)=exp(x) ,n=8 ? 

 % syms x; 

 % f=inline('exp(x)'); 

 % n=8; 

 % pn=maclor(f,n) 

 

 function pn=maclor(f,n) 

 syms x; 

 y=f; 

 for i=1:n 

     g=inline(diff(y(x),i)); 

     pn(i)=feval(g,0)/factorial(i); 

 end 

 disp(' The Macularin  series ='); 

 >>  syms x; 

 >>  f=inline('exp(x)'); 

 >>  n=8; 

 >>  pn=maclor(f,n) 

The Macularin  series = 

 pn = 

    1.0000   0.5000   0.1667   0.0417  

    0.0083   0.0014   0.0002   0.0000 

Fig.( 4) shows Maclurain’s series  

                     for e
x
 at x0=0 
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Trying different values for n in MATLAB, we eventually find 

>>3/factorial(8) 

      ans =  7.4405e-05 

which implies that the maximum error for a 7th order 

polynomial with a = 0 and b = 1 is .000074405. That is, we 

can approximate e with    

      +  

which we can compare with the correct value to five decimal 

places 

e = 2.71828. 

The error is 2.71828 − 2.71825 = .00003. △ 

Further, We know when x0=0 then Taylor’s series expansion 

is called Maclurain’s series. Fig.( 4) shows Maclurain’s series 

for e
x
 at x0=0 

Furthermore, instead of the Built-in function for Taylor(f 

,n+1,x0 ),We wrote another function in the file taylor11.m as 

can be seen in the Fig.( 5) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. ORTHOGONAL POLYNOMIALS APPROXIMATION   

The set of linearly independent polynomials   

njx
j
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are called  Orthogonal Polynomials  with respect to the 

weight function w(x) on the i 

 

 

nterval [a , b]  whenever the following condition holds. 

That is whenever   
b

a
xw )(  )(x

j
  )(x

k
 dx  

= jk=













kjif

kjif

1

0
  ( 7) 

where    jk  is called the kronecker delta. 

Now any function f(x) that  

is integrable with respect  to the weight function w(x) on the 

interval [a , b] can be approximated with these  Orthogonal 

Polynomials  . Expand  f(x) as 

)8()(
0

)( x
n

j
jj

axf 


   

Hence , from Eqn.( 7) the coefficients 
j

a  j=0(1) n can be 

determined using the  orthogonality process by multiplying 

Eqn.( 8) with the weight function w(x) and  the polynomials  

)(x
k

   k=0(1)  n to get 

                     
b

a
xw )(

k
a       )(xf  )(x

k
 dx     

k=0(1)n    ( 9) 

       There are many orthogonal polynomials that can be 

found depending on the weight  

function w(x) by the Gram-Schmidt   Process in [1] 

,page(380) . Some of these polynomials  

 function, Legendre's and Chebyshev 

     polynomials 

 

IV. TRIGONOMETRIC POLYNOMIALS 

Approximation 

       The set of orthogonal trigonometric polynomials with 

respect to the weight  

function w(x)=1 on the interval [-π , π] can found to be               

                              


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1)1(1)sin(
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  Now if 

We combine these orthogonal trigonometric polynomials in 

the 

 

Set     12
0

)(



nk

k
x

k
    , then many function can be 

approximated if they are represented by an equation Eqn.(10) 

similar to    

>> syms x; 

>> f=inline('exp(x)'); 

>> n=5; 

>> xo=2; 

>> format short 

>> pn=taylor11(f,n,2) 

tt = [       1,     x-2, (x-2)^2, (x-2)^3, 

                 (x-2)^4,        (x-2)^5] 

p =   7.3891    7.3891    3.6945     

        1.2315    0.3079    0.0616 

pptt =[  4159668786720471/562949953421312,                                   

4159668786720471/562949953421312*x-  

4159668786720471/281474976710656,                           

4159668786720471/1125899906842624*(x-2)^2,  

……..]     

the taylor function approximately= 

  

pn =-4159668786720471/562949953421312+ 

4159668786720471/562949953421312*x+ 

4159668786720471/1125899906842624*(x-2)^2+…….

.]  

