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  Abstract— Several classes of denoising algorithms such as 

total variation (TV) , wavelets  and nonlocal means have all 

achieved much success. These algorithms are based on different 

theories, and all show good performance in denoising. When 

denoising an image, the TV method makes use of the geometric 

features of the image, the wavelet method makes use of the 

statistical features of the coefficients, and the nonlocal means 

method makes use of the redundancy in the image texture 

features. However, the features that have been used by these 

methods all come from the noisy image itself. In fact, the image 

features acquired by other sensors from the same scene can also 

be used as priors in denoising. In many situations involving 

multicomponent remotesensing images, a single-component 

image with a higher SNR or  higher spatial resolution is often 

available. In the past, such an auxiliary image was applied for 

fusion with a multispectral image to improve its spatial 

resolution. In fact, the auxiliary noise-free image is a more 

suitable aid to denoising. In  an auxiliary image as a prior is used 

to assist in denoising or deblurring the image, but this is not 

suitable for a remote-sensing image, and the auxiliary noisy 

image must come from the same sensor. There has been some 

research on denoising based on such an auxiliary image in the 

remotesensing field. The goal of our approach is denoising. In 

this letter, following the ideas  and, the correlation between the 

different bands of multicomponent images is used. The auxiliary 

image as the prior is introduced into the TV or partial 

differential equation (PDE) denoising method. Moreover, the 

auxiliary image is applied in the form of a “noise-free” 

single-component image (no image is completely noise-free and 

by “noise-free”  mean “with a high SNR”). 

 

Index Terms— total variation, wavelet method, pde. 
 

I. INTRODUCTION 

  In recent years, several classes of denoising algorithms such 

as total variation (TV),wavelets and nonlocal means have all 

achieved much success. These algorithms are based on 

different theories, and all show good performance in 

denoising. When denoising an image, the TV method makes 

use of the geometric features of the image, the wavelet method 

makes use of the statistical features of the coefficients, and the 

nonlocal means method makes use of the redundancy in the 

image texture features. However, the features that have been 

used by these methods all come from the noisy image itself. In 

fact, the image features acquired by other sensors from the 

same scene can also be used as priors in denoising. 
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 In many situations involving multicomponent remote sensing 

images, a single-component image with a higher SNR or 

higher spatial resolution is often available. In the past, such an 

auxiliary image was applied for fusion with a multispectral 

image to improve its spatial resolution. In fact, the auxiliary 

noise-free image is a more suitable aid to denoising. Normally  

an auxiliary image as a prior is used to assist in denoising or 

deblurring the image, but this is not suitable for a 

remote-sensing image, and the auxiliary noisy image must 

come from the same sensor. There has been some research on 

denoising based on such an auxiliary image in the 

remotesensing field. In hyperspectral images, the infrared part 

of the spectrum contains noise near the water-vapor 

absorption band. To denoise these bands, image bands from 

other parts of the spectrum can be applied as noise-free 

images. Recently, a multispectral and hyperspectral image 

denoising algorithm has been proposed and has achieved 

good results, where within the Bayesian framework, the extra 

initial information is included in the form of a noise-free 

single-band image. The goal of our approach is denoising. In 

this case,the correlation between the different bands of 

multicomponent images is used. The auxiliary image as the 

prior is introduced into the TV or partial differential equation 

(PDE) denoising method. Moreover, the auxiliary image is 

applied in the form of a ―noise-free‖ single-component image 

(no image is completely noise-free and by ―noise-free‖ we 

mean ―with a high SNR‖). To illustrate the proposed method, 

we experiment on the multispectral and hyperspectral remote 

sensing. 

Visual information transmitted in the form of digital images is 

becoming a major method of communication in the modern 

age, but the image obtained after transmission is often 

corrupted with noise. The received image needs processing 

before it can be used in applications. Image denoising 

involves the manipulation of the image data to produce a 

visually high quality image. 

 

II. TOTAL VARIATION DENOISING  

Reduces the total-variation of the image. Filters out noise 

while preserving edges. Textures and fine-scale details are 

also removed. In this demo the assumption is that a white 

Gaussian noise is added with a-priori known (or estimated) 

noise power (variance). The fidelity term to the input image is 

calculated automatically so that the power of the noise is 

reduced. 
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    Fig.1: Noisy input   Filtered by TV 

A. TEXTURE PRESERVING TV 

 Reduces selectively the total-variation of the image. 

