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Abstract— Blind Signal Separation (BSS) techniques is a vast 

field with many successful algorithms and numerous 

applications. Most rely on the noise free model and carry part of 

noise in extracted signals  when Signal to Noise Ratio (SNR) is 

low. In view of this situation the solution is to de-noise the 

mixtures of additive white gaussian noise first and then use the 

BSS algorithms to separate the signals. This paper proposes 

Wavelet Transform de-noising approach to de-noise mixtures 

with strong noise. Solution based on Wavelet Transform proved 

more effective for noise removal of signals and their superiority 

against conventional filtering techniques. Simulation results 

show that the proposed approach has better de-noising 

performance and can remarkably enhance the separation 

performance of BSS algorithms, especially when the signal SNR 

is low. In this paper we evaluated the performance of three 

prominent BSS algorithms namely FastICA, JADETD and 

SOBI  on simulated noisy signals. 

 

Index Terms—Signal de-noising, Wavelet Transform, Noisy 

Blind Signal Separation, Signal Mean Square Error, Separation 

Performance 

I. INTRODUCTION 

 

Over the last two decades Blind Signal Separation (BSS) has 

become large topic of intense research in signal processing 

and machine learning community. The goal of BSS is to 

recover independent signals, given only sensor observations 

without knowing the source signals and their mixing process. 

A lot of BSS models such as instantaneous mixtures and 

convolutive mixtures are have been presented in some 

publications [1],[2],[3] and some prominent BSS algorithms 

with good performance , such as Fast ICA [3], JADE[13], 

SOBI[15] etc., have been widely applied to 

Telecommunications, Speech and Medical signal processing. 

 

However, the best performances of these methods are 

obtained for the ideal BSS model and their effectiveness is 

definitely decreased with observations corrupted by additive 

noise. In order to solve the problem of the BSS with additive 

noise, i.e. Noisy BSS, a good solution is to apply a powerful 

de-noising processing before separation. At present, the 

de-noising techniques mainly include Kalman filtering, 

particle filtering, wavelet de-noising, etc. As for the Noisy 

BSS, for lack of any a priori information about the observed 

mixtures, we cannot build the exact model. Wavelet 

de-noising based on Wavelet Transform (WT) is simple and 

wavelet thresholding has been the  dominant technique in the  
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area of non-parametric signal de-noising for many years. 

Thus, wavelet de-noising is suitable for Noisy BSS. 

The remainder of this paper is organized as follows : firstly we 

introduce the noisy BSS model. Then in section III we explain 

Discrete Wavelet Transform theory and its de-noising 

principle; while in section IV we analyze the de-noising 

approach and finally in section V we apply this de-noising 

approach to Noisy BSS and evaluate performances of BSS 

algorithms. A short summary concludes this paper in section 

VI. 

II. . NOISY BSS MODEL 

 

 A. Noisy BSS Model  

 

Consider a linear instantaneous problem of blind source 

separation, and the unknown source signals and the observed 

mixtures are related to:  

 

y(t)=As(t)+v(t)=x(t)+v(t) ........................................... ( 1) 

 

in which y(t)=[y1(t),y2(t)......ym(t)]
T
  is the vector of m 

observed mixtures , and  s(t)=[s1(t),s2(t0,...........sn(t)]
T
  is the 

vector of n source signals which are assumed to be mutually 

and statistically independent.  A is an unknown full rank m x n  

mixing matrix and v(t)  is an additive noise. This paper 

focuses on the signals with white Gaussian noise. We call this 

model Noisy BSS model (Fig. 1).  

 
 

Fig.1 Noisy Blind source separation model. 

 

In BSS model without noise , we can find a - matrix B so that 

By(t)=Ŝ (t)≈s(t), i.e BA≈I and this de-mixing matrix B is 

optimum . But in noisy BSS, even if we can get B, the result of 

de-mixing is By(t)=BAs(t)+Bv(t)≈s(t)+Bv(t) which is the 

mixture of the source signals and the noise. In practice we can 

not find the optimum de-mixing matrix B in noisy BSS at all. 

