

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-4, April 2014

 54 www.erpublication.org

Abstract— To build a natural sounding synthesis system, it is

essential that the text processing component produce an

appropriate sequence of phonemic units corresponding to an

arbitrary input text. This paper describes a text-to-speech

system (or “engine”), composed of two parts: a front-end and

back-end. The front-end has two major tasks. First, it converts

raw text containing symbols like numbers and abbreviations

into the equivalent of written-out words. This process is often

called text normalization, pre-processing, or tokenization. The

front-end then assigns phonetic transcriptions to each word, and

divides and marks the text into prosodic units, like phrases,

clauses, and sentences. The process of assigning phonetic

transcriptions to words is called text-to-phoneme or

grapheme-to-phoneme conversion. Phonetic transcriptions and

prosody information together make up the symbolic linguistic

representation that is output by the front-end. The back-end –

often referred to as the synthesizer- then converts the symbolic

linguistic representation into sound. In certain systems, this part

includes the computation of the target prosody (pitch contour,

phoneme durations), which is then imposed on the output

speech.

Index terms- front-end processing, normalization, phonemes,

speech output, synthesizer

I. INTRODUCTION

Speech synthesis enables voice output by machines or

devices. Text-to-speech synthesis does so by using text as

input. The goal of text-to-speech system synthesis is to

convert arbitrary input text to intelligible and natural

sounding speech so as to transmit information from a machine

to a person. Therefore, the system goes beyond simple „cut

and paste‟ system used, for example, in some telecom

applications to read back a phone number. Such systems

string together words spoken in isolation and the artifacts of

such a scheme are often perceptible.

 The methodology used in this system is to exploit acoustic

representations of speech for synthesis, together with

linguistic analyses of text to extract correct pronunciations

and prosody in context. Synthesis systems are commonly

evaluated in terms of three characteristics: accuracy of

rendering the input text, intelligibility of the resulting voice

message, and perceived naturalness of the resulting speech.

We distinguish a system‟s front-end (the part of the system

close to the text input) from the system‟s back-end (part of the

system closer to speech output). Input text, optionally

Manuscript received April 15, 2014

 Sadhana Gopal, Computer Science, Maharshi Dayanad

Universsity,Dronacharya College of Engineering, Gurgaon, India,

9560086374.

Trishant Malik, Computer Science, Maharshi Dayanad

Universsity,Dronacharya College of Engineering, Gurgaon, India,

9811904225.

Seema Devi, Computer Science, Maharshi Dayanad

Universsity,Dronacharya College of Engineering, Gurgaon, India,

9654795967.

Fig.1: Block diagram of a concatenative text-to-speech system showing the

front-end and back-end stages

enriched by that control prosody or other characteristics,

enters the front-end where a text analysis module detects the

document structure, followed by text normalization

(expansion to literal word tokens, encompassing transcription

of acronyms, abbreviations, currency, dates, times, URLs,

etc..) and further linguistic analysis that enables other tasks

down the line. The tagged text then enters a phonetic analysis

block that performs homograph disambiguation, and

grapheme to phoneme conversions. The string of tagged

phones enters into the prosodic analysis block that determines

pitch, duration (and amplitude) targets for each phones.

Finally, the string of symbols that was derived from a given

input word or text is passed on to the speech synthesis

module, where it controls the voice rendering that

corresponds to the input text.

We have attempted to create a system that generates sound

with every key the user inputs. The sound of the phoneme is

generated as the user presses a key. The sounds of the

phonemes are stored in templates, which are matched while

processing the text input corresponding to a key. Since the

system generates sound as and then, the system can be used to

generate sound or pronounce any word in any language.

Fig. 2: General Block Diagram of a text-to-speech system

A simple phoneme based speech recognition system

Sadhana Gopal, Trishant Malik, Seema Devi

A simple phoneme based speech recognition system

 55 www.erpublication.org

II. PREPROCESSING PHASE

The text analysis and normalization module in the front-end

determines to a large extend the „what‟ and „how‟ of the

resulting synthetic speech. The punctuations are not infallible.

For example, the system should not misinterpret the dot after

„in‟ in the example, “The box is 40.5 in. long” as the end of the

sentence. In addition, punctuation and other special

characters can be a part of a time, date, or currency

expression. Text normalization is difficult because it is

context sensitive (e.g., $2.6 million = two point six million

dollars).

