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Abstract— A common method for real-time segmentation of 

moving regions in image sequences involves “background 

subtraction,” or thresholding the error between an estimate of 

the image without moving objects and the current image. The 

numerous approaches to this problem differ in the type of 

background model used and the procedure used to update the 

model. The latest being the one using fuzzy color histogram. 

Traditional background modelling and subtraction methods 

have a strong assumption that the scenes are of static structures 

with limited perturbation. Background subtraction is a very 

popular approach for detecting moving objects from a still 

scene. For this, most of previous methods depend on the 

assumption that the background is static over short time 

periods. However, structured motion patterns of the 

background (e.g., waving leaves, spouting fountain, rippling 

water, etc.), which are distinctive from variations due to noise, 

are hardly tolerated in this assumption and thus still lead to 

high-level false positive rates when using previous models. In 

this paper five different methods is being described. 

 
Index Terms— Fuzzy Histogram , Thresholding.  

 

I. INTRODUCTION 

  With  increasing interest in high-level safety and security, 

smart video surveillance systems, which enable advanced 

operations such as object tracking and behaviour 

understanding, have been in critical demand. For the success 

of such systems, background subtraction, one of essential 

tasks in video surveillance, has been studied in various 

environments. Background subtraction is a very popular 

approach for detecting moving objects from a still scene.  

 The basic idea of earlier work for this task is to evaluate the 

difference of pixel values between the reference and current 

frames.To cope with their limitation of more sensitive to small 

variations, Stauffer and Grimson [2] formulate the 

distribution of each pixel value over time as a mixture of 

Gaussians (MoG).Inspired by their probability model and 

online updating scheme, numerous variants have been 

proposed over the last decade. These approaches perform 

well for the static scene even containing gradual illumination 

changes, however, often fail to exclude various dynamic 

textures (e.g., waving leaves and rippling water). This is 

because they assume that the state change of a pixel is derived 

from noise, not from structured motion patterns. Dynamic 

textures are sequences of images of moving scenes that 
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exhibit certain stationarity properties in time; these include 

sea-waves, smoke, foliage, whirlwind etc. 

 Specifically, Dalley et al. propose a generalization scheme 

of the MoG model [3]..Zhang et al.  propose the 

spatiotemporal local binary pattern (STLBP) [4] to model 

dynamic textures.On the other hand, saliency detection 

techniques [5] have been recently employed since those have 

a great ability to detect visually important regions (i.e., 

moving objects in video sequences) while effectively 

suppressing irrelevant backgrounds.The latest method being 

employed includes fuzzy color histogram [1].The rationale 

behind this model is that color variations generated by 

background motions are greatly attenuated in a fuzzy manner. 

 

II. STAUFFER AND GRIMSON MODEL FOR 

BACKGROUND SUBTRACTION  

It should be capable of dealing with movement through 

cluttered areas, objects overlapping in the visual field, 

shadows, lighting changes, effects of moving elements of the 

scene (e.g. swaying trees), slow-moving objects, and objects 

being introduced or removed from the scene.One approach, 

which was first introduced by Stauffer and Grimson (SG)  and 

has since gained substantial popularity.  

 

A. Basic approach 

 Each pixel  is modelled as a mixture of Gaussians and using 

an on-line approximation to update the model. The Gaussian 

distributions of the adaptive mixture model are then evaluated 

to determine which are most likely to result from a 

background process. Each pixel is classified based on whether 

the Gaussian distribution which represents it most effectively 

is considered part of the background model [2]. This results in 

a stable, real-time outdoor tracker which reliably deals with 

lighting changes, repetitive motions from clutter, and 

long-term scene changes.  

 The system adapts to deal robustly with lighting changes, 

repetitive motions of scene elements, tracking through 

cluttered regions, slow-moving objects, and introducing or 

removing objects from the scene. Slowly moving objects take 

longer to be incorporated into the background, because their 

color has a larger variance than the background 

B. The method 

 In practice, multiple surfaces often appear in the view 

frustum of a particular pixel and the lighting conditions 

change. Thus, multiple, adaptive Gaussians are necessary. 