Therefore generally , noisy BSS is much more difficult to deal 

with than noise free  normal BSS. 

 

B. The Solution for Noisy BSS 

 

A solution of noisy BSS based on wavelet de-noising is 

proposed in [10]. The idea of this solution is to transform 

Noisy BSS into normal BSS without noise, i.e. to de-noise the 

observed mixtures before BSS, and then directly use normal 

BSS algorithms without noise (Fig. 2). 
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Fig 2.  Noisy BSS de-noising method 

 

Discrete Wavelet Transform is used to de-noise the observed 

mixtures. Wavelet Transform is one of the most widely used 

de-noising technique and is very efficient. Denoising refers to 

manipulation of wavelet coefficients for noise reduction in 

which coefficient values not exceeding a carefully selected 

threshold level are replaced by zero followed by an inverse 

transform of modified coefficients to recover de-noised 

signal. De-noising by thresholding of wavelet coefficients is 

therefore a nonlinear (local) operation. Thresholding can be 

done  globally in which  a single threshold level is applied 

across all scales, or it can be scale-dependent where each 

scale is treated separately. It can also be ‘zonal’ in which the 

given function is divided into several segments(zones) and at 

each segment different threshold level is applied.  

 

C. The BSS Problem of noise free Signals 

 

A method for solving BSS problem is to find a linear 

transformation of the measured signals x(t) such that the 

resulting source signals are as statistically independent from 

each other as possible. The model used considers the number 

of unknown sources "m" equal to the number of observations  

"n". The ideal separation is obtained when B=A
-1  

and  y is a 

(noisy)  estimate of s. As it is pointed out by different authors 

[10,11], obtaining the exact inverse of the "A" matrix is in 

most of the cases impossible. Therefore, BSS algorithms 

search a "B" matrix such  as the product "BA" is a permuted 

diagonal and scaled matrix. Consequently sources can be 

recovered up to their order (permutation) and their amplitude 

(scale). 

 

Many different algorithms are available and they can be 

summarized by the following fundamental approaches, 

depending on the objective or cost functions minimized to 

find the separation matrix B: 

 

 The most popular approach exploits as cost function some 

measure of signals statistical independence, 

non-gaussianity or sparseness. When original signals are 

assumed to statistically independent regardless of their 

temporal structure the Higher Order Statistics (HOS) are 

essentially to solve the BSS problem. In such case the 

method does not allow more than one Gaussian signal[10]. 

 If signals have temporal structures, then each signal has 

non-vanishing temporal correlation and less restrictive 

conditions than statistical independence can be used 

namely Second Order Statistics (SOS) are often sufficient 

to estimate the mixing matrix and the signals. As these 

algorithms exploit temporal correlations, SOS methods do 

not allow the separation of signals with identical power 

spectra shapes or Independent and identically distributed 

(i.i.d) signals. 

 

Most of BSS algorithms (HOS and SOS) include a SOS only 

pre-processing step as spatial  de-correlation or whitening. 

The conventional whitening exploits the equal time 

correlation matrix of the data x, which often considered as 

necessary criterion, but not sufficient for the independence. 

The whitening of x consists of the de-correlation and 

normalization of its components. The idea is to find whitening 

matrix "W" such as, 

 

             xw = Wx ---------------------------------------------( 2) 

 

with covariance matrix of xw equal to identity matrix : Rxw= I. 

One can show that the whitening matrix W can be written as :  

 

     W=∈ V
T           

----------------------------------------(3) 

 

Where ∈ is diagonal matrix and V an orthogonal matrix 

obtained from the eigen decomposition of Rx, the covariance 

matrix of the data. 

 

Independent estimates of the source signals will be obtained 

from the whitening signals xw by a second transformation: 

 

       y= Jxw= J Wx        --------------------------------------- (4) 

 

 As the estimated signals are independent so uncorrelated ,  J 

is necessarily an orthogonal matrix. The minimization of  the 

cost functions leads to this matrix. Another whitening method 

is robust whitening based on time-delayed correlation of 

matrices.  