Fig.( 5) The Command Window for The file taylor11.m  

Different from Taylor(f ,n+1,x0) 
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Eqn.(8)     as    )10()(
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   which implies that    
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a       )(xf  )(x

k
 dx     k=0,1,2,…,2n-1    

(11) 

Eqn.(10) is  called the trigonometric polynomial for 

approximation  

 

Example 4(a)      Find the trigonometric polynomial to 

approximate     

  xforxxf )( 

         Solution  
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      = 0 for  each   k=0,1,2,,n-1 
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1
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a       x  dxkx)sin(  

  = 0  for  each    k=0,1,2,…,n-1 

  

Example  4(b)  Find the trigonometric polynomial to 

approximate 

                        cos(  )  

 

      Solution      The solution in Fig.( 6) 

 

4.1 Matlab Program for Trigonometric functions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

% This the Method for approximation by the 

 % trigonometric function in the file 

 % trigonometric_polynomail_app.m 

 % command windows:- 

 % >> syms x; 

 % >> f=cos(x); 

 % >> n=6; 

 % >> xo=-pi; 

 % >> fnx=trigonometric_polynomail_app(f,n,xo) 

 

function fnx=trigonometric_polynomail_app(f,n,xo) 

syms x; 

q11=(1/sqrt(pi)); 

q0=1/sqrt(2*pi); 

for i=1:n 

    q1(i)=q11*cos(i*x); 

end 

for j=1:n-1 

    q2(j)=q11*sin(j*x); 

end 

    d=[q0 q1 q2] 

    d1=f*d  

    k=inline(f*d) 

    a=int(k(x),x,-pi,pi) 

    fn=a.*d 

    g=inline(fn); 

    g1=feval(g,xo); 

    fnx=sum(g1); 

 

>> syms x; 

>> f=cos(x); 

>> n=6; 

>> xo=-pi; 

>> fnx=trigonometric_polynomail_app(f,n,xo); 

   

fnx =   -1.0000 

Fig.( 6) approximation by the  trigonometric functions  using  

file trigonometric 

_polynomail_app.m 
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V. LEGENDRE POLYNOMIALS 

            Legendre functions are solutions to Legendre's 

differential equation: 

                                        

These solutions for n = 0, 1, 2, ... (with the normalization 

Pn(1) = 1) form a polynomial sequence  of  orthogonal  

polynomials called the Legendre polynomials. Each 

Legendre polynomial Pn(x) is an nth-degree polynomial. It 

may be expressed using Rodrigues' formula 

 

That these polynomials satisfy the Legendre differential 

equation (12) follows by differentiating (n+1) times both 

sides of the identity 

    (14) 

and employing the general Leibniz rule for repeated 

differentiation.  

The Pn can also be defined as the coefficients in a Taylor 

series expansion:  

 

In physics, this generating function is the basis for multiple 

expansions 

A.  5.1 Recursive Definition 

          Expanding the Taylor series in equation (  15) for the 

first two terms gives 

 
for the first two Legendre Polynomials. To obtain further 

terms without resorting to direct expansion of the Taylor 

series, equation ( 15) is differentiated with respect to t on both 

sides and rearranged to obtain 

 

Replacing the quotient of the square root with its definition in 

(15), and equating the coefficients of powers of t in the 

resulting expansion gives Bonnet’s recursion formula 

   

This relation, along with the first two polynomials P0 and P1, 

allows the Legendre Polynomials to be generated recursively 

and can found using the program in Fig.(7) 

 

 

 

5.2  Matlab Program for Legendre polynomials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first few Legendre polynomials are: 

 

      n 

 

0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

 

 

 

% The Legendre polynomials are a basis for the set of 

polynomials, 

% on the interval [-1,1].and the first few Legendre 

polynomials are:  

% P0(x) = 1 

% P1(x) = x 

% P2(x) = ( 3*x^2 - 1 ) / 2 

% P3(x) = ( 5*x^3 - 3*x ) / 2 

% P4(x) = ( 35*x^4 - 30*x^2 + 3 ) / 8 

% command windows:- 

% >> c=rlegendre(0) 

% >> c=rlegendre(2) 

% >> c=rlegendre(4) 

 

function c= rlegendre(k) 

if k==0 

  c = 1; 

elseif k==1     

  c = [1 0]; 

else 

 

