

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-9, September 2014

 27 www.erpublication.org



Abstract— In today’s environment the database is most

important part of any online application and in recent years the

database technology evolved to a greater extent so as the attacks

to the database also increases, the most important type of attack

these days are SQL injection attacks, these attacks are very

serious security threats to web applications because they enable

the attackers to gain unrestricted asses to databases and

potentially confidential information these database contain.

Although researchers have proposed numerous methods to help

overcome form the SQL injection problem, the current

approaches either have limitations or fail to cover full scope of

the problem. In SQL injection attack (SQLIA) the attacker can

trick the server to obtain illegal authorization and asses the

database using SQL queries. This is because the developers of

the applications are not fully aware of attacks by SQL injection

and its causes. This paper gives an overview to the SQL

Injection attacks (SQLIA) and methods to prevent them. We

will discuss all the proposed models to block SQL Injections. We

also present and analyses existing detection prevention

techniques against SQL injection attacks.

Index Terms— SQL, SQLIA, and Hash function, Validation

I. INTRODUCTION

In today’s environment, the Database is a fast growing and

emerging field, as it is needed in every field which needs

computerization. So the Database security is also very vital

factor that the researchers and practitioners are facing

nowadays. SQL injection vulnerabilities have been described

as one of the most serious threats for Web applications [13],

[17]. Web applications that are vulnerable to SQL injection

may allow an attacker to gain complete access to their

underlying databases. Because these databases often contain

sensitive consumer or user information, the Resulting security

violations can include identity theft, loss of confidential

information, and fraud In some cases, attackers can even use

an SQL injection vulnerability to take control of and corrupt

the system that hosts the Web application.

SQL Injection Attacks (SQLIA’s) are one of the most severe

threats to web application security. They are frequently

employed by malicious users for a variety of reasons like

financial fraud, theft of confidential data, website defacement,

sabotage, etc. The number of SQLIA’s reported in the past

few years has been showing a steadily increasing trend and so

is the scale of the attacks. It is, therefore, of paramount

importance to prevent such types of attacks, and SQLIA

Manuscript received September 16, 2014.

 Surya Pratap Singh , Department of Computer Science, DDU

Gorakhpur University, Gorakhpur, India, Mobile No. +919450138221

Upendra Nath Tripathi, Department of Computer Science, DDU

Gorakhpur University, Gorakhpur, India, Mobile No. +919450181905

Manish Mishra, Department of Electronics, DDU Gorakhpur University,

Gorakhpur, India, Mobile No. +919415875144

prevention has become one of the most active topics of

research in the industry and academia. There has been

significant progress in the field and a number of models have

been proposed and developed to counter SQLIA’s, but none

have been able to guarantee an absolute level of security in

web applications, mainly due to the diversity and scope of

SQLIA’s. One common programming practice in today’s

times to avoid SQLIA’s is to use database stored procedures

instead of direct SQL statements to interact with underlying

databases in a web application, since these are known to use

parameterized queries and hence are not prone to the basic

types of SLQIA’s.

Although recently there has been a great deal of attention

to the problem of SQL injection vulnerabilities, many

proposed solutions fail to address the full scope of the

problem. There are many types of SQLIAs and countless

variations on these basic types. Researchers and practitioners

are often unaware of the myriad of different techniques that

can be used to perform SQLIAs. Therefore, most of the

solutions proposed detect or prevent only a subset of the

possible SQLIAs.

II. BASICS OF SQLIA

SQL injection is a code injection technique, used to attack

data-driven applications, in which malicious SQL statements

are inserted into an entry field for execution (e.g. to dump the

database contents to the attacker) [12]. SQL injection is an

attack in which malicious code is inserted into strings that are

later passed to an instance of SQL Server for parsing and

execution. Any procedure that constructs SQL statements

should be reviewed for injection vulnerabilities because SQL

Server will execute all syntactically valid queries that it

receives. Even parameterized data can be manipulated by a

skilled and determined attacker.

III. INJECTION PROCESS

The primary form of SQL injection consists of direct

insertion of code into user-input variables that are

concatenated with SQL commands and executed. A less direct

attack injects malicious code into strings that are destined for

storage in a table or as metadata. When the stored strings are

subsequently concatenated into a dynamic SQL command, the

malicious code is executed.