 

The THREE algorithms compared in this work are: 

 

1. FAST ICA: FastICA algorithm [3] is a fixed-point 

iteration scheme for finding a maximum of the 

non-Gaussanity. It uses kurtosis and computations 

can be performed either in batch mode or in a 

semi-adaptive manner. It uses deflation approach to 

update the columns of separating matrix W and to 

find the independent components one at a time. 

More recent versions are using hyperbolic tangent, 

exponential or cubic functions as contrast function. 

2. JADE-TD: Joint Approximate Diagonalization of 

Eigen matrices with Time Delays,uses a 

combination of source separation algorithms of 

second order time structure (TDSEP)[12] and high 

order cumulant information JADE[13].In principle it 

is able to separate simultaneously time correlated 

and non-gaussian signals[14]. 

3. SOBI: Second Order Blind Identification is an 

algorithm adapted for temporally correlated sources. 

It is based on the joint diagonalization [15] of an 

arbitrary set of covariance matrices and relies only 

on second order statistics of the received signals. It 

allows separation of Gaussian sources. 

 

III. DISCRETE WAVELET TRANSFORM THEORY 

 

The wavelet transform is very useful tool in the analysis of 

noisy signals particularly non stationary signals. The theory 

and methods of wavelet analysis are detailed in 
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books[4],[5].In this paper, discrete wavelet analysis is used 

instead of the continuous wavelet analysis. The discrete 

wavelet analysis is based on the concept of Multi-resolution 

analysis (MRA) introduced by Mallat [6].With the MRA, a 

signal is decomposed recursively in to sum of details and 

approximations at different levels of resolution as shown in 

Fig. 3.                                                       .                                                              

.  

Fig.3. Decomposition tree of signal f(t), Di and Ai are details 

and approximation components at level i. 

 

The details represent the high frequency components while 

the approximations represent the low frequency components 

of the signal. The decomposition algorithm is fully recursive. 

At each stage of MRA the signal is passed through a High pass 

filter called scaling filter, denoted as G and a Low pass filter 

called the wavelet filter, denoted as H. 

 

These filters are quadrature mirror filters that satisfy the 

orthogonality conditions; HG*=GH*=0 and H*H+G*G=I ; 

where I is the identity operator. The filters H and G are the 

decomposition filters , while the filters H* and G* are the 

reconstruction filters. 

 

The coefficients of the filters H and G depend on the 

particular wavelet used for the decomposition[7].The process 

of decomposing a signal f(t) and reconstructing the 

approximations Ai and Di is  shown in Fig. 4. 

 

 
 

Fig. 4. The process of decomposition and reconstruction of 

approximations (Ai) and details (Di)(level i).Symbols    2               

2represent dyadic down-sampling and up-sampling. 

 

As shown in Fig. 4, the discrete wavelet transform (DWT) 

analyzes the signal at different frequency bands and with 

different resolutions by decomposing the signal in to coarse 

approximation and detail information. The approximation 

components are obtained by passing the signal through the 

low pass filter H, which removes the high frequency 

components. At this stage, the resolution is halved but the 

scale remains unchanged .Then, the signal is sub-sampled, 

thereby removing half the redundant samples. It should be 

noted that this process does not affect the resolution but 

affects the scale, which is doubled. Similarly the detailed 

coefficients are obtained by passing the signal through the 

high pass filter G. This constitutes one level of 

de-composition. The wavelet coefficients thus obtained   can 

then be used for the purposes of signal de-noising and 

compression [8]. 

 

1 . WAVELET BASED DENOISING  

  

The general wavelet de-nosing procedure is as follows : 

 

 Apply wavelet transform to the noisy signal to 

produce the noisy wavelet coefficients to the level 

which we can properly distinguish the reflection 

occurrence. 

 Select appropriate threshold limit at each level and 

threshold method (hard or soft thresholding) to best 

remove the noises. 