Abbreviations and acronyms fall in either of two categories.

The first category contains a finite set of known „mappings‟

such as “Dr.” in the sentence “Dr. William lives on Smith

Dr.”. Note that a mapping may be ambiguous. In this case,

“Dr.” can refer to either „doctor‟ or „drive‟. More difficult to

handle, however, is the open category of abbreviations that

people invent on the fly. Therefore, it may be necessary to

handle certain text. Normalization tasks in form of a domain

specific text “filter” that would alter the raw text before it

passed on to the system as depicted in the figure. Applications

like e-mail reading or web page reading, for example, also

requires text filters to strip out mundane header or formatting

information. Even the simple reading of number can be

difficult, such as „370‟, where the 370 can be part of a phone

number (370- 11 11, read as “three-seven-zero. . .”) or part of

a name (e.g., IBM370, read as “i-b-m-three-seventy”). Thus,

the performance of the text analysis and normalization

module affects the accuracy rating of a text-to-speech system.

Linguistic analysis in the front-end encompasses the

determination of parts of speech (POS), word sense,

emphasis, appropriate speaking style, and speech acts. A

linguistic parser could be used, but typically only a shallow

analysis is done for computational speed.

III. SYNTHESIZER TECHNOLOGIES

The most important qualities of a speech synthesis system are

naturalness and intelligibility. Naturalness describes how

closely the output sounds like human speech, while

intelligibility is the ease with which the output is understood.

The ideal speech synthesizer is both natural and intelligible.

Speech synthesis systems usually try to maximize both

characteristics.

The two primary technologies generating synthetic speech

waveforms are concatenative synthesis and formant synthesis.

Each technology has strengths and weaknesses, and the

intended uses of a synthesis system will typically determine

which approach is used.

A. Concatenative synthesis

Concatenative synthesis is based on the concatenation (or

stringing together) of segments of recorded speech.

Generally, concatenative synthesis produces the most

natural-sounding synthesized speech. However differences

between natural variations in speech and the nature of the

automated techniques for segmenting the waveforms

sometimes result in audible glitches in the output.

B. Formant synthesis

Formant synthesis does not use human speech samples at

runtime. Instead, the synthesized speech output is created

using additive synthesis and an acoustic model (physical

modeling synthesis). Parameters such as fundamental

frequency, voicing, and noise levels are varied over time to

create a waveform of artificial speech. This method is

sometimes called rules-based synthesis; however, many

concatenative systems also have rules-based components.

Many systems based on formant synthesis technology

generate artificial, robotic-sounding speech that would never

be mistaken for human speech. However, maximum

naturalness is not always the goal of a speech synthesis

system, and formant synthesis systems have advantages over

concatenative systems. Formant –synthesized speech can be

reliably intelligible, even at very high speeds, avoiding the

acoustic glitches that commonly plague concatenative

systems.

Text normalization challenges

The process of normalizing text is rarely straightforward.

Texts are full of heteronyms, numbers, and abbreviations that

all require expansion into a phonetic representation. There are

many spellings in English which are pronounced differently

based on context. For example, “My latest project is to learn

how to better project my voice” contains two pronunciations

of “project”.

Recently TTS systems have begun to use HMMs to generate

“parts of speech” to aid in disambiguating homographs. This

technique is quite successful for many cases such as whether

“read” should be pronounced as “red” implying past tense, or

as “reed” implying present tense. Typical error rates when

using HMMs in this fashion are usually below five percent.

These techniques also work well for most European

languages, although access to required training corpora is

frequently difficult in these languages.

Deciding how to convert numbers is another problem that

TTS systems have to address. It is a simple programming

challenge to convert a number into words (at least in English),

like “1325” becoming “one thousand three hundred and

twenty- five.” However, numbers occur in many different

contexts; “1325” may also be read as “one three two five”,

“thirteen twenty-five” or “thirteen hundred and twenty five”.

A TTS system can often infer how to expand a number based

on surrounding words, numbers, and punctuation, and

sometimes the system provides a way to specify the context if

it is ambiguous. Roman numerals can also be read differently

depending on context. For example “Henry VIII” reads as

“Henry the Eighth”, while “Chapter VIII” reads as “Chapter

Eight”.