The injection process works by prematurely terminating

a text string and appending a new command. Because the

inserted command may have additional strings appended to it

before it is executed, the malefactor terminates the injected

string with a comment mark "--". Subsequent text is ignored at

execution time.[16]

The following script shows a simple SQL injection. The script

builds an SQL query by concatenating hard-coded strings

together with a string entered by the user:

Detection and Prevention of SQL Injection Attack

Using Hashing Technique

Surya Pratap Singh, Upendra Nath Tripathi, Manish Mishra

http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Attack_(computing)

Detection and Prevention of SQL Injection Attack Using Hashing Technique

 28 www.erpublication.org

varShipcity;

ShipCity = Request.form ("ShipCity");

varsql = "select * from OrdersTable where ShipCity = '" +

ShipCity + "'";

The user is prompted to enter the name of a city. If she enters

Redmond, the query assembled by the script looks similar to

the following:

SELECT * FROM OrdersTable WHERE ShipCity =

'Redmond'

However, assume that the user enters the following:

Redmond'; drop table OrdersTable—

In this case, the following query is assembled by the

script:

SELECT * FROM OrdersTable WHERE ShipCity =

'Redmond';drop table OrdersTable--'

TYPES OF SQL INJECTION ATTACK

The semicolon (;) denotes the end of one query and the

start of another. The double hyphen (--) indicates that the rest

of the current line is a comment and should be ignored. If the

modified code is syntactically correct, it will be executed by

the server. When SQL Server processes this statement, SQL

Server will first select all records in OrdersTable where

ShipCity is Redmond. Then, SQL Server will drop

OrdersTable.

IV. TYPES OF SQL INJECTION ATTACK

There are various types of SQL Injection attacks, these

depends on the intent of attacker. The attacker can perform

the attack sequentially or altogether. We can classify the

SQLIA into following types –

A. Tautologies

The general goal of a tautology-based attack is to injectcode

in one or more conditional statements so that they always

evaluate to true. The consequences of this attack depend on

how theresults of the query are used within the application.

The most commonusages are to bypass authentication pages

and extract data. Inthis type of injection, an attacker exploits

an injectable field that isused in a query’s WHERE

conditional. Transforming the conditionalinto a tautology

causes all of the rows in the database table targetedby the

query to be returned.

Example: In this example attack, an attacker submits ― ’ or

1=1 - - ‖ for the login input field (the input submitted for the

other fields is irrelevant). The resulting query is:

SELECT accounts FROM users WHERE

login=’’ or 1=1 -- AND pass=’’ AND pin=

The code injected in the conditional (OR 1=1) transforms the

entire WHERE clause into a tautology. The database uses the

conditional as the basis for evaluating each row and deciding

which ones to return to the application. Because the

conditional is a tautology, the query evaluates to true for each

row in the table and returns all of them.

B. Union Query

In union-query attacks, an attacker exploits a vulnerable

parameter to change the data set returned for a given query.

With this technique, an attacker can trick the application into

returning data from a table different from the one that was

intended by the developer. Attackers do this by injecting a

statement of the form: UNION SELECT <rest of injected

query>.

Example: Referring to the running example, an attacker could

inject the text ―UNION SELECT cardNo from CreditCards

where acctNo=10032 - -‖ into the login field, which produces

the following query:

SELECT accounts FROM users WHERE login=’’ UNION

SELECT cardNo from CreditCards whereacctNo=10032 --

AND pass=’’ AND pin=

Assuming that there is no login equal to ―‖, the original first

query returns the null set, whereas the second query returns

data from the ―CreditCards‖ table. In this case, the database

would return column ―cardNo‖ for account ―10032.‖ The

database takes the results of these two queries, unions them,

and returns them to the application. In many applications, the

effect of this operation is that the value for ―card No‖ is

displayed along with the account information. References:

[10, 14,8]

C. Illegal/Logically Incorrect Queries:

When a query is rejected, an error message is returned from

the database including useful debugging information. This

error messages help attacker to find vulnerable parameters in

the application and consequently database of the application.