 Inverse wavelet transform of the thresholded 

wavelet coefficients to obtain a de-noised signal. 

 

1.1.  Wavelet selection 

 

To best characterize the   noisy signal,  we should select  

wavelet carefully to better approximate and capture the  noise  

of the original signal. Wavelet  will not only determine how 

well we estimate the original signal in terms of the shape , but 

also, it will affect the frequency spectrum of the de-noised 

signal. The choice of mother wavelet can be based on eyeball 

inspection of the signal with noise , or it can be selected based 

on correlation γ  between the signal of interest and the wavelet 

de-noised signal , or based on the cumulative energy  over 

some interval where noise will occur. 

 

We choose to select the  wavelet based on the inspection of 

the  noise present in the signal  and found that the  Sym7  

wavelet of level 4  for this paper. 

 

1.2. Threshold limits 

 

Thresholding modifies empirical coefficients (coefficients 

belonging to the given signal) in an attempt to reconstruct a 

replica of the true signal. Reconstruction of the signal is aimed 

to achieve a ‘best’ estimate of the true (noise-free) signal. 

‘Best estimate’ is defined in accordance with a particular 

criteria chosen for threshold selection. Several criteria are 

considered for thresholding.The simplest thresholding 

technique is the hard thresholding, where the new values of 

the details coefficients d(t) are found according to the 

following:  

 
( ) ( )ˆ( )

0 ( )

d t ifd t
d t

ifd t





 
  

 
      ----------------------- (5) 

          

Where d(t) are detailed coefficients and θ is the threshold 

Another method of thresholding is the soft thresholding, 

where the new details coefficients are given by the following: 

 

( ( ))( ( ) 0) ( )ˆ( )
0 ( )

sign d t d t ifd t
d t

ifd t





 
  

 
    -------(6) 

 



 

Application Of Wavelet Transform To Denoise Noisy Blind Signal Separation 

                                                                                               4                                                          www.erpublication.org 

The threshold θ can be estimated as follows: 

2log( )N         -----------------------------------(7) 

    

Where N is the length of threshold coefficients and σ 

characterizes the noise level. 

 

Hard thresholding can be described as the usual process of 

setting to zero the elements whose absolute values are lower 

than the threshold. Soft thresholding is an extension of hard 

thresholding, first setting to zero the elements whose absolute 

values are lower than the threshold, and then shrinking the 

nonzero coefficients towards 0.  

 

1.3 Thresholding Algorithms 

 

The choice of threshold is a fundamental issue[9] . A very 

large threshold cuts too many coefficients, resulting in an over 

smoothing. Conversely, a too small threshold value allows 

many coefficients to be included in reconstruction, giving a 

wiggly, under smoothed estimate. The proper choice of 

threshold involves a careful balance of these principles. Most 

of the work is mainly due to Donoho and Johnstone. A variety 

of threshold choosing methods can be mainly divided into two 

categories: global thresholding and level−dependent 

thresholding. The former chooses a single value of θ  to be 

applied globally to all empirical wavelet coefficients, while 

the later chooses different threshold value θj for each wavelet 

level j. 

 

A. Universal Thresholding - ‘sqtwolog’ 

 

This type of global thresholding method was proposed by 

Donoho and Johnstone. This is also called "sqtwolog" 

method. The threshold value is given in equation (7) , where 

N is the number of data points, and σ is an estimate of the 

noise level. Donoho and Johnstone proposed an estimate of σ 

that is based only on the empirical wavelet coefficients at the 

highest resolution level j -1 because they consist most of 

noise. Most of the function information except the finest 

details is in lower level coefficients. The median of absolute 

deviation (MAD) estimator is expressed in equation (8) as 

 

............ (8) 

 

The universal thresholding removes the noise efficiently. The 

fitted regression curve is often very smooth and hence 

visually appealing. If z1... zn represent the wavelet coefficients 

of the noise with idd N (0, σ
2
), then it is expressed in equation 

(9) as  

          ....................... (9) 

 

This means that the probability of all noise being shrunk to 

zero is very high for large samples. Since the universal 

thresholding procedure is based on this asymptotic result, it 

sometimes does not perform well in small sample situations. 

