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Abstract— In this paper the problem of trajectory tracking is 

studied. Based on the Lyapunov-Krasovskii theory, a PID 

control law that achieves the global asymptotic stability of the 

tracking error between a delayed recurrent neural network and 

a complex dynamical network is obtained. To illustrate the 

analytic results we present a tracking simulation of a dynamical 

network with each node being just one Lorenz´s dynamical 

system and three identical Chen's dynamical systems. 

 

I. INTRODUCTION 

 

This paper analyzes trajectory tracking not for a nonlinear 

system but for a network of coupled nonlinear systems with 

delay, which are forced to follow a reference signal generated 

by a nonlinear chaotic system. The control law that 

guarantees trajectory tracking is obtained by using the 

Lyapunov-Krasovskii methodology and the PID Control 

Law. 

    In previous chapters, we occasionally discussed the basic 

PID controllers[16]. For example, we presented electronic, 

hydraulic, and pneumatic PID controllers. We also designed 

control systems where PID controllers were involved. It is 

interesting to note that more than half of the industrial 

controllers in use today are PID controllers or modified PID 

controllers. 

    The proportional action tends to stabilize the system, while 

the integral control action tends to eliminate or reduce 

steady-state error in response to various inputs. Derivative 

Control Action. Derivative control action, when added to a 

proportional controller, provides a means of obtaining a 

controller with high sensitivity. An advantage of using 

derivative control action is that it responds to the rate of 

change of the actuating error and can produce a significant 

correction before the magnitude of the actuating error 

becomes too large. Derivative control thus anticipates the 

actuating error, initiates an early corrective action, and tends 

to increase the stability of the system. 

    The combination of proportional control action, integral 

control action, and derivative control action is termed 

proportional-plus-integral-plus-derivative control action. It 

has the advantages of each of the three individual control 

actions. The equation of a controller with this combined 

action is given by:  

               ̇    ∫      
 

 
  . 

 

    The analysis and control of complex behavior in complex 

networks, which consist of dynamical nodes, has become a 

point of great interest in recent studies, [1],[2],[3]. The 

complexity in networks comes from their structure and 

dynamics but also from their topology, which often affects 

their function. 

    Recurrent neural networks have been widely used in the 

fields of optimization, pattern recognition, signal processing 

and control systems, among others. They have to be designed 

in such a way that there is one equilibrium point that is 

globally asymptotically stable. In biological and artificial 

neural networks, time delays arise in the processing of 

information storage and transmission. Also, it is known that 

these delays can create oscillatory or even unstable 

trajectories, [4]. Trajectory tracking is a very interesting 

problem in the field of theory of systems control; it allows the 

implementation of important tasks for automatic control such 

as: high speed target recognition and tracking, real-time 

visual inspection, and recognition of context sensitive and 

moving scenes, among others. We present the results of the 

design of a control law that guarantees the tracking of general 

complex dynamical networks. 

 

II. MATHEMATICAL MODELS 

1. GENERAL COMPLEX DYNAMICAL NETWORKS  

 

    Consider a network consisting of N linearly and 

diffusively coupled nodes, with each node being an 

n-dimensional dynamical system, described by 

 

  ̇         ∑       
 
   
   

 (     )                 Eq. 1 

 

where                     are the state vectors of the 

node        
        represents the self-dynamics of the 

node  , the constants       are the coupling strengths 

between node   and node  , with             

(   )   
     is a constant internal matrix that describes the 

way of linking the components in each pair of connected 

node vectors         : this means that for some pairs        

with         and (   )    the two coupled nodes are 

linked through their     and     sub-state variables 

respectively, while the coupling matrix    (   )   
            

denotes the coupling configuration of the entire network: this 

means that if there is a connection between node  and node            
   , then          ; otherwise          . 

III. DELAYED RECURRENT NEURAL NETWORKS 

 

    Consider a delayed recurrent neural network in the 

following form: 
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 ̇      
   

    
 (   

     )     
  

 

 ∑           
 
   
   

 (       )        ,              Eq. 2 

 

where τ is the fixed known time delay ([5],[6]),     
                   is the state vector of the neural network 

 ,        
   is the input of the neural network  ,    

 

    
    ,        , is the state feedback matrix, with       

being a positive constant,    
         is the connection 

weight matrix with        2, and           is a 

Lipschitz sigmoid vector function ([7],[8]), such that 

 (   
)    only at (   

)   , with Lipschitz constant       

        and neuron activation functions              , 

       . 