Similarly, abbreviations can be ambiguous. For example, the

abbreviation “in” for “inches” must be differentiated from the

word “ in”, and the address “12 St John St.” uses the same

abbreviation for both “Saint” and “Street”. TTS systems with

intelligent front-ends can make educated guesses about

ambiguous abbreviations , while others provide the same

result in all cases, resulting in nonsensical (and sometimes

comical) outputs, such as “co-operation” being rendered as

“company operation”.

Fig. 2: General Block Diagram of a text-to-speech system

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-4, April 2014

 56 www.erpublication.org

Fig.3: Screen-shot of the implementation

IV. TEXT-TO-PHONEME CHALLENGES

Speech synthesis systems use two basic approaches to

determine the pronunciation of a word based on its spelling, a

process which is often called text-to phoneme or

grapheme-to-phoneme conversion (phoneme is the term used

by linguists to describe distinctive sounds in a language). The

simplest approach to text-to-phoneme conversion is the

dictionary-based approach, where a large dictionary

containing all the words of a language and their correct

pronunciations is stored by the program. Determining the

correct pronunciation of each word is a matter of looking up

each word in the dictionary and replacing the spelling with the

pronunciation specified in the dictionary. The other approach

is rule-based, in which pronunciation rules are applied to

words to determine their pronunciations based on their

spellings. This is similar to the “sounding out”, or synthetic

phonics, approach to learning reading.

V. APPLICATIONS

Speech synthesis has long been a vital assistive technology

tool and its application in this area is significant and

widespread. It allows environmental barriers to be removed

for people with a wide range of disabilities. The longest

application has been in the use of screen readers for people

with visual impairment, but text-to-speech systems are now

commonly used by people with dyslexia and other reading

difficulties as well as by pre-literate children. They are also

frequently employed to aid those with severe speech

impairment usually through a dedicated voice output

communication aid.

Speech synthesis techniques are also used in entertainment

productions such as games and animations.

In recent years, Text to Speech for disability and handicapped

communication aids have become widely deployed in Mass

Transit. Text to Speech is also finding new applications

outside the disability market. For example, speech synthesis,

combined with speech recognition, allows for interaction with

mobile devices via natural language processing interfaces.

VI. CONCLUSION

We would conclude by highlighting some aspects of

Text-to-Speech (TTS) synthesis with a slant towards catering

to electrical engineers. Many aspects, such as, for example,

prosody generation, natural language processing, and others,

have been skimmed only for space reasons. It is clear that TTS

systems have come a long way towards delivering

high-quality output to users that sometimes fools them to

believe that they are listening to recordings. This said, it is

also clear that we are still far from delivering the perfect

synthesis for all possible applications. One of the most

important finding of this paper is that we achieved very good

phoneme recognition accuracy with a very simple phoneme

model. Despite the fact that the phoneme recognition

accuracy was not increased, our simple phoneme recognition

system warrants stable and reliable behavior with a good

recognition and synthesis performance.

REFERENCES

[1] C. Bickley, A. Syndral, and J. Schroter, “Speech Synthesis”, in The

Acoustics of Speech Communication.

[2] T. Dutoit, An Introducion to Text-to-Speech synthesis.

[3] M.M.Sondhi and D.J.Sinder, “Arculatory Modeling: a role in

concatenative text-to-speech synthesis” in Text-to-Speech Synthesis:

New Paradigms and advances.

[4] Lee, K-F., Hon, W-F., Speaker independent phone recognition using

hidden Markow Models, IEEE Transactions on Acoustics, Speech and

Signal processing.

[5] J.P.H. Van Santen, “Combinatorial Issues in text to speech synthesis”.

[6] M.J. Makashay, C.W. Whiteman, A.K.Sydral and A.D.Conkie,

“Perceptual Evaluation of automatic segmentation in text-to-speec

synthesis”.

[7] Y.Yagiska, N.Kaiki, N.Iwahashi, and K.Mimura, “ATR-v-Talk speech

synthesis system”.

[8] O. Fujimura and J.Lovins, “Syllables as concatenative phonetic

elements”.

[9] W. Klejin and K. Paliwal, Eds, Speech Coding andSynthesis.