 

B.  Minimaxi Thresholding 

 

Minimaxi  is   another  global  thresholding  method   

developed by   Donoho  and   John stone .  

Minimaxi threshold is also  fixed threshold and it yields 

minmax performance for Signal Mean Square Error (SMSE) 

against an ideal procedures. Because the signal required the 

denoising can be seen similar to the estimation of unknown 

regression function, this extreme value estimator can realize 

minimized of maximum mean square error for a given 

function. 

 
0.3936 0.1829 *(log( ) / log(2)), 32

0 , 0
tm

n n
W

n

  
  

                  

  -(10)

                    

In this method, the threshold value will be selected by 

obtaining a minimum error between wavelet coefficient of 

noise signal and original signal. Compared with universal 

threshold, the minimaxi  thresholding is more conservative 

and is more proper when small details of function  lie in the 

noise range. 

 

C. Sure Shrink – ‘rigrsure’ 

 

Sure Shrink chooses a threshold   by minimizing the Stein 

Unbiased Risk Estimate (SURE) for each wavelet level . It is 

also considered as "rigrsure" method.  

 

Let µ=( µi :i=1,....d) be a length d vector, and let x={xi} with 

xi distributed as N(µi,1) be multivariate normal observations 

with mean vector µ.Let  ˆ ˆ( )x   be an fixed estimate of µ 

based on the observations x. SURE is a method for estimating 

the loss 
2

̂    in an unbiased fashion. 

In case of ̂  is the soft threshold estimator  

( )

( ) ( )
t

i t ix x    . We apply Stein's result to get an unbiased 

estimate of the risk 

2
^(t)

( )E x    : 

 
1

( ; ) 2.# : min( , )2
d

i i

i

SURE t x d i x T x t


   ---(11) 

For an observed vector x which is a set of noisy wavelet 

coefficients in a sub band, to find the threshold ts that 

minimizes SURE (t;x) i.e 

  arg min ( ; )s

tt SURE t x  ............................... (12) 

The above optimization problem is computationally 

straightforward. Without loss of generality, x can be  

reordered in the order of increasing iX  Then on intervals of 

t that lie between two values of iX , SURE(t) is strictly 

increasing. Therefore the minimum value of t
S
 is one of the 

data values iX . There are only d values and the threshold 

can be obtained using O (d log(d)) computations. 

 

D.‘heursure’ method 

 

SureShrink does not perform well in certain cases that the 

wavelet representation at any level is very sparse, i.e.,when 

the vast majority of coefficients are essentially zeros. Thus, 

Donoho suggest a mixture of universal threshold and 
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SureShrink. If the set of coefficients is sparse, then the 

universal threshold is used; otherwise, SURE is applied. We 

call this hybrid method as Heursure. 

 

1.4.  Level of Decomposition 

 

It is  known that the wavelet transform is constituted by 

different levels. The maximum level to apply the wavelet 

transform depends on how many data points contain in a data 

set, since there is a down-sampling by 2 operation from one 

level to the next one. One factor that affects the number of  

level we can reach to achieve the satisfactory noise removal 

results is the signal-to-noise ratio (SNR) in the original signal. 

Generally, the   measured   signals from the   sensors  have low  

SNR  So to process the data, we need more level of wavelet 

transform say 4 or more to  remove most of its noise.  

 

1.5.  De-noised Signal Reconstruction 

 

Because of the amplitude based muting (based on thresholds) 

wavelet-transform based filters are in general nonlinear and 

can be readily applied to non-stationary  signals. Wavelet 

filters are efficient for filtering several types of noise in data at 

the same time. Reconstruction or synthesis is the process of 

assembling those components back into the signal .The 

mathematical manipulation that affects synthesis is called: the 

inverse discrete wavelet transforms (IDWT).In order to get 

the de-noised signal, the new details coefficients, ᵭ(t) are used 

in signal construction process instead of  original coefficients 

d(t). The de-noised procedure is summarized in Fig 5.   