IV. TRAJECTORY TRACKING 

 

    The objective is to develop a control law such that the     

neural network (2) tracks the trajectory of the     dynamical 

system (1).  

We define the tracking error as          ,         

whose derivative with respect to time is 

  ̇     ̇    ̇                                                     Eq. 3 

 

Substituting (1) and (2) in (3), we obtain 

  ̇     
   

    
 (   

     )     
  

 ∑           

 

   
   

 (       )   

        ∑       
 
   
   

 (     )                           Eq. 4 

 

 

Adding and subtracting    
 (   

     ),       ,   

     , to (4), where    will be determined below, and 

considering that                  , then    

 

  ̇     
  (   

     )    (       )   

 (   
      )     

    

     
      

( (       )       )          

 

 ∑           
 
   
   

 (       )                          Eq. 5 

 ∑      

 

   
   

 (     )         

 

     

    In order to guarantee that the ith neural network (2) tracks 

the ith reference trajectory (1), the following assumption has 

to be satisfied: 

    Assumption 1. There exist functions       and      , 

       , such that 
   

  
    

         
 (     )        

                                                                 Eq. 6 

 

Let's define 

 

   ̃      
        

              (   
     )    (       )            Eq. 7 

        
 

Considering (6) and (7), equation (5) is reduced to 

 

  ̇     
      

           ̃   

 ∑           
 
   
   

 (       )                                Eq. 8 

 ∑       

 

   
   

 (     )         

 

Writing the summations as 

 

∑          

 

   
   

 (       )   

  ( ∑           
 
   
   

       ∑           
 
   
   

) 

 

∑       
 
   
   

 (     )                                                     Eq. 9 

   ∑      

 

   
   

     ∑       

 

   
   

         

 

 

and using that           and          , then, using the 

equations above, (8) becomes 

 

  ̇     
      

           ̃   

 (∑       
 
   
   

     ∑       
 
   
   

)                                  Eq. 10 

    
      

           ̃   

 ∑      

 

   
   

 (     )           

 

It is clear that              is an equilibrium point of (10), 

when    ̃          In this way, the tracking problem can 

be restated as a global asymptotic stabilization problem for 

the system (10). 

 

V. TRACKING ERROR STABILIZATION AND CONTROL DESIGN 

 

    In order to establish the convergence of (10) to        
     , which ensures the desired tracking, first, we propose 

the following Lyapunov function 

 

      ∑   

 

   

     

∑  
 

 

 
      

    
           

                                              Eq. 11 
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 ∫   
 

 

   

      
    

          

     
      

    

  

The time derivative of (11), along the trajectories of (10), and 

adding the Derivative "D" 

   
     ∑   

 

 

   

   
    

    
    

       
    

       

  

   
         

    
                                       Eq. 12 
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    If         
  and        ∫   

 

 
     , 

 then     
     

          

 

   
     ∑     

   
 

   
   

      
           ̃   
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    Reformulating (12), we get 

 

   
     ∑ 

 

   

     
 ‖  ‖

     
     

         

   
    ̃   ∑      

 

   
   

  
   (     )    

       
    

       

   
         

    
          

    
                        Eq. 13 

 

Next, let's consider the following inequality, proved in 

[9],[10]: 

 

                   ,                                      Eq. 14 

 

which holds for all matrices X,Y ∈      and Λ ∈      with 

Λ =    > 0. Applying (14) with Λ =      to the term  

 

  
     

                 we get 

 

  
     

         

      
 

 
  

    
 

 
  

         
    

                       Eq. 15 
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Then we have that 
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                        Eq. 16 

  

By simplifying (16), we obtain 
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Since    is Lipschitz with Lipschitz constant     
 [7], then 

 

‖     ‖  ‖ (   
   )          ‖   

     
‖   

          ‖                                                 Eq. 18 
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Applying (18) to   
       

    
      we obtain 
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 ,                                         Eq. 19 

 

 Now (17) is reduced to 
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We define  
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Where       ∫   
 

 
             , and then (20) 

becomes 
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                             Eq. 21 
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    Here, we select(     
)   , so    

     
  ; 

   
   ,then    

   . With this selection of parameters 

(21) is reduced to: 
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    In this part, if     
    

  ,     and       , then 

   
      , ∀          

   , the error tracking is 

asymptotically stable and it converges to zero for every 

    , i.e. the Neural Network will follow the plant 

asymptotically. 