 

  c = ((2*k-1)*[rlegendre(k-1),0] - 

(k-1)*[0,0,rlegendre(k-2)])/k; 

end 

>> c=rlegendre(0) 

    c =  1 

 >> c=rlegendre(2) 

     c =   1.5000     0   -0.5000 

   >>  c=rlegendre(4) 

  c =   4.3750    0   -3.7500    0    

0.3750 

 

Fig.(7) Legendre Polynomials 

to be generated recursively 
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The graphs of these polynomials (up to n = 5) are shown  

below:  

 
A. 5.3   Orthogonality 

      An important property of the Legendre polynomials is that 

they are orthogonal with respect to the L
2
 inner product on the 

interval −1 ≤ x ≤ 1 

           

(where δmn denotes the Kronecker delta, equal to 1 if m = n 

and to 0 otherwise).  

 

Example   5    Prove the Legendre polynomials  are 

orthogonal with respect to  the weight function w(x)=1  on the 

interval −1 ≤ x ≤ 1. That is 

  

 

(where δmn denotes the Kronecker delta, equal to 1 if m = n 

and to 0 otherwise). 

Solution First , We have to prove that  

)18(1)1(0,0)(
1

1



nrfordxxnPrx  

Apart from a constant factor , this can be written 

  
0

1

1

)1
2

(
1

1

)12(
1

1











 











n

x
n

dx

n
dr

xdxnx
n

dx

n
drx  

dxnx
n

dx

n
drrx )12(

1

11

1

1 







  

                                   =….=(-1)
r 
. 

r! 0)12(
1

1









dxnx
rndx

rnd
 

      If r=n , We obtain  
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Now , if n≠m We have  0)(
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,since if m<n , then )(xmP  is a polynomial of degree less 

than n and the integral  vanishes in view of the relation  for 

Eqn.( 18)   above . Finally, We also compute 
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Since powers below x
n 

give no contributions to the integral. 

Hence We have the following relations  
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        In fact, an alternative derivation of the Legendre 

polynomials is by carrying out the Gram-Schmidt process 

on the polynomials {1, x, x
2
, ...} with respect to the L

2
 inner 

product on the interval −1 ≤ x ≤ 1 . 

 

Example 6(a)    

    Expand x
n
 as a series of Legendre polynomials on the 

interval −1 ≤ x ≤ 1 . 

Solution 

Now Eqn.(8)  gives        

)22()(
0

x
n

j
j

p
j

anx 


  

and Eqn.(9) when using Eqn.(19)  gives  

         







1

12

12
k

a      
k

 
nx  )(x

k
p dx     k=0(1)n    

(23) 

  to simplify the problem we take n=4  this implies 







1

12

1
a 0       

4x  )(0 xp dx  

            





1

12

1
  

4x  dx  =
2

1

5

2
=

5

1
 







1

12

3
a1       

4x  )(1 xp dx  

 

       







1

12

3
  

4x  .x. dx  = 0

1

1
6

6

2

3






x
 







1

12

5
2

a      
4x  )(

2
xp dx  

 

      







1

12

5
  

4x   
2

123 x
dx 

                         =

35

20

35

8

2

5

1

1

5

5

7

73

2

5

2







xx

  

 







1

12

7
3

a      
4x  )(

3
xp dx  






1

12

7
  

4x   

2

335 xx 
dx  =0 

and Eqn.(6.19) gives    

35

8

315

16

2

9

!9

2)!4(52
4 2

9
a  

)24()(0
35

7
)(2

35

20
)(4

35

84 xpxpxpx        

            Put x=1  then x
4
 is approximated to  1 ,exactly, 

because Legendre polynomials are orthonormal  , i.e.   

0)1( 
n

p  

         Alternatively instead of the derivation for ak' s   x
4
  can 

be expressed  exactly when  using ,recursively , the definition 

of Legendre polynomials  as  

                 

)24()](07)(220)(48[

35

14 xpxpxpx            

     Eqn.(24) shows that any powers of x can be similarly 

expressed as a series of  Legendre polynomials exactly . 

 

 

5.4   Matlab Program to Express a function  

        f(x) as a series of Legendre polynomials 

Example 6(b)  

    

  Write a Matlab program to express 
4x   as a series of  

Legendre polynomials exactly and evaluate it at x0=1. The 

program in Fig.(8) is the file Legendre_polynomail_app.m 

with the command window that shows the value of 
4x at 

x0=1 is equal to one. 