Generalization of the TV process to adaptive power 

constraints. Denoising is strong in smooth regions and weaker 

in textured regions.  Preserves better texture and fine-scale 

details. This is a two-phase process where the noise and 

textures are first isolated by scalar TV. The adaptive 

process then imposes local power constraints based on local 

variance measures of the first phase. 

a)  ANALYSIS 

We assume that the image acquisition system may be 

modelled by the following image formation model 

z = h * u + n, (1) 

where u: R2 → R denotes the ideal undistorted image, h: R2 

→ R is a blurring kernel, z is the observed image which is 

represented as a function z : R2 → R, and n is an additive 

Gaussian white noise with zero mean and standard deviation 

σ. 

Let us denote by  the interval (0,N]
2.
 As in most of 

works, in order to simplify this problem, assume that the 

functions h and u are periodic of period N in each direction. 

That amounts to neglecting some boundary effects. Therefore, 

assume that h, u  and, to fix ideas, 

we assume that h, u ∈ L2(  ). Our problem is to recover as 

much as possible of u, from our knowledge of the blurring 

kernel h, the statistics of the noise n, and the observed image 

z. The problem of recovering u from z is ill-posed due to the 

ill-conditioning of the operator Hu = h * u. Several methods 

have been proposed to recover u. Most of them can be 

classified as regularization methods which may take into 

account statistical properties (Wiener filters), information 

theoretic properties, a priori geometric models or the 

functional analytic behavior of the image given in terms of its 

wavelet coefficients. 

The typical strategy to solve this ill-conditioning is 

regularization. Probably one of the first examples of 

regularization method consists in choosing between all 

possible solutions of (1) the one which minimized the Sobolev 

(semi) norm of u. Usually, the only information we know 

about the noise is statistical and limited to an estimate of its 

mean and its variance. In that case, the model equation (1) is 

incorporated as a set of constraints for (2): a first constraint 

corresponding to the assumption that the noise has zero mean, 

and a second one translating the fact that σ is an upper bound 

of the standard deviation of n. 

This formulation was an important step, but the 

results were not satisfactory, mainly due to the unability of the 

previous functional to resolve discontinuities (edges) and 

oscillatory textured patterns. The smoothness required by the 

Dirichlet integral is too restrictive and information 

corresponding to high frequencies of z is attenuated by it. The 

a priori hypothesis is that functions of bounded variation (the 

BV model) are a reasonable functional model for many 

problems in image processing, in particular, for restoration 

problems. Typically, functions of bounded variation have 

discontinuities along rectifiable curves, being continuous in 

some sense (in the measure theoretic sense) away from 

discontinuities. The discontinuities could be identified with 

edges. The ability of total variation regularization to recover 

edges is one of the main features which advocate for the use of 

this model but its ability to describe textures is less clear, even 

if some textures can be recovered, up to a certain scale of 

oscillation. 

III. WAVELET DENOISING OF MULTICOMPONENT 

IMAGES  

Here wavelet denoising of multicomponent images using 

gaussian scale mixture models and a noise-free image as 

priors is discussed. Bayesian wavelet-based denoising 

procedure for multicomponent images is proposed. A 

denoising procedure is constructed that 1) fully accounts for 

the multicomponent image covariances, 2) makes use of 

Gaussian scale mixtures as prior models that approximate the 

marginal distributions of the wavelet coefficients well, and 3) 

makes use of a noise-free image as extra prior information. It 

is shown that such prior information is available with specific 

multicomponent image data of, e.g., remote sensing and 

biomedical imaging. Experiments are conducted in these two 

domains, in both simulated and real noisy conditions. 

Here, a wavelet-based denoising strategy of 

multicomponent images is proposed. There, a threshold value 

was derived using the discrete wavelet transform. The 

threshold value was universal, i.e., independent of the 

subband, and soft, i.e., all wavelet coefficients below the 

threshold were removed, and all others were shrunk by the 

threshold value. Later on, threshold values were derived that 

became adaptive, i.e., dependent of the specific subband. For 

this, Bayesian approaches were applied, where a prior model 

for the noise-free signal pdf was assumed. Popular priors are 

generalized Laplacian models and Gaussian scale mixture 

(GSM) models. Recently, several wavelet-based procedures 

for multicomponent images were proposed. Denoising was 

performed that accounted for the multicomponent image 

covariances, applying wavelet thresholding, mean 

squared-error estimation and Bayesian estimation, using 

different prior models: Gaussian models, GSM models, 

Laplacian models, and Bernouilli– Gaussian models. From 

these it is clear that a superior denoising of multicomponent 

images is obtained when accounting for the full 

multicomponent image covariance structure, and when a good 

approximation of the wavelet coefficients marginals is used. 