In fact attacker injects junk input or SQL tokens in query to

produce syntax error, type mismatches, or logical errors by

purpose. In this example attacker makes a type mismatch

error by injecting the following text into the pin input field:

1) Original URL: http://www.arch.polimi.itleventil?id

nav=8864

2) SQL Injection: http://www.arch.polimLitieventil?

id_nav=8864'

3) Error message showed: SELECT name FROM Employee

WHERE id =8864\'

From the message error we can find out name of table and

fields: name; Employee; id. By the gained information

attacker can organize more strict attacks.

D. Piggybacked Queries

In this attack type, an attacker tries to inject additionalqueries

into the original query. We distinguish this type from

othersbecause, in this case, attackers are not trying to modify

the originalintended query; instead, they are trying to include

new and distinctqueries that ―piggy-back‖ on the original

query. As a result, thedatabase receives multiple SQL queries.

The first is the intendedquery which is executed as normal; the

subsequent ones are theinjected queries, which are executed

in addition to the first.

Example: If the attacker inputs ―’; drop table users - -‖ into the

pass field, the application generates the query:

SELECT accounts FROM users WHERE login=’ram’

ANDpass=’’; drop table users – ’ AND pin=123

After completing the first query, the database would

recognize the query delimiter (―;‖) and execute the injected

second query. The result of executing the second query would

be to drop table users, which would likely destroy valuable

information.

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-9, September 2014

 29 www.erpublication.org

E. Inference

In this attack, the query is modified to recast it in the form of

an action that is executed based on the answer to a true/false

question about data values in the database. In this type of

injection, attackers are generally trying to attack a site that has

been secured enough so that, when an injection has

succeeded, there is no usable feedback via database error

messages.[7] Since databaseerror messages are unavailable to

provide the attacker with feedback, attackers must use a

different method of obtaining a response from the database. In

this situation, the attacker injects commandsinto the site and

then observes how the function/response of the website

changes.

Example: Using the code from our running example, we

illustrate two ways in which Inference based attacks can be

used. The first of these is identifying injectable parameters

using blind injection. Consider two possible injections into

the login field. The first being ―legalUser’ and 1=0 - -‖ and the

second, ―legalUser’ and 1=1 - -‖.

These injections result in the following two queries:

SELECT accounts FROM users WHERE

login=’legalUser’and 1=0 – ’ AND pass=’’ AND pin=0

SELECT accounts FROM users WHERE

login=’legalUser’and 1=1 – ’ AND pass=’’ AND pin=0

F. Stored Procedure

Stored procedure is a part of database that programmer could

set an extra abstraction layer on the database. As stored

procedure could be coded by programmer, so, this part is as

inject able as web application forms.[9] Depend on specific

stored procedure on the database there are different ways to

attack. In the following example, attacker exploits

parameterized stored procedure.

CREATE PROCEDURE

DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

AS

EXEC (―SELECT accounts FROM users WHERE login=’‖

+@userName+ ―’ and pass=’‖ +@password+‖’ and pin=‖

+@pin);

GO

V. RELATED WORK

The techniques which are currently available can cover a

subset of the vulnerabilities of the SQL Injections, some work

of the researchers are listed in the following section-

Roichman and Gudes’s Scheme – [1] suggests using a

fine-grained access control to web databases. The authors

develop a new method based on fine-grained access control

mechanism. The access to the database is supervised and

monitored by the built-in database access control. This is a

solution to the vulnerability of the SQL session traceability.

Shaukat Ali et al.’s Scheme – [2] adopts the Hash value

approach to further improve the user authentication

mechanism. They use the user name and password Hash

values SQLIPA (SQL Injection Protector for Authentication)

prototype was developed in order to test the framework. The

user name and password Hash values are created and

calculated at runtime for the first time the particular user

account is created

Thomas et al.’s Scheme – Thomas et al., in [3] proposed

an automated prepared statement generation algorithm to

remove SQL Injection Vulnerabilities. The authors

implement their research work using four open source

projects namely: (i) Net-trust, (ii) Itrust, (iii) WebGoat, and

(iv) Roller. On the basis of the experimental results, their

prepared statement code was able to successfully replace 94%

of the SQLIVs in four open source projects.

