

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-2, February 2014

 1 www.erpublication.org

Abstract— Illegal peer-to-peer file-sharing

applications suffer from a fundamental problem. Download a lot

of free riders, is used to transmit to others by contributing little

or no upload bandwidth which slows to download. Contributing

as little as possible from the system as much as possible, but

taking a lot of free riders, and the lack of quality of service

guarantees to support streaming applications. Torrent

downloaded from a peer, it is fair, minus the number of bytes

indicates the number of bytes uploaded maintains a deficit

counter. Torrent free-riders and strategic peers is fair, easy to

implement resilient exploit, any bandwidth allocation, the

number of peers to estimate rates, no centralized control, and

need no parameter tuning. Bit Torrent rule changes a Bit

Torrent client running inside the Fair Torrent, and other

widely-used Bit Torrent clients compared to its performance

against the Planet Lab. Our results contribute to a Fair Torrent

peers , two orders of magnitude better fairness, up to five times

better download provides up to , and live an average of 60 %

-100% in swarms Bit Torrent is a good performance .

Index Terms— Peer-to-Peer, Network, Protocol, Torrent,

Performance, Distributed.

I. INTRODUCTION

The Internet has witnessed a rapid growth in the

popularity of various Peer-to-Peer (P2P) applications during

recent years. In particular, today’s P2P file-sharing

applications (e.g., Fast Track, eDonkey, Gnutella) are

extremely popular with millions of simultaneous clients and

contribute a significant portion of the total Internet traffic .

These applications have evolved over the past several years to

accommodate growing numbers of participating peers. In

these applications, participating peers form an overlay which

provides connectivity among the peers, allowing users to

search for desired files. Typically, these overlays are

unstructured where peers select neighbors through a

predominantly ad-hoc process this is different from

structured overlays. Most modern file-sharing networks use a

two-tier topology where a subset of peers, called ultra peers,

form an unstructured sparse graph while other participating

peers, called leaf peers, are connected to the top-level overlay

through one or multiple ultra peers. More importantly, the

overlay topology is continuously reshaped by both

Manuscript received January 31, 2014.

 Kode Durga Prasad, Final Year MCA

 S.Senthil Kumar, Assistant Professor, Sathyabama University, Tamil

Nadu, India.

D.Saravanan, Assistant Professor, Sathyabama University, Tamil Nadu,

India.

user-driven dynamics of peer participation as well as

protocol-driven dynamics of neighbor selection. In a nutshell,

as participating peers join and leave, they collectively, in a

decentralized fashion, form an unstructured and dynamically

changing overlay topology.

This work focuses on developing an accurate

understanding of the topological properties and dynamics of

large-scale unstructured P2P networks, via a case study. Such

an understanding is crucial for the development of P2P

networks with superior features including better search,

availability, reliability and robustness capabilities. For

instance, the design and simulation-based evaluation of new

search and replication techniques has received much attention

in recent year’s .These studies often make certain assumptions

about topological characteristics of P2P networks (e.g., a

power-law degree distribution) and usually ignore the

dynamic aspects of overlay topologies. However, little is

known today about the topological characteristics of popular

P2P file sharing applications, particularly about overlay

dynamics. An important factor to note is that properties of

unstructured overlay topologies cannot be easily derived from

the neighbor selection mechanisms due to implementation

heterogeneity and dynamic peer participation. Without a solid

understanding of the topological characteristics of

file-sharing applications, the actual performance of the

proposed search and replication techniques in practice is

unknown and cannot be meaningfully simulated. In this case

study, we examine one of the most popular file-sharing

systems, Gnutella, to cast light on the topological properties

of peer-to-peer systems.

II. 2. PROBLEM DEFINITION

A. Existing System:

Previous studies that captured P2P overlay topologies with a

crawler either relay on slow crawlers, which inevitably lead to

significantly distorted snapshots of the overlay , or capture

only a portion of the overlay which is likely to be biased (and

non-representative) . These studies do not examine the

accuracy of their captured snapshots and only conduct limited

analysis of the overlay topology. More importantly, these few

studies are outdated (more than three years old), since P2P

file sharing applications have significantly increased in size

and incorporated several new topological features over the

past few years.