A comparative study of these different techniques showed that 

all heavy tailed prior models outperformed the multinormal 

model. When compared with each other, they provided 

similar results and can, thus, be regarded as state of the art 

denoising techniques for multicomponent images. In this 

paper, a Bayesian estimator is constructed that makes use of 

such a heavy tailed multicomponent model for the noise free 

signal. Moreover, other prior information is applied in the 

form of a ―noise-free‖ single-component image (of course, no 

image is completely noise-free, with ―noise-free‖ we mean ―of 

high SNR‖). In many practical situations involving 

multicomponent images, a single-component image of higher 

spatial resolution and/or SNR is available. In remote sensing, 

e.g., a higher-resolution sensor might be available. In the past, 

such auxiliary image was applied for fusion with a 
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multispectral image to improve the latter’s spatial resolution 

while maintaining the spectral information. Several fusion 

procedures were worked out in the wavelet domain. An 

example is given by the fusion of Panchromatic data of a 

SPOT satellite system with Landsat Thematic Mapper 

multispectral images.In hyperspectral images, the infrared 

(IR) part of the spectrum contains noisy bands near the water 

vapor absorption band. To denoise these bands, image bands 

from other parts of the spectrum could be applied as 

noise-free images. In medical imaging, different images from 

the same or different modalities with various resolution and 

SNR can be acquired, e.g., in functional MR or diffusion 

tensor MR studies, noisy multicomponent images are 

acquired using fast acquisition procedures. During the same 

examination, anatomical information is obtained, that can be 

applied as an extra diagnostic tool. Such auxiliary image 

information is regularly applied for visualization or 

registration purposes.  A technique is proposed to enhance the 

resolution of hyperspectral remote sensing images, with the 

aid of a high-resolution auxiliary sensor. The goal of our 

approach is denoising, rather than resolution enhancement. 

For this, the technique is extended to wavelet domain. In this 

way, we obtain a multiresolution Bayesian framework that 

accounts for the correlation between a multicomponent image 

and an auxiliary noise-free image, in order to improve the 

SNR of the first. In order to model the wavelet coefficients, 

multicomponent models should be applied. Since the 

difference between the three proposed multicomponent 

heavy-tailed priors in were minor, we conjecture that the 

choice of the prior in this paper is not too critical as long as it 

is a heavy tailed multicomponent prior. Since the Laplacian 

model is not rigorously extendable to the multicomponent 

case, and the multicomponent Bernouilli–Gaussian model 

was originally introduced by other authors, in this paper we 

choose to apply the GSM model. Since the proposed 

procedure makes use of correlations, it is important that the 

multicomponent image and the auxiliary image are 

geometrically coregistered. In some applications, this causes 

no real problem, since the same sensor is applied for the 

images. As an example, we will demonstrate the procedure on 

a hyperspectral remote sensing image to denoise the bands 

near the water vapor absorbtion band. In some applications 

the misalignment is small, such as, e.g., in intramodal medical 

acquisition systems; in others, it should be performed a priori. 

In order to study the misregistration effects on the propoesed 

procedure, we include a simulation experiment with 

misaligned images.  

 

A. DENOISING FRAMEWORK 

i.     Nondecimated Wavelet Transform 

The wavelet transform reorganizes image content 

into a low-resolution approximation and a set of details of 

different orientations and different resolution scales. A fast 

algorithm for the discrete wavelet transform is an iterative 

filter bank algorithm of Mallat, where a pair of high-pass and 

low-pass filters followed by downsampling by two is iterated 

on the low-pass output. The outputs of the low-pass filter are 

the so-called scaling coefficients and the outputs of the 

high-pass filter are the wavelet coefficients. At each 

decomposition level, the filter bank is applied sequentially to 

the rows and to the columns of the image. Low-pass filtering 

of both the rows and the columns yields the low-pass LL 

subband (i.e., approximation subband consisting of the 

scaling coefficients). Other combinations of low-pass and 

high-pass filtering yield the wavelet subbands at different 

orientations: high-pass filtering of rows and low-pass filtering 

of columns (HL) yields horizontal edges and the opposite 

combination (LH) yields vertical edges, while high-pass 

filtering of both the rows and the columns (HH) yields 

diagonal edges. 