  
 Fig. 5. DWT de-noising procedure. 

 

IV.  ANALYSIS OF WAVELET TRANSFORM 

APPROACH 

      

In this section, we analyze the decomposition results of 

Wavelet Transform at different SNR levels. The signal " 

Bumps" is obtained using MATLAB software and is 

corrupted by white Gaussian noise, and the SNR levels are 

15dB and 0dB respectively as shown in fig. 6  .The sample 

size of signal is N=1000.        

          

 
Fig. 6 The signal "Bumps" at different SNR levels 

 

The parameters of Wavelet transform are set as follows: The 

wavelet basis function chosen is "sym7" and the number of 

decomposition level selected is 4.The decomposition results 

of Wavelet Transform are depicted in Fig 7.                          

             

       
 

Fig. 7 Decomposition results of  WT:   a) Original signal,   b) 

Noisy signal with SNR=15dB,   c) Noisy signal with 

SNR=0dB 

 

V.  EXPERIMENTAL RESULTS 

 

The experimental analysis of this section aims at objectively 

evaluating the de-noising performance of de-noising 

algorithms namely sqtwolog, minimax, sureshrink and rigsure 

and the separation performance of BSS algorithms namely  

FastICA ,JADETD and SOBI  after de-noising preprocessing. 

In order to precisely describe the performance of the denoise 

algorithms, we employ signal mean square error (SMSE), a 

contrast-independent criterion defined as  

 

   SMSE=1/N  E{|x-xj|
2
}  ..................................(13) 

 

Where x is the source signal or the noise free signal, xj  is 

estimated signal, and N is sample number of the signal. The 

performance is better when the value of SMSE is smaller. 

 

In order to precisely assess the BSS performance for the 

Three  prominent BSS algorithms namely  FastICA , 

JADETD and   SOBI  the following evaluation criteria is 

employed. 

 

A. Denoising Experiment 

 

In order to test the performance of  denoising algorithms – 

namely  "rigrsur"  "heursur" "sqtwolog " and "minimax", we 

performed numerical simulations for TWO test 

signals:"Heavysine" and "Bumps" signals noise free and 

noisy signals  obtained using MATLAB software are shown in 

Fig 8. The sample size of the signals is N=1000.The 

Denoising performance for both soft threshold and hard 

threshold (white noise) of the four methods is evaluated for 

"Heavisine" test Signal as shown in Table-I and III and for 

"Bumps" test signals as shown in Table-II and IV. Denoised 

signal's performance is compared based on signal mean 

square error computed. Fig 9 displays the results of applying 
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the four denoising methods to the Two test signals.This is 

implemented using Matlab tool box, which is widely used for 

high performance numerical computation and visualization. 

The wavelet used is Sym7. 

 

 
Fig 8. Test signals with N=1000 and Noisy signals 

(Heavysine: SNR=5dB  and Bumps: SNR=3dB). 

 
Fig. 9. Denoising results of the Four Approaches. The noise 

free signals and the reconstructed signals  (Heavysine: 

SNR=5dB  and Bumps: SNR=3dB). 

 

TABLE I: SOFT THRESHOLD DENOISING RESULTS 

OF "HEAVYSINE" SIGNAL AT DIFFERENT SNR 

LEVELS 

 
SNR (dB) -10 -8 -6 -4 -2 0 2 4 6 8 10 

rigrsur 0.13

17 

0.12

35 

0.11

09 

0.09

47 

0.08

33 

0.09

03 

0.08

04 

0.09

58 

0.10

91 

0.12

05 

0.12

99 

heursur 0.14

99 

0.12

80 

0.10

40 

0.08

24 

0.06

79 

0.07

34 

0.06

79 

0.08

10 

0.10

52 

0.12

78 

0.14

60 

sqtwlog 0.16

42 

0.13

60 

0.10

80 

0.08

27 

0.06

58 

0.07

45 

0.06

74 

0.08

07 

0.10

68 

0.13

56 

0.16

66 

minimax 0.12

72 

0.11

57 

0.10

11 

0.08

45 

0.07

48 

0.07

81 

0.07

30 

0.08

45 

0.10

15 

0.11

55 

0.12

76 

 