Distributed Scheduling algorithm to bringing

Fairness to Peer-to-Peer Systems

Kode Durga Prasad, S.Senthil Kumar, D.Saravanan

Distributed Scheduling algorithm to bringing Fairness to Peer-to-Peer Systems

 2 www.erpublication.org

Fig 1. Existing System

B. Proposed System:

Precisely capturing the overlay topology of a large scale p2p

network is demanding. A common approach is to use a

topology crawler that progressively queries peers to

determine their neighbors. The captured topology will be a

snapshot of the system as a graph; the peers will be

represented as vertices and the connections as edges.

However, capturing accurate snapshots is inherently difficult

for two reasons:

(i) Overlay topologies change as the crawler

operates, and

(ii) A non-negligible fraction of peers in each

snapshot are not directly reachable by the

crawler. When a crawler is slow relative to the

rate of overlay change, the resulting snapshot

will be significantly destroyed.

Additionally, accuracy verification of a crawler’s snapshot is

difficult because authoritative reference snapshots are not

available. Techniques are introduced for studying the

accuracy of a crawler focusing on developing a precise

understanding.

III. EXPERIMENTAL SETUP

A. Fair Torrent Algorithm

Fair Torrent implements a distributed algorithm that provides

fair bandwidth exchange even in the presence of diverse

individual peer bandwidth capacities while preserving good

download performance. For compatibility with Bit Torrent,

Fair Torrent uses the same Bit Torrent protocol, torrent files,

and tracker service. Fair Torrent is executed individually by

each peer and does not relay on any global allocation or

management service beyond what is already provided by Bit

Torrent. To describe the Fair Torrent algorithm, we use the

definitions of seeds and leechers from Bit Torrent and the

terminology in Table 1. Section 3.1 describes the

deficit-counter- based main routines of Fair Torrent which

exchange data between leechers. Further, describe other

important considerations including an even-split seed

behavior, a new method for dealing with unchoking, and

dynamic considerations.

Procedure 1 : (RECVPACKET) is executed by Li whenever

a packet from some peer j is received by Li. RECVPACKET

checks that peer j is a leecher. If peer j is a leecher, Fair

Torrent increments Recvij and decrements DFij by the

number of bytes received from Lj, and re-inserts Lj into the

SortedPeerList sorted from lowest to highest deficit values

DFij . For simplicity, ties between deficit values are broken

using unique peer IDs.

Procedure 1(RECVPACKET)

Table 1. Abbreviations List

Procedure 2: (SENDPACKET) is executed by Li when it is

ready to send a packet. Each peer has an upload rate μi, which

is expressed in KB per second. Thus, every 1/(μi/packet size)

seconds, Li calls procedure SENDPACKET, which tries to

pick a leecher with the lowest possible value of DFij . It

examines the SortedPeerList starting at the lowest index

(which contains the peer with the lowest DFij) and picks the

first peer j0 from whom there is a pending request and the

connection is writable (i.e. there is room in the TCP socket

buffer). Fair Torrent tries to send a packet of up to packet

size bytes, but then increments Sentij0 and

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-2, Issue-2, February 2014

 3 www.erpublication.org

 DFij0 with the bytes that were actually sent to j0 and reinserts

j0 into the SortedPeerList. Fair Torrent uses a packet size of

16 KB for compatibility with older Bit Torrent

implementations, and for simplicity given the default 16 KB

sub-piece request size in

 Bit Torrent. Other Bit Torrent clients typically also use a 16

KB packet size. It is possible that SENDPACKET may not

have any data of interest to send to the peer with the lowest

deficit. In this case, Fair Torrent just sends data to the next

best peer, allowing for maximum utilization of the leecher’s

upload capacity. Since the deficit DFij with the lowest-deficit

peer is always maintained, data will be sent to this peer when

it becomes available, and the fairness is preserved. Procedure

SENDPACKET assumes the existence of several other

procedures. HPRF(j), or

HAVEPENDINGREQUESTFROM(j), retur-ns true if there

is a pending request from peer j. CWT(j), or

CANWRITETO(j), returns true if there is room in j’s buffer

to send a packet. SEND is the procedure that actually sends

the packet from i to j.