The jth decomposition level yields the coefficients at 

the resolution scale 2
j
. A full signal representation consists of 

the scaling coefficients at the resolution level J and of all the 

wavelet coefficients at the resolution levels 1 to J. The total 

number of these coefficients, due to downsampling by 2 at 

each stage, equals the number of the input image samples. 

This is a critically sampled transform with precisely enough 

coefficients for the perfect reconstruction. Despite their 

mathematical elegance and a remarkable signal/ image 

compression ability, critically sampled representations are 

less attractive for denoising. These representations lack shift 

invariance, meaning that the wavelet coefficients of a shifted 

signal differ from the shifted wavelet coefficients of the 

unshifted signal. In image denoising, better results are offered 

by redundant wavelet representations. In this paper, we use a 

nondecimated wavelet transform implemented with the 

algorithm àtrous. The algorithm inserts 2
j
-1 zeroes between 

the filter coefficients at the resolution level j. Downsampling 

of the filter outputs is excluded, so the size of each wavelet 

subband equals the size of the input image. 

 

ii. Wavelet Processing of Multicomponent Data 

A natural way of exploiting the multicomponent 

correlations is by vector-based processing, operating on all 

the components simultaneously. Let sl
(j,o,b)

denote the 

noise-free wavelet coefficient at spatial position l , resolution 

level j, orientation subband o , and image component b . 

xl
(j,o,b)

 , and nl
(j,o,b)

 are the corresponding wavelet coefficients 

of the observed noisy image and noise, respectively. A vector 

processing approach groups the  xl
(j,o,b) 

 wavelet coefficients of 

all the components at a given spatial position, within a 

subband of a given orientation and resolution level into a 

-dimensional vector 

 
Equivalent processing is typically applied to all the wavelet 

subbands, and, hence, we shall omit the indices that denote the 

resolution level j and orientation. In each wavelet subband, a 

multicomponent pixel obeys the additive noise model 

                                        x=s+n 

where the probability density function (i.e., density) of  n is a 

multivariate Gaussian of zero mean and covariance matrix 

 is defined 

as the zero mean multivariate Gaussian distribution with 

covariance C . Cx denotes the covariance matrix of the noisy 

vector x, and the Ĉs estimate of the covariance matrix of the 

unknown noise-free vector s. The noise covariance in each 

wavelet subband is, in general, a scaled version of the input 

image noise covariance, where the scaling factors depend on 

the wavelet filter coefficients. With the orthogonal wavelet 

families that we use in this paper, the noise covariance in all 

the wavelet subbands is equal to the input image noise 

covariance. Let Cn denote the noise covariance in the input 
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image. When conducting experiments with real noisy data, the 

noise covariance will be estimated separately. The signal 

covariance matrix is estimated as  

 
 Since Ĉs is a covariance matrix, it needs to be positive 

semi-positive definite. This is assured by performing an eigen 

value decomposition and clipping possible negative eigen 

values to zero. In the rare event of negative eigen values 

occurring, they were observed to be negligible. 

 

B. ESTIMATION APPROACH AND OPTIMIZATION 

CRITERION 

Various linear and nonlinear (adaptive) methods can be 

applied in data denoising. We focus on the Bayesian 

approach, where a priori knowledge about the distribution of 

the noisefree data is assumed. In particular, we impose a 

multicomponent prior distribution (to be called hereafter 

prior) on the noise-free wavelet coefficients in a given 

subband. As an optimization criterion, we adopt minimization 

of the mean squared error, i.e., the Bayesian risk is a 

quadratic loss function. The minimum mean-squared error 

(MMSE) estimate is the posterior conditional mean 

 
Assuming, e.g., a Gaussian prior for the noise-free signal as 

                     
 the above MMSE estimate is the Wiener filter 

 
The proposed technique has some advantages over 

standard denoising of each image component. It accounts for 

the full covariance structure of the multicomponent image, it 

makes use of a prior that approximates well the marginal 

distributions of the wavelet coefficients, and it makes use of a 

noise-free image as extra prior information. In order to 

demonstrate the impact of these three advantages on the 

improvement of the performance, the following denoising 

strategies are applied to  compare. 

• Single component denoising, where each band image is 

treated independently. A Gaussian prior model is assumed. 

This is the Wiener filter in wavelet domain. 

• Multicomponent denoising, where the correlations between 

the different components are exploited.  A Gaussian prior is 

assumed. 