Example 6(c)   

    Expand e
x
 as a series of Legendre polynomials on the 

interval −1 ≤ x ≤ 1 . 

Solution 

  Now Eqn.(8)  gives         

)25()(
0

x
n

j
j

p
j

axe 


  

and Eqn.( 9) when using Eqn.( 19)  gives  









1

12

12
ka  

n
 

xe  )(x
k

p dx     k=0(1)n    (26) 

 

Since , the integral in Eqn.(26) is difficult to be computed 

analytically and We can evaluated it using a Quadrature 

Formulae  such as Simpson's Rule . To express exp(x) as a 

Legendre Series by applying the File 

Legendre_polynomail_app.m  in Fig.(8) , unfortunately the 

program does not work because We really need a quadrature 

formula  instead of  INT Built-in Matlab function . 

VI. CHEBYSHEV POLYNOMIALS 

Chebyshev polynomials, named after Pafnuty Chebyshev
[1]

 

are a sequence of  orthogonal 
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polynomials which are related to de Moivre's formula and 

which can be defined recursively. One usually distinguishes 

between Chebyshev polynomials of the first kind which are 

denoted Tn and Chebyshev polynomials of the second kind 

which are denoted Un. The letter T is used because of the 

alternative transliterations of the name Chebyshev as 

Tchebycheff (French) or Tschebyschow (German). 

The Chebyshev polynomials Tn or Un are polynomials of 

degree n and the sequence of Chebyshev polynomials of 

either kind composes a polynomial sequence. 

Chebyshev polynomials are important in approximation 

theory because the roots of the Chebyshev polynomials of the 

first kind, which are also called Chebyshev nodes, are used 

as nodes in polynomial interpolation. The resulting 

interpolation polynomial minimizes the problem of Runge's 

phenomenon and provides an approximation that is close to 

the polynomial of best approximation to a continuous 

function under the maximum norm. This approximation leads 

directly to the method of Clenshaw–Curtis quadrature. In 

the study of differential equations they arise as the solution 

to the Chebyshev differential equations 

                 

 
and                           

    

 

 for the polynomials of the first and second kind, respectively.  

A.    6.1 Recurrence relation   

  The Chebyshev polynomials of the first kind are defined 

by the recurrence relation 

 

 
                      

 
 

          The conventional generating function for Tn is 

 

 
 

                  The exponential generating function is 

      

 

 

 

             The generating function relevant for 2-dimensional 

potential theory and multipole expansion is                    

         

 
 

  The Chebyshev polynomials of the second kind are 

defined by   the recurrence relation 

 

 
                      

                           

           One example of a generating function for Un is 

 
   

 

 

 6.2 Trigonometric definition 

       The Chebyshev polynomials of the first kind can be 

defined compactly in an orbit   through the trigonometric 

conjugac          

 

 
             Where   

   % This the Method for approximation by the 

    % Lgendre polynomial in the file 

    % Legendre_polynomail_app.m 

    % command windows:- 

    % >> syms x;    % >> f=x^4;   % >> n=4; 

    % >> xo=1; 

    % >> fnx=Legendre_polynomail_app(f,n,xo) 

    function fnx=Legendre_polynomail_app(f,n,xo) 

    syms x; 

    for i=0:n 

         C=rlegendre(i) 

         k=(2*i+1)/2; 

         p(i+1)=poly2sym(C) 

         q(i+1)=k*poly2sym(C) 

     end 

     d=f*p 

      d1=f*q 

      k=inline(d1) 

      a=int(k(x),x,-1,1) 

      fn=a.*d 

     g=inline(fn); 

     g1=feval(g,xo); 

      fnx=sum(g1); 

    % The Legendre polyonomials are a basis for the 

set of polynomials, 

    % on the interval [-1,1].and the first few Legendre 

polynomials are:  

    % P0(x) = 1 

    % P1(x) = x 

    % P2(x) = ( 3*x^2 - 1 ) / 2 

    % P3(x) = ( 5*x^3 - 3*x ) / 2 

    % P4(x) = ( 35*x^4 - 30*x^2 + 3 ) / 8 

     %  command windows:- 

     %  >> c=rlegendre(0) 

     %  >> c=rlegendre(2) 

     function c= rlegendre(k) 

     if k==0    c = 1; 

     elseif k==1   c = [1 0]; 

      else 

      c = ((2*k-1)*[rlegendre(k-1),0] - 

(k-1)*[0,0,rlegendre(k-2)])/k; 

      end 

 

Fig.(8)  File Legendre_polynomail_app.m    

       with the command windows that shows       

        the value of 
4x at x0=1 is equal to one. 