    Now, we propose to use the following control law: 

 

   ̃     (    
)

 

‖   
‖

 
     

 ∑       
 
   
   

 (  )                                              Eq. 22 

 

Then    
       for all     . This means that the proposed 

control law (22) can globally and asymptotically stabilize the 

ith error system (10), therefore ensuring the tracking of (1) by 

(2). Finally, the control action driving the recurrent neural 

networks is given by: 

 

              
      

  (   
     )   

  
 

 
 (    
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‖   
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                ̇    ∫      

 

 

   

  ∑       
 
   
   

                                                 Eq. 23 

 
 Fig. 1 Sub-State and Neural Network of Lorentz's attractor 

with initial condition X₁(0) =                

 

 
 Fig. 2 Sub-States of Chen's attractor with initial condition 

                           

 

 
  Fig. 2.1 Neural Network of Chen's attractor with initial 

condition                        
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VI. SIMULATIONS 

 

    In order to illustrate the applicability of the discussed 

results, we consider a dynamical network with just one 

Lorenz's node and three identical Chen's nodes. The single 

Lorenz system is described by: 

 

(

  ̇

  ̇

  ̇

)  (

         

             

      
 

 
   

)                                  Eq. 24 

                       
 

and the Chen's oscillator is described by 

 

(

   ̇
   ̇
   ̇

)   

 

(

 
 
 
 
 

            ∑               

 

   
   

 

                        ∑                
 

   
   

             ∑                
 

   
   )

 
 
 
 
 

 

                                                             Eq. 25 

  

    If the system parameters are selected as p₁ = 35, p₂ = 3, p₃ 
= 28, then the Lorenz's system and Chen's system are shown 

in Fig. 1 and Fig.2 respectively. In this set of system 

parameters, one unstable equilibrium point of the oscillator 

(25) is                       [11]. 

    Suppose that each pair of two connected Lorenz and 

Chen's oscillators are linked together through their identical 

sub-state variables, i.e., Γ=diag(1,1,1), and the coupling 

strengths are c₁₂ = c₂₁ = π, c₁₃ = c₃₁ = π, c₂₃ = c₃₂ = π, c₁₄ = 

c₄₁ = 2π, c₂₄ = c₄₂ = 2π, c₃₄ = c₄₃ = 2π. Fig. 3 visualizes this 

entire dynamical network: 

 
 

 Fig. 3 Structure of the network with each node being a 

Lorentz and Chen's system. 

 

    The neural network is selected as: 

 

   
 (

    
    
    

),        
 (
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),                        Eq.26 

 

              τ = 10seconds, 

(    
)      

  

   
                           

 

Theorem: For the unknown nonlinear system modeled by 

(1), the on-line learning law   {   }     
       and 

the control law (23) ensure the tracking of nonlinear 

reference model (4), [13]. 

 

Remark: From (21) we have  
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∀           
  , and therefore V is decreasing and bounded 

from below by V(0). Since   
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 ∫   
 

 

   

      
    

          

 

then we conclude that        
    ; this means that the 

weights remain bounded. 

 
 Fig. 4 Time evolution for sub-states 1 with initial state  

   
               

 
 Fig. 5 Time evolution for sub-states 1 with initial state  
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 Fig. 6 Time evolution for sub-states 2 with initial state  

   
               

 

 
 Fig. 7 Time evolution for sub-states 4 with initial state  

   
                 

 

 
 Fig. 8 Time evolution for sub-states 4 with initial state  

   
                 

 

 
 Fig. 9 Time evolution for sub-states 4 with initial state  

   
                 

 

  The experiment is performed as follows. Both systems, the 

delayed neural network (2) and the dynamical networks (24) 

and (25), evolve independently until t=10 seconds; at that 

time, the proposed control law (23) is incepted. Simulation 

results are presented in Fig. 4 - Fig. 6 for sub-sates of node 1. 

As can be seen, tracking is successfully achieved and error is 

asymptotically stable, as it is shown in Fig. 7 -Fig. 9 for 

sub-states of node 4. 
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VII. CONCLUSIONS 

 

    We have presented the controller design for trajectory 

tracking determined by a general complex dynamical 

network. This framework is based on dynamic delayed neural 

networks and the methodology is based on 

Lyapunov-Krasovskii theory. The proposed PID Control 

Law [14] is applied to a dynamical network with each node 

being a Lorenz and Chen's dynamical system [15], 

respectively, being able to also stabilize in asymptotic form 

the tracking error between two systems. The results of the 

simulation shows clearly the desired tracking. In future work, 

we will consider the stochastic case for the complex 

dynamical network. 
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