• Multicomponent denoising, assuming the GSM model as a 

prior to better model the marginal distributions of the wavelet 

coefficients. 

• Multicomponent denoising, using a noise-free single 

component image, using a Gaussian prior. 

• Multicomponent denoising, using a noise-free single 

component image, using a GSM prior. 

If the noise is simulated, the performance of the 

different denoising techniques can be quantitatively described 

by the PSNR (in dB), defined for 8-bit images as 

 

 
When adding the noise-free image, the difference 

between Gaussian and GSM model becomes clear; with the 

Gaussian prior, the noise is not completely removed, while 

when using the GSM model, the noise is effectively removed 

and sharp edges are clearly retained. Bayesian wavelet-based 

denoising procedure for multicomponent images was 

proposed. The procedure makes use of a noise-free single 

component image as prior information. The prior model for 

the wavelet coefficient marginals is a GSM model. 

Experiments were performed with simulated noise on MRI 

imagery, multispectral and hyperspectral remote sensing 

images. The results show a gradual improvement, when 

applying a technique that 1) fully accounts for the 

multicomponent image covariances, 2) makes use of Gaussian 

Scale Mixtures as prior models that approximate well the 

marginal distributions of the wavelet  coefficients, and 3) 

makes use of a noise-free image as extra prior information. 

 
 

Fig.2.f(a) Detail of original 2.479-_mband of the AVIRIS 

cuprite image; (b) 1.991_mband of the cuprite image, used as 

the noise-free image; (c)–(g) results forthe 2.479-_m band 

after denoising; (c) single-component denoising with 

Gaussian prior; (d) multicomponent denoising with Gaussian 

prior; (e) multicomponent denoising with GSM prior; (f) 

multicomponent denoising with Gaussian prior and noise-free 

image; (g) multicomponent denoising with GSM prior and 

noise-free image 
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Fig.3.(a) One band of Landsat multispectral image; (b) detail 

of image; (c) detail image with simulated Gaussian noise ( = 

15); (d) single-component denoising with Gaussian prior; (e) 

multicomponent denoising with Gaussian prior; (f) 

multicomponent denoising with GSM prior; (g) 

multicomponent denoising with Gaussian prior and noise-free 

image; (h) multicomponent denoising with GSM prior and 

noise-free image. 

 

IV. REMOTE-SENSING IMAGE DENOISING USING 

PARTIAL DIFFERENTIAL EQUATIONS AND 

AUXILIARY IMAGES AS PRIORS  

The goal of our approach is denoising. In this approach, the 

correlation between the different bands of multicomponent 

images is used. The auxiliary image as the prior is introduced 

into the TV or partial differential equation (PDE) denoising 

method. Moreover, the auxiliary image is applied in the form 

of a ―noise-free‖ single-component image (no image is 

completely noise-free and by ―noise-free‖ we mean ―with a 

high SNR‖). To illustrate the proposed method, we 

experiment on the multispectral and hyperspectral 

remotesensing images. 

 

A. IMAGE DENOISING BASED ON PDEs 

 

When an image is corrupted by noise, the following is used: 

                Io = I + n.                                                      (1) 

In (1), Io is the observed image, I is the original image, and n 

is the additive noise in the observed image. Usually, n is 

assumed to follow a Gaussian distribution with a zero mean 

and a variance of σ2. The TV denoising model,  

 
Here, S is the support area of the image, 

ᶴs|∇I|dxdy is the regularization term, and λ is the regularization 

parameter. ∇I denotes the gradient of I, and |∇I| is the 

modulus of ∇I. Minimizing the object function of (2) with 

respect to I,  we obtain (3) for I the following: 

 
 

In (3), div(・) is the divergence operator. To solve (3), the 

time marching method  can be employed, and for the nth 

iteration, we obtain 

 
 

Thus, the problem of TV denoising is converted to computing 

the PDE given by (4). In fact, we can consider the 

corresponding form of div(∇In/|∇In|) from the perspective of 

differential geometry as follows: 

 
In (5), ξI

n
 is the unit vector perpendicular to the direction of 

the image gradient, and ξT . I
n
 is the transposition of ξI

n
. HI

n
 

represents the Hessian matrix  of the image I
n
. Substituting (5) 

into (4) gives 

 
With regard to the effects of the regularization term 

(1/|∇In|)ξ
T 

InHInξIn, we can see that, on one hand, due to the 

anisotropic nature of ξ
T 

InHInξIn ,the smoothing is always in the 

direction of ξI
n
, which is tangential to the edge, whereas on 

the other hand, due to the uneven property of (1/|∇In|), the 

smoothing is always weakened where the gradient of the 

image is large, and this further preserves the edge of the 

image. In the next section, another smoothing term that relates 

to an auxiliary image of the same scene is constructed and 

introduced into (6). The direction of the edges and the 

strength of the gradients of the auxiliary image will be used in 

the PDE-based remotesensing image denoising. 