 

TABLE II: SOFT THRESHOLD DENOISING RESULTS 

OF "BUMPS" SIGNAL AT DIFFERENT SNR LEVELS 

 
SNR (dB) -10 -8 -6 -4 -2 0 2 4 6 8 10 

rigrsur 0.24

86 

0.23

87 

0.21

49 

0.19

02 

0.15

46 

0.07

86 

0.15

44 

0.18

81 

0.21

60 

0.23

66 

0.25

67 

heursur 0.26

78 

0.23

37 

0.20

63 

0.20

15 

0.16

13 

0.06

21 

0.16

24 

0.19

56 

0.20

68 

0.23

51 

0.26

38 

sqtwlog 0.83

45 

0.72

40 

0.61

25 

0.47

71 

0.27

07 

0.06

42 

0.27

00 

0.48

15 

0.61

12 

0.61

12 

0.86

29 

minimax 0.45

05 

0.40

82 

0.34

80 

0.28

62 

0.19

44 

0.06

89 

0.19

08 

0.28

96 

0.34

71 

0.34

71 

0.44

99 

TABLE III: HARD THRESHOLD DENOISING RESULTS 

OF "HEAVYSINE" SIGNAL AT DIFFERENT SNR 

LEVELS 

 
SNR (dB) -10 -8 -6 -4 -2 0 2 4 6 8 10 

rigrsur 0.32

65 

0.31

71 

0.26

30 

0.23

60 

0.23

47 

0.21

59 

0.23

15 

0.25

26 

0.27

72 

0.29

73 

0.31

15 

heursur 0.12

49 

0.12

48 

0.11

25 

0.09

39 

0.07

77 

0.07

40 

0.07

87 

0.09

32 

0.11

16 

0.12

16 

0.12

31 

sqtwlog 0.13

79 

0.12

79 

0.10

77 

0.08

32 

0.06

96 

0.06

71 

0.06

98 

0.08

51 

0.10

76 

0.12

79 

0.13

59 

minimaxi 0.24

92 

0.24

63 

0.25

18 

0.24

35 

0.22

92 

0.22

55 

0.23

52 

0.24

28 

0.25

73 

0.25

68 

0.25

28 

 

TABLE IV: HARD THRESHOLS DENOISING RESULTS 

OF "BUMPS" SIGNAL AT DIFFERENT SNR LEVELS 

 
SNR (dB) -10 -8 -6 -4 -2 0 2 4 6 8 10 

rigrsur 0.45

30 

0.41

96 

0.40

33 

0.36

95 

0.31

74 

0.22

58 

0.32

62 

0.34

69 

0.38

16 

0.43

66 

0.44

34 

heursur 0.30

94 

0.29

56 

0.26

69 

0.24

03 

0.18

27 

0.07

14 

0.18

22 

0.24

08 

0.27

23 

0.29

19 

0.30

58 

sqtwlog 0.34

76 

0.31

71 

0.27

49 

0.24

87 

0.18

96 

0.06

78 

0.19

04 

0.25

48 

0.27

43 

0.31

03 

0.35

61 

minimax 0.38

10 

0.36

75 

0.35

38 

0.32

34 

0.30

20 

0.22

65 

0.30

69 

0.32

29 

0.34

39 

0.36

24 

0.37

86 

 

 

Matlab command 'wden' is used for one dimensional 

de-noising function which  performs automatic de-noising 

using wavelets and returns XD de-noised version of input 

signal X obtained by thresholding the wavelet coefficients as 

shown in equation 14. 

 

 [XD]= wden (X, TPTR, SORH, SCAL, N, 'wname' ) -- (14) 

 

TPTR string contains the threshold selection rule: 'rigrsure' / 

'heursure' /'sqtwolog'/ 'minimaxi'. SORH ('s' or 'h') is for soft 

or hard thresholding. 