 

 >> syms x; 

  >> f=x^4; 

  >> n=4; 

  >> xo=1; 

  >> 

fnx=Legendre_ 

polynomail_ 

app(f,n,xo) 

    fnx = 1.0000 
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        for n = 0, 1, 2, 3, ... which is a variant (equivalent 

transpose) of Schröder's equation,    viz. Tn(x) is functionally 

conjugate to nx, codified in the nesting property below. The 

polynomials of the second kind satisfy: 

 
        Evaluating the first two Chebyshev polynomials: 

 

 
          and 

                 

         one can straightforwardly determine that: 

 
  

 
     

      and so forth.     

 (        (37) 

The first few Chebyshev polynomials  

 of the first kind are 

   

   

   

   

    

   
 

  
           

 

 
A beautiful plot can be obtained by plotting Tn(x) 

radially, increasing the radius for each value of n , and 

filling in the areas between the curves (Trott 1999, pp. 10 

and 84).  

The Chebyshev polynomials of the first kind are defined 

through the identity  

 
(38) 

The Chebyshev polynomials of the first kind can be obtained 

from the generating functions  

                                           

                                 and 

 
 

for and (Beeler et al. 1972, Item 15). (A 

closely related generating function is the basis for the 

definition of Chebyshev polynomial of the second kind.)  

A direct representation is given by 

  

 

The polynomials can also be defined in terms of the sums  

 

 
 

      

 

where is a binomial coefficient and  is the floor 

function, or the  product 

 
              Zeros occur when 

 

for , 2, ..., . Extrema occur for 

The Graphs of these polynomials  

(up to n=5) are shown below 

http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/GeneratingFunction.html
http://mathworld.wolfram.com/ChebyshevPolynomialoftheSecondKind.html
http://mathworld.wolfram.com/BinomialCoefficient.html
http://mathworld.wolfram.com/FloorFunction.html
http://mathworld.wolfram.com/FloorFunction.html
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where k=0,…,n. At maximum, , and at minimum, 

. 

The Chebyshev polynomials are orthogonal polynomials with 

respect to the weighting function  

 

where is the Kronecker delta. Chebyshev polynomials 

of the first kind satisfy the additional discrete identity  

 

where xk for k=1,…., m  are the m  zeros of Tm(x) and a  

Rodrigues representation  

                        
 

 

Example  8 

    Prove that Chebyshev polynomials are orthogonal 

polynomials with respect  to  the weighting 

function  and satisfies Eqn.( 39) 




 dnmdx

x

xnTxmT




  0
)cos()cos(

1

1 21

)()(

 

     

where nm is the Kronecker delta . 

Solution   Substitute x= cos( )  into Eqn.( 39)  to get 

 




 dnmdx

x

xnTxmT




  0
)cos()cos(

1

1 21

)()(

 

     

where nm is the Kronecker delta . 

 

Example  9      Express the successive powers of x in terms of   

Chebyshev polynomials. 

   Solution  We find 

1=T0 

x=T1 

x
2
=½(T0+T2) 

x
3
=¼(3T1+T3) 

x
4
=

8

1
(3T0+4T2+T4) 

x
5
=

16

1
(10T1+5T3+T5)  

x
6
=

32

1
(10T0+15T2+6T4+ T6) 

x
7
=

64

1
(35T1+21T3+7T5+T7) 

 and  the general coefficient in the expansion 

 nTnckx can be     

proved  to be  

       







dnkdx

x

xnTkx
n

c 


 


0

)cos()(cos
21

1 21

)(2
 




















k

kn

k

2)(

12     ( 40) 

where n=1,3,5,….,k if k is odd and   n=0,2,4,….,k if k is even 

1) Example  10 

Consider the Chebyshev expansion  of  .  