 

B. INTRODUCING AN AUXILIARY IMAGE AS A PRIOR 

INTO PDE DENOISING 

 

  In many situations in the remote-sensing area, 

multicomponent images are often acquired. Although an 

image comprised of several bands is corrupted by noise, a 

single-component image with a higher SNR is often available. 

For multispectral and hyperspectral images, there are often 

noise-free image bands that can be used as priors in the 

denoising process. In this letter, the auxiliary image from 

another sensor is denoted as the reference image u. Image u is 

both similar to and different from the noisy image Io, i.e., the 

image intensity distributions are different, but the edge 

directions and texture information are similar. If we smooth 

the noise-free image u using (4) and (5), there is a similar 

smoothing term as given by 

 
Similar to (5), (7) has anisotropic and uneven properties. 

However, we do not need to smooth the noise-free u but use 

the priors of the edges of u. To make use of the priors of u in 

denoising I
n
, we need to construct the new smoothing term 

referring to the specific smoothing direction and specific 

smoothing intensity of image u and (7). Since ξu determines 

the direction of the smoothing and |∇u| determines the 

strength of the smoothing, we can still refer to the local feature 

ξu and |∇u| of the image u, and there is a proposed hybrid 

smoothing term, as shown in Fig. 4.  
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Fig. 4. Introducing the prior of the auxiliary image into the 

smoothing term 

  

In Fig. 4, the new term (1/|∇u|)ξ
T 

uHInξu that contains 

both the information of the noise image In and the reference 

image u is constructed.For the arbitrary iteration n, the edges 

and gradients in both images In and u should be taken into 

consideration in denoising; therefore, we add  

 into (6) to give 

 
Now, when we denoise an image using (8), the information of 

the auxiliary image will be taken into consideration. In 

denoising, the direction of the smoothing refers not only to ξI
n
 

but also to ξu, and the strength of the smoothing refers not only 

to |∇I
n
| but also to |∇u|. Therefore, when the auxiliary image u 

is noise free or not as noisy as Io, |∇u| and ξu also contain less 

noise, and PDE-based denoising, as given by (8), should give 

better results. When referring to the form of the time marching 

method [1], we use (9) and (10) to define the discrete forms of 

and   in 

(8) 

 
In (9) and (10), β is a small constant to prevent a zero 

denominator. ux and uy are the derivatives of u. I
n
x , I

n
xx, 

I
n

xy,I
n
xy, and I

n
y are the derivatives of I

n
, the upwind scheme is 

used in computing ux, uy, I
n

x , I
n
xx, I

n
xy,I

n
xy, and I

n
y. In the next 

section, we will do some denoising experiments using (8) and 

compare its performance with other algorithms. 

 

 

Fig. 5. Denoising the simulated noisy Image of CEBERS. σ = 

20. (a) Original image (b) Noisy image. (c) Reference image. 

(d)TV, 25.92 dB. (e) priors–TV, 27.05 dB. (f) The PSNR in 

the iteration. (g) Priors–wavelet, 25.61 dB. 

 

 

Fig. 6. Denoising the simulated noisy image of AVIRIS. σ = 

15 (a) Original image. (b) Noisy image. (c) Reference image. 

(d) TV, 30.08 dB. (e) Priors–TV, 31.31 dB. (f) 

Priors–wavelet, 31.24 dB. 

V. COMPARISON  

To validate and compare the proposed method, we perform 

the simulation experiments and real-data experiments on 

different data sets. Multispectral and hyperspectral sensors 

acquire multicomponent images. These data sets contain both 

the noisy and noise-free images. A higher quality image can 

be obtained from one of the sensors or from another part of 

the reflectance spectrum with a higher SNR. We will apply 

such an image as the noise-free image in the proposed 

method. 

A. EXPERIMENTS ON SIMULATED NOISY IMAGES 

  The multispectral images come from the CEBERS satellite. 