SCAL defines multiplicative threshold rescaling:'one' for no 

rescaling, 'sln' for rescaling using a single estimation of level 

noise based on first-level coefficients and 'mln' for rescaling 

done using      level-dependent     estimation of level    noise. 

Wavelet decomposition      is performed at level     N      and 

'wname'  is a string containing       the name of the     desired 

orthogonal wavelet. 

 

Denoised signal's performance is compared based on Signal 

Mean Square Error computed and it is found there is not much 

difference between Soft and hard threshold for level-1 white 

noise removal. It is observed that the performance of 

'minimax' and 'heursure' is better than that of 'sqtwlog'. 

 

B. BSS Experiment 

 

In the following the case of Two original source signals x1(n) 

and x2(n), n=1,2,3,4......10000 mixed by a 2x2 mixing matrix 

is considered. Assuming that the mixed source signals are 

corrupted by additive white Gaussian noise. 
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Fig 10. Comparison of separation results (SNR=10dB): (a) 

Original sources, (b)Noisy mixtures,  (c) Separation results of 

FastICA only,  (d) Separation results of FastICA with 

de-noising preprocessing. 

 

In order visualize the performance improvement in restoring 

the original source waveforms, the three original source 

waveforms, the noisy  mixture of SNR=10dB and the 

estimated sources from denoising mixtures with Fast ICA are 

shown in Fig 10. It can be shown that the separation 

waveforms without Wavelet Transform de-noising 

preprocessing almost  not be recognized compared with 

original sources and  the de-noising preprocessing provides 

better waveforms for the estimated sources. 

Then the de-noising  preprocessing using minimax, heursure, 

rigsure  and sqtwolog approaches proposed are performed 

individually for each noisy mixture. The parameters selected 

are Minimax  for threshold selection, Wavelet is Sym7 with 

Decomposition level set to four  same as in Section A. And 

then the separation performances of THREE prominent BSS 

algorithms: FastICA , JADETD and SOBI  are evaluated. 

Assuming different SNR levels for the observed mixtures, for 

each SNR level the performance criteria SMSE are averaged 

over 100 Monte Carlo simulations. The comparison of 

separation performance is depicted in Fig. 11,12 and 13. 

 
 

Fig. 11 Comparison of separation performance of three 

prominent BSS algorithms without preprocessing approach. 

 
 

Fig. 12 Comparison of separation performance of three 

prominent BSS algorithms with hard threshold de-noising 

preprocessing approach. 

 

 
 

 

Fig. 13 Comparison of separation performance of three 

prominent BSS algorithms with soft threshold de-noising 

preprocessing approach. 

 

As indicated in Fig. 11,12 and 13 de-noising preprocessing is 

very efficient for improving the performance of BSS 

algorithms in the presence of strong noise. Moreover Wavelet 

Transform  threshold level algorithm based on minimaxi 

de-noising preprocessing improves Signal Mean Square 

Error, especially in the cases where the signal SNR is low. 

 

VI.  CONCLUSIONS 

 

Noise strongly reduces the separation performance of BSS 

algorithms, which is known as Noisy BSS problem. A direct 

and simple solution is to de-noise the noisy mixtures before 

BSS. In this paper, signal de-noising approach called wavelet 

transform de-noising  is proposed. This de-noising scheme, 

based on minimax, is simple and fully data-driven approach 

exhibits an enhanced performance by reducing SMSE 

compared to without preprocessing in the cases where the 

signal SNR is low. Simulation results show that de-noising 

preprocessing before BSS is an efficient solution, especially 

for strong noisy mixtures. De-noising the noisy mixtures as 

preprocessing step of Noisy BSS will improve the 

performance  of CDMA communication systems increasing 

the capacity of wireless channels and made EEG signals 

towards  easier interpretation for the physicians by 

elimination of artifacts and noise that the EEG signals present. 
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