One can express 

 
One can find the coefficients either through the 

application of an inner product or by the discrete 

orthogonality condition. For the inner product, 

 
 

which gives 

 
Alternatively, when you cannot evaluate the inner product of 

the function you are trying to approximate, the discrete 

orthogonality condition gives 

 
where 

ij
 is the Kronecker delta function and the   are the 

N Gauss–Lobatto zeros of  

http://mathworld.wolfram.com/KroneckerDelta.html
http://en.wikipedia.org/wiki/Inner_product
http://en.wikipedia.org/wiki/Kronecker_delta
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This allows us to compute the coefficients very efficiently 

through the discrete cosine transform 

 
2) Example 11 

   Write a Matlab program to generate the sequence of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chebyshev polynomial. Express each ChebT as power of x  

with its coefficients.   

Solution is in Fig.(8(b)). 

Fig.(9) Matlab file ChebySumSeries1.m  with its Command 

Window to evaluate 

                          ln[(1+0.5)/(1-0.5)]. 

Fig.(10) Matlab file ChebySumSeries2.m with its  Command 

Window to evaluate 

                    ln[(1+0.75)/(1-0.75)]. 

Fig.(11) Matlab file echebser3with its  Command Window 

to evaluate exp(x)  and its three derivatives at x=0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  function [ y0, y1, y2, y3 ] = echebser3 ( x, coef, nc ) 

  

%**************************************************80 

%% ECHEBSER3 evaluates a Chebyshev series and three derivative 

%  Parameters: 

%    Input, real X, the evaluation point.  -1 <= X <= +1. 

%    Input, real COEF(NC), the Chebyshev series. 

%    Input, integer NC, the number of terms in the series.  0 < NC. 

%    Output, real Y0, the value of the Chebyshev series at X. 

%    Output, real Y1, the value of the 1st derivative of the 

%    Chebyshev series at X. 

%    Output, real Y2, the value of the 2nd derivative of the 

%    Chebyshev series at X. 

%    Output, real Y3, the value of the 3rd derivative of the 

%    Chebyshev series at X. 

  b0 = coef(nc); 

  b1 = 0.0; 

  b2 = 0.0; 

  c0 = coef(nc); 

  c1 = 0.0; 

  c2 = 0.0; 

  d0 = coef(nc); 

  d1 = 0.0; 

  d2 = 0.0; 

  e0 = coef(nc); 

  e1 = 0.0; 

  e2 = 0.0; 

 

  x2 = 2.0 * x; 

  for i = nc - 1 : -1 : 1 

    b2 = b1; 

    b1 = b0; 

    b0 = coef(i) - b2 + x2 * b1; 

    if ( 1 < i ) 

      c2 = c1; 

      c1 = c0; 

      c0 = b0 - c2 + x2 * c1; 

    end 

    if ( 2 < i ) 

      d2 = d1; 

      d1 = d0; 

      d0 = c0 - d2 + x2 * d1; 

    end 

    if ( 3 < i ) 

      e2 = e1; 

      e1 = e0; 

      e0 = d0 - e2 + x2 * e1; end      

  end 

  y0 = 0.5 * ( b0 - b2 ); 

  y1 = c0 - c2; 

  y2 = ( d0 - d2 ) * 4.0; 

  y3 = ( e0 - e2 ) * 24.0;      

  return    

  end 
  
 

  

  

>> format long 

>> nc = 18; 

>>  table5 = [ ... 

    2.53213175550401667120, ... 

    1.13031820798497005442, ... 

    0.27149533953407656237, ... 

    0.04433684984866380495, ... 

    0.00547424044209373265, ... 

    0.00054292631191394375, ... 

    0.00004497732295429515, ... 

    0.00000319843646240199, ... 

    0.00000019921248066728, ... 

    0.00000001103677172552, ... 

    0.00000000055058960797, ... 

    0.00000000002497956617, ... 

    0.00000000000103915223, ... 

    0.00000000000003991263, ... 

    0.00000000000000142376, ... 

    0.00000000000000004741, ... 

    0.00000000000000000148, ... 

    0.00000000000000000004 ];  

>>  [ y0, y1, y2, y3 ] = echebser3 ( x,table5,nc) 

        y0 =  1.000000000000000 

        y1 = 1 

        y2 =  1 

         y3 = 1 

Fig.(11) The Matlab  file  ECHEBSER3.m    

   with its Command Widow evaluates a   

    Chebyshev series and three derivative 

http://en.wikipedia.org/wiki/Discrete_cosine_transform


                                                                                

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-3, Issue-5, May 2015 

 

                                                                                                   17                                                                 www.erpublication.org 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x=chebfun('x'); 

format long 

disp('Cheb coeffs of exp(x) :') 

a=chebpoly(exp(x))'  ; a=a(end:-1:1) 

 

Fig.(12) Matlab fileChebySumSeries2.m   

     with  its Command Window 

function [ ChebyT,T ]= ChebT(n) 

% Coefficients T of the nth Chebyshev 

%  polynomial of the first kind. 