There are five bands in the multispectral image from 

CEBERS. The noisy image is simulated by contaminating the 

original image with additive Gaussian noise with the standard 

deviation σ, and we denoise the simulated noisy third band 

and use the fourth band as the reference image for the prior in 

Fig. 5. For the hyperspectral images, the AVIRIS images over 

Cuprite, Nevada, were taken. The noisy image is simulated by 

contaminating the original image with additive Gaussian 

noise with standard deviation σ, and we denoise the simulated 

noisy hyperspectral band and use the 12th band as the 

reference image for the prior in Fig. 6. A state-of-the-art 

wavelet-based method that has also introduced a noise-free 

image as a prior was compared with the proposed method, and 

this method was denoted as the priors–wavelet. The TV 
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denoising method  without image priors is denoted as TV in 

the experiments. The proposed PDE method with the priors of 

the noise-free image is denoted by priors–TV in the 

experiments. When the noise is simulated, the performance of 

the different denoising techniques can be quantitatively 

described by the PSNR (in decibels) . 

 

The PSNR is defined as 

 
where MSE(I,I^ ) is the MSE between the original noiseless 

image I and the denoised image I^. 

In Fig. 5, it compares the proposed priors–TV 

method with the TV method and thepriors–wavelet method  

by using the multispectral image. Fig. 5(a) is the original 

image, Fig. 5(b) is the simulated noisy image, Fig. 5(c) is the 

reference image, and σ is the standard deviation of the initial 

noise. For the priors–TV method and the TV method, the 

number of iterations will affect their performance; therefore, 

the PSNR in the iteration is given in Fig. 5(f), and the optimal 

location is shown by the circle. Fig. 5(d) and (e) are the 

optimal results for TV and priors–TV in terms of the 

iterations. We always use the optimal denoising result of TV 

and priors–TV in all the experiments when comparing them 

with priors–wavelet. 

Priors–wavelet is not an iteration method; therefore, 

we do not need to select its optimal result. We can see that 

priors–TV in Fig. 5(e) is better than TV in Fig. 5(d). There is 

less noise left in priors–TV than in TV. The similarity of the 

edges between the noisy image and the reference image helps 

priors–TV denoising to conserve more details in the 

smoothing. In Fig. 5(g), there is also less noise in 

priors–wavelet, but it is over smoothed and artificially 

overdone. We can see that for multispectral images, although 

the edges between the noisy image and the reference image 

are similar, their image intensity distribution is obviously 

different for the different spectral response functions of the 

different sensors. In priors–wavelet denoising, the noise-free 

reference image also enhances the edges of resulting image in 

Fig. 5(g). 

 However, because of the noticeable difference in 

the distribution of the intensity between the different bands of 

the multispectral images, many fake edges are introduced into 

the resulting image in Fig. 5(g). In Fig. 6, we compare the 

proposed method with the TV method  and the priors wavelet 

method  using the hyperspectral image. Fig. 6(a) shows the 

original image, Fig. 6(b) is the simulated noisy image, and 

Fig. 6(c) is the reference image. σ is the standard deviation of 

the noise. We can see that, for the hyperspectral image in Fig. 

6, the reference image is more similar to the original image 

than in Fig. 5. 

Because the spectrum of the original image in Fig. 

6(a) is near 394.9 nm, and the reference image Fig. 6(c) is the 

12th band whose spectrum is near 472.7 nm. They are close to 

each other, and the distributions of the image intensity are 

similar. However, the situation is different for the 

multispectral image in Fig. 5. Therefore, in Fig. 6, steadier 

and stronger priors are introduced into the denoising by the 

reference image. In this situation, the performances of 

priors–TV in Fig. 6(e) and priors–wavelet in Fig. 6(f) are very 

similar, and there are no artificial or fake edges in Fig. 6(f). 

However, the results of TV in Fig. 6(d) are oversmoothed 

(relative to priors–TV and priors–wavelet). To further 

validate the proposed priors–TV method, we compared these 

methods with different levels of noise and for different images 

in Table I. In Table I, Images 1 and 2 are multispectral 

images, and Images 3 and 4 are the hyperspectral images. σ is 

the standard deviation of the simulated noise. We can see that 

when the variance of noise is small, priors–TV and 

priors–wavelet are similar, although each has its own strong 

point. However, the performance of priors–TV is always 

better than TV whether the noise is large or small. When the 

noise is large, the performance of priors–TV is better than that 

for priors–wavelet.  