SQLIA Prevention Using Stored Procedures – Stored

procedures are subroutines in the database which the

applications can make call to [4]. The prevention in these

stored procedures is implemented by a combination of static

analysis and runtime analysis. The static analysis used for

commands identification is achieved through stored

procedure parser and the runtime analysis by using a SQL

Checker for input identification

SAFELI – [5] This research deals with the Static

Analysis Framework in order to detect SQL Injection

Vulnerabilities. This framework aims to identifying the SQL

Injection attacks during the compile-time. The two main

advantages of this static analysis tool are: first, it does a

White-box Static Analysis and secondly, it uses a

Hybrid-Constraint Solver. If we consider the White-box we

found the Static Analysis, the proposed approach considers

the byte-code and deals mainly with strings. While on the

other hand, the Hybrid-Constraint Solver implements the

methods to an efficient string analysis tool which is able to

deal with Boolean, integer and string variables.

William G.J.Halfond et al.’s Scheme- [6]- proposed an

approach that works by combining static analysis and runtime

monitoring of database queries. In its static part, technique

uses program analysis to automatically build a model of the

legitimate queries that will be generated by the application.

While in the dynamic part, the technique monitors the

dynamically runtime generated queries and checks them for

acceptability with the statically-generated model. A query that

doesn’t match with the model represent potential SQLIAs and

are hence prevented from executing on the database and

reported.

VI. PROPOSED TECHNIQUE

After studying the work of various researchers, we propose

the methods by which the SQLIA can be prevented easily, for

this purpose we propose some defence mechanism and

username and password validation using cryptographically

Hash function.

A. SQLIA Prevention using Data Validation –

For validation of data we propose the following three

approaches –

a) escape single quotes –

functionescape (input)

input = replace(input, ―’‖, ―’’‖)

escape = input

end function

b) Reject input that is known to be bad –

functionvalidate string(input)

Detection and Prevention of SQL Injection Attack Using Hashing Technique

 30 www.erpublication.org

known_bad = array("select", "insert", "update",

"delete", "drop", "--", "'")

validate_string = true

for i = lbound(known_bad) to ubound(known_bad)

if (instr(1, input, known_bad(i), vbtextcompare)

!=0) then

validate_string = false

exit function

end if

next

end function

c) Accept only input that is known to be good –

functionvalidatepassword(input)

good_password_ch="abcdefghijklmnopqrstuvwxyzABCDE

FGHIJKLMNOPQRSTUVWXYZ0123456789"

validatepassword = true

for i = 1 to len(input)

c = mid(input, i, 1)

if (InStr(good_password_ch, c) = 0) then

validatepassword = false

exit function

end if

next

end function

B. SQLIA Prevention using Crypto graphical Hash

function –

For the purpose of protecting against unauthorized login by

using SQLIA, we provide Hash function mechanism. In this

mechanism we need to add two additional attributes in the

login database one for Hash value for user name and another

is for has value for password. When the admin first create the

user account and assigns a password the Hash value is

automatically generated by using Hash function algorithm and

stored in the database along with the login information of the

user. These information is stored in the database in encrypted

form. Now when the user needs to login to the server he/she

passes his/her username and password and the Hash value is

generated automatically and the Hash value is also sent from

client computer to server along with the username and

password in encrypted form as HTTP request.

Fig1. Architecture of Prevention of SQLIA

Now receiving the HTTP request server first decrypt the

incoming data. Now the username and password is matched

with the value stored in the database and the Hash value of

username and passwords are matched with the stored values

of username and password. If it succeeds the login is provided

else if the username password or Hash value does not match to

the value stored in the database the login request is rejected as

attempt of SQLIA. In this manner there is no chance that

someone can bypass the login process without correct values

and it is impossible to produce has value for a hacker or

intruder because it is dynamic in nature. So no one can do any

malicious activities to the database.

Fig2. Validation of Hash value on Server

VII. CONCLUSION

The SQLIA is most vulnerable security threat to database in

recent years because every hacker or intruder tries to break

the database security using this type of attack, so the

prevention from these threats are more acute. Various

solutions are given to prevent from SQLIA by different

researchers but none of the solutions is fully able to prevent

the database from these attacks.