Procedure 2 (SENDPACKET)

IV. CONCLUSIONS AND FUTURE WORK

Fair Torrent is a fully distributed p2p algorithm which

provides each peer with better service proportional to its

bandwidth contribution. Fair Torrent’s deficit-based

distributed algorithm is free from some demerits of previous

methods that suffered from slow peer discovery, inaccurate

bandwidth estimates, bandwidth under utilization and

complex tuning of parameters. Fair Torrent does not require

bandwidth estimates, a centralized system, peer reputation, or

third-party credit-keeping services. We compared Fair

Torrent against Bit Torrent, Azure us, Prop Share, and Bit

Torrent. We have demonstrated that because of its high

degree of fairness as compared to other p2p systems, Fair

Torrent can provide much better performance for

participating peers in a number of situations: 30% - 68%

better performance in the uniform distribution, 3-5 times

improvement for a high uploader in a skewed distribution.,

37% - 56% better performance for high contributors in a

dynamic situation with line capacities, and 60% - 100% better

performance in live swarms. Fair Torrent is resilient to

free-riders, low contributors, and strategic peers in both Fair

Torrent and Non-Fair Torrent networks. By replacing the high

contributors in very popular Azures network, Fair Torrent

enhances the performance of not only high contributors but

also the entire system, showing that Fair Torrent is adaptable

to gradual adoption by users. We are convinced that high

fairness and performance guarantees of Fair Torrent establish

a strong foundation for developing more reliable and robust

p2p services.

Experimental Result:

Fig 2.Active peers

Fig 3. Random Peer

Fig 4. Requestion System

Fig 5. Uploading File

Distributed Scheduling algorithm to bringing Fairness to Peer-to-Peer Systems

 4 www.erpublication.org

Fig 6. Downloading File

Fig 7. Browse the file

Fig 8. File Sharing

Fig 9. Peer list in file sharing

REFERENCES

[1] A. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and C. Porth,

“BAR fault tolerance for cooperative services,” in Proc. 20th

ACM SOSP, Oct. 2005, pp. 45–58.

[2] D.Saravanan, Dr.S.Srinivasan, “Data Mining Framework for

Video Data”, In the Proc.of International Conference on Recent

Advances in Space Technology Services & Climate Change

(RSTS&CC-2010), held at Sathyabama University, Chennai,

November 13-15, 2010.Pages 196-198.

[3] Vuze, “Azureus,” 2010 [Online]. Available:

http://www.azureus.com.

[4] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case fair weighted

fair queuing,” in Proc. 15th IEEE INFOCOM, Mar. 1996, pp.

120–128.

[5] D.Saravanan, Dr.S.Srinivasan, ”Matrix Based Indexing Technique

for Video Data “, International journal of Computer Science”, 9

(5): 534-542, 2013,pp 534-542.

[6] K. Berer and Z. Despotovic, “Managing trust in a peer-to-peer

infor- mation system,” in Proc. ACM CIKM, Nov. 2001, pp.

310–317.

[7] D.Saravanan, Dr.S.Srinivasan, “Video Image Retrieval Using Data

Mining Techniques “Journal of Computer Applications, Volume

V, Issue No.1. Jan-Mar 2012. Pages39-42. ISSN: 0974-1925.

[8] D.Saravanan, Dr.S.Srinivasan, “ A proposed New Algorithm for

Hierarchical Clustering suitable for Video Data mining.”,

International journal of Data Mining and Knowledge

Engineering”, Volume 3, Number 9, July 2011.Pages 569

[9] A. Bharambe, C. Herley, and V. Padmanabhan, “Analyzing and

improving a Bit Torrent networks performance mechanisms,” in

Proc. 25th IEEE INFOCOM, Apr. 2006, pp. 1–12.

[10] B. Cohen,“Incentives build robustness in Bit Torrent,” presented

at the 1st Workshop Econ. Peer-to-Peer Syst., Jun. 2003.

[11] F. Cornelli, E. Damiani, S. D. C. di Vimercati, S. Paraboschi, and

P. Samarati, “Choosing reputable servents in a P2P network,” in

Proc. 11th WWW, May 2002, pp. 376–386.

http://www.azureus.com/