For the multispectral images (i.e., Images 1 and 2), the 

proposed priors–TV shows more advantages than 

priors–wavelet. For the hyperspectral images (i.e., Images 3 

and 4), Image 3 is near 394.9 nm, and the reference for Image 

3 is the 12th band whose spectrum is near 472.7 nm; they are 

close to each other, and the distributions of the image intensity 

are similar. Image 4 is the 189th band of the hyperspectral 

images whose spectrum is near 2238.4 nm, but the reference 

image for Image 4 is the 175th band whose spectrum is near 

2008.3 nm; therefore, the difference in their image intensity 

distributions is large. When the reference image is very 

similar to the original image such as Image 3 in Table I or Fig. 

3, the performances of priors–wavelet and priors–TV are 

close. However, when the spectrum of the reference image is 

far from the original image such as for Image 4 in Table I, the 

performance of priors–TV is obviously better than that of 

priors–wavelet. 
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Fig. 7. Denoising the image of CEBERS. (a) Noisy second 

band of CEBERS image.     (b) Reference image from the 

fourth band of CEBERS image. (c) Result of TV method. (d) 

Result of priors–TV method. (e) Result of priors–wavelet 

method. (a) Noisy image. (b) Reference image. (c) TV. (d) 

priors–TV. 

(e) priors–wavelet. 

 

B. EXPERIMENTS ON REAL NOISY IMAGES 

  Figs. 5 and 6, and Table I are all simulation experiments. To 

further validate the proposed priors–TV method, we 

compared the three methods by using real noisy images in 

Figs. 7 and 8. In Fig. 7, we denoise the multispectral image of 

CEBERS and in Fig. 8, we denoise the hyperspectral image of 

AVIRIS. For multispectral images with relative large noise in 

Fig. 7, there is less noise left in priors–TV of Fig. 7(d) than in 

TV of Fig. 7(c). Furthermore, unlike priors–wavelet in Fig. 

7(e), there are no fake edges in priors–TV of Fig. 7(d). For 

hyperspectral images in Fig. 8, the proposed priors–TV in 

Fig. 8(e) and (g) is also better than TV in Fig. 8(d). When 

Reference 1 in Fig. 8(b) is used (i.e., the spectrum of the 

reference image is very similar to the noisy image), the 

performance of priors–wavelet in Fig. 8(f) is similar to 

priors–TV in Fig. 8(e), or each has its own strong point; 

however, if Reference 2 in Fig. 8(c) is used (i.e., the spectrum 

of the reference image is far from the noisy image), the 

performance of priors–TV in Fig. 8(g) is better than that of 

priors–wavelet in Fig. 8(h). Priors–TV mainly makes use of 

the direction and strength of the edges of the reference image, 

but the intensity distribution of the reference image has less 

effect on priors–TV. In general, the experiment results on the 

real noisy images are similar to the simulation experiments. 

 

 
 

Fig. 8. Denoising the image of AVIRIS. (a) Noisy image is 

the159th band whose spectrum is near 1871.2 nm. (b) 

Reference 1 is the 155th band whose spectrum is near 1831.4 

nm. (c) Reference 2 is the 130th band whose spectrum is near 

1582.3 nm. (d) Result of TV. (e) Result of priors–TV by using 

Reference 1. (f) Result of priors–wavelet by using Reference 

1. (g) Result of priors–TV by using Reference 2. (h) Result of 

priors–wavelet by using Reference 2. (a) Noisy image. (b) 

Reference 1 (c) Reference 2. (d) TV. 

(e) Priors–TV by Reference 1. (f) Priors–wavelet by 

Reference 1. (g) Priors–TV 

by Reference 2 (h) Priors–wavelet by Reference2.  

 

VI. CONCLUSION  

The auxiliary noise-free image has been used as a prior when 

we denoise one of the noisy images in the multicomponent 

remote-sensing image. The edge information of the reference 

image is fully considered, and a new smoothing term 

reference to the edges is constructed in the proposed method. 

Comprehensive experiments using different multispectral and 

hyperspectral images with different levels of noise were 

carried out. The goal of our approach is denoising. In this 

case,the correlation between the different bands of 

multicomponent images is used. The auxiliary image as the 

prior is introduced into the TV or partial differential equation 

(PDE) denoising method. Moreover, the auxiliary image is 

applied in the form of a ―noise-free‖ single-component 

imageIn particular, when the variance of the noise in the 

multispectral image is large, the advantage of the proposed 

method is moreobvious. 
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