So this paper explains the nature and injection process of

SQLIA. It also explains possible cases in which the SQL

Injection attack can be done. To prevent the system from

these attacks this paper proposed the validation mechanism by

which we can only allow good inputs to be executed. This

paper also proposes the Hash function mechanism by which

login process into the server can be prevented from SQLIA.

There are various other ways to attack on the database using

SQLIA that needs to be covered, so there is much scope in this

area of research.

REFERENCES

[1] Roichman, A., Gudes, E.: Fine-grained Access Control toWeb

Databases. In: Proc. of 12th SACMAT Symposium, France (2007)

[2] Shaukat Ali, Azhar Rauf, and Huma Javed ―SQLIPA:An

authentication mechanism Against SQL Injection

[3] S. Thomas, L. Williams, and T. Xie, On automated prepared statement

generation to remove SQL injection vulnerabilities. Information and

Software Technology 51, 589–598 (2009)

[4] K. Amirtahmasebi, S. R. Jalalinia, S. Khadem, "A survey of

SQLinjection defence mechanisms," Proc. Of ICITST 2009, vol., no.,

pp.1-8, 9-12 Nov. 2009

[5] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao. A

StaticAnalysis framework for Detecting SQL Injection

Vulnerabilities, OMPSAC 2007, pp.87-96, 24-27 July 2007.

[6] William G.J.Halfond and Alessandro Orso ―AMNESIA:Analysis and

Monitoring for Neutralizing SQL-Injection Attacks‖.

[7] M. Martin, B. Livshits, and M. S. Lam. Finding Application Errorsand

Security Flaws Using PQL: A Program Query Language.

[8] S. McDonald. SQL Injection: Modes of Attack, Defence, and Why It

Matters.

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-9, September 2014

 31 www.erpublication.org

[9] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. Using Parse Tree

Validation to Prevent SQL Injection Attacks. In International

Workshop on Software Engineering and Middleware (SEM), 2005.

[10] Advanced SQL Injection in SQL Server Applications An

NGSSoftware Insight Security Research (NISR) Publication ©2002

Next Generation Security Software Ltd

[11] W. G. Halfond and A. Orso. Combining Static Analysis and

RuntimeMonitoring to Counter SQL-Injection Attacks.2005

[12] www.wikipedia.com

[13] Vulnerability Management in Web Applications R. Thenmozhi, M.

Priyadharshini, V. VidhyaLakshmi, K. Abirami

http://www.ciitresearch.org/dl/index.php/dmke/article/view/DMKE0

42013007

[14] David Litchfield: Web Application Disassembly with ODBC Error

Messages

[15] C. Gould, Z. Su, and P. Devanbu. Static Checking of Dynamically

Generated Queries in Database Applications. In Proceedings of the

26th International Conference on Software Engineering (ICSE 04),

pages 645–654, 2004.

[16] http://technet.microsoft.com/en-s/library/ms161953%28v=SQL.105

%29.aspx

[17] T. O. Foundation. Top Ten Most Critical Web Application

Vulnerabilities, 2005.

http://www.owasp.org/documentation/topten.html

Mr. Surya Pratap Singh is pursuing PhD. In the

department of computer science DDU Gorakhpur University, Gorakhpur

(U.P. India) under the supervision of Dr. U.N. Tripathi. Area of research

interest is Database Security, Networking. Mr. Surya Pratap Sing has

published 05 papers in different national and international conferences/

Journals.

Dr. Upendra Nath Tripathi is Assistant professor in

Department of computer science DDU Gorakhpur University, Gorakhpur

(U.P. India) . He has 13 years of teaching and research experience. He has

published 40 papers in various National and International

Journals/conferences. His area of research interest is database systems,

networking.

Dr. Manish Mishra is Assistant professor in

Department of Electronics DDU Gorakhpur University, Gorakhpur (U.P.

India). He has 13 years of teaching and research experience. He has

published 45 papers in various National and International

Journals/conferences. His area of research interest is Computer

Technology, fast processor design.

http://technet.microsoft.com/en-s/library/ms161953%28v=SQL.105%29.aspx
http://technet.microsoft.com/en-s/library/ms161953%28v=SQL.105%29.aspx