% They are stored in the descending  

% order of powers. 

    t0 = 1; 

    t1 = [1 0]; 

    if n == 0 

       T = t0; 

   elseif n == 1; 

       T = t1; 

  else 

  for k=2:n 

     T = [2*t1 0] - [0 0 t0]; 

      t0 = t1; 

      t1 = T; 

   end 

       ChebyT=poly2sym(T); 

   end 

1)  

 

>> [ ChebyT,T ]= ChebT(3) 

  

  ChebyT =    4*x^3-3*x 

   T =   4     0    -3     0 

 

>> [ ChebyT,T ]= ChebT(4) 

 

  ChebyT =   8*x^4-8*x^2+1 

      T =    8     0    -8     0     1 

 

Fig.(8(b)) Matlab file ChebT.m with its command window 

              shows  the  Coefficients of Chebshev polynomial and  

                                          its powers of x. 

 

function [sum]=ChebySumSeries1(n,x) 

%  Direct Chebyshev Seris Summation for   

 %ln[(1+x)/(1-x)] &  nc is number of terms  

%executed .The exact ln[(1+0.5)/(1-0.5)]  

 % valule is 1.098612288668110 

for j=1:n 

     coef(j)=4/(2*j-1); 

  end 

 sum=coef(1)*x; 

for j=2:n 

      [ChebyT,T ]= ChebT(2*j-1); 

      sum=sum+polyval(T,x)*coef(j); 

end  

 

>> format long 

>> syms x 

>> x=0.5; 

>> n=30; 

>> [sum]=ChebySumSeries1(n,x) 

  sum =1.098242634663975 

Fig.(9) Matlab file  

ChebySumSeries1.m with 

its Command Window 
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I. COMPUTATIONAL REMARKS 

        Chebyshev Expansion for     can been seen in [  ] & [  ] as  

ln[(1+x)/(1-x)]= )(
121 12

4
x

k
T

k k 


 
          

                                                      ( 41) 

while  Chebyshev Expansion for    exp(x) is given by  

 
If one compares between the two coefficients in  Eqn.(41) and Eqn.(42) , he can observe that each  coefficient in Eqn.(41) 

followed by Chebyshev polynomial  of odd degree and  equals  

,...23,1
12

4



 k

k
ak        (43) 

While the coefficients in Eqn.(42) can't be evaluated unless one uses a quadraure formula (( which  is usually the general 

case for all three methods discussed )). The coefficients in Eqn.(42) are evaluated up n=18 or so as in Table5 by a matlab 

program uses CHEBFUN as in [5].  
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7.1 Clenshaw’s algorithm. Let a polynomial p  P  be 

given by a finite Chebyshev series (42) and let x  [−1, 1] be 

given. Show that p(x) can be evaluated by the following 

process.  Set  un+1 = 0   and   un = an   and 

uk = 2x uk+1 − uk+2 + ak,  k = n − 1, n − 2, . . . , 0. (3.18) 

Then          p(x) =   (a0 + u0 − u2). 

The program in Fig.(11) evaluates exp(x) efficiently for 

x  with its three derivatives . However , when We 

runs the same program to valuates     for x=0.5 and 

x=0.75 We can't evaluates correctly for any few decimals 

places of accuracy . Alternatively , We run two different 

programs  ChebySumSeries1.m  and ChebySumSeries2.m  as 

in Fig.(9) and Fig.(10) ,respectively. The accuracy evaluation 

is correct to four decimals and we are surprise WHY they 

don't compute to a very high decimal places as the Matlap 

Program in Fig.(11). We conclude that Clenshaw’s algorithm 

need to be  adjusted to evaluate series of odd monomials and 

perhaps for even ones. Second ,our two  programs needs  only 

to investigate the evaluations of Chevbyshev Polynomial of 

degree n for large n and whether it oscillates or the sum does.    
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