Here  a mixture of adaptive Gaussians to approximate this 

process is used. Each time the parameters of the Gaussians are 

updated, the Gaussians are evaluated using a simple heuristic 

to hypothesize which are most likely to be part of the 
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“background process.” Pixel values that do not match one of 

the pixel’s “background” Gaussians are grouped using 

connected components. Finally, the connected components 

are tracked from frame to frame using a multiple hypothesis 

tracker. 

 

i. Online mixture model 

  

 Consider the values of a particular pixel over time as a 

“pixel process”. The “pixel process” is a time series of pixel 

values, e.g. scalars for gray values or vectors for color images. 

At any time, t, what is known about a particular pixel, {x0, y0}, 

is its history 

{X1,.,Xt} = {I(x0, y0, i) : 1 ≤ i ≤ t}                      (1)                                                

where  I is the image sequence. Some “pixel processes” are 

shown by the (R,G) scatter plots in Figure 1(a)-(b) which 

illustrate the need for adaptive systems with automatic 

thresholds. Figure 1(b)  also highlight a need for a 

multi-modal representation. 

 
Fig 1: This figure contains images and scatter plots of the red 

and green values of a single pixel from the image over time. It 

illustrates some of the difficulties involved in real 

environments. (a) shows two scatter plots from the same pixel 

taken 2 minutes apart. This would require two thresholds. (b) 

shows a bi-model distribution of a pixel values resulting from 

specularities on the surface of water.  

 

 The value of each pixel represents a measurement of the 

radiance in the direction of the sensor of the first object 

intersected by the pixel’s optical ray. With a static 

background and static lighting, that value would be relatively 

constant. If lighting changes occurred in a static scene, it 

would be necessary for the Gaussian to track those changes. If 

a static object was added to the scene and was not 

incorporated into the background until it had been there 

longer than the previous object, the corresponding pixels 

could be considered foreground for arbitrarily long periods. 

This would lead to accumulated errors in the foreground 

estimation, resulting in poor  tracking  behaviour. These 

factors suggest that more recent observations may be more 

important in determining the Gaussian parameter estimates. 

 These are the guiding factors in their choice of model and 

update procedure. The recent history of each pixel, {X1, ...,Xt}, 

is modeled by a mixture of K Gaussian distributions. The 

probability of observing the current pixel value is 

 
where K is the number of distributions, ωi,t is an estimate of 

the weight (what portion of the data is accounted for by this 

Gaussian) of the i
th

 Gaussian in the mixture at time t, μi,t is the 

mean value of the i
th

 Gaussian in the mixture at time t, Σi,t is 

the covariance matrix of the i
th

 Gaussian in the mixture at time 

t, and where η is a Gaussian probability density function 

 
 

 

K is determined by the available memory and computational 

power. Currently, from 3 to 5 are used. Also, for 

computational reasons, the covariance matrix is assumed to 

be of the form: 

 

 
 This assumes that the red, green, and blue pixel values are 

independent and have the same variances. While this is 

certainly not the case, the assumption  allows us to avoid a 

costly matrix inversion at the expense of some accuracy. 

Thus, the distribution of recently observed values of each 

pixel in the scene is characterized by a mixture of Gaussians. 

A new pixel value will, in general, be represented by one of 

the major components of the mixture model and used to 

update the model. 

  Because there is a mixture model for every pixel in the 

image, implementing an exact EM algorithm on a window of 

recent data would be costly. Instead, an on-line K-means 

approximation is implemented. Every new pixel value, Xt, is 

checked against the existing K Gaussian distributions, until a 

match is found. A match is defined as a pixel value within 2.5 

standard deviations of a distribution1.  

 If none of the K distributions match the current pixel value, 

the least probable distribution is replaced with a distribution 

with the current value as its mean value, an initially high 

variance, and low prior weight. The prior weights of the K 

distributions at time t, ωk,t, are adjusted as follows 

ωk,t = (1 − α)ωk,t−1 + α(Mk,t)                 (5) 

 

 where α is the learning rate2 and Mk,t is 1 for the model 

which matched and 0 for the remaining models. After this 

approximation, the weights are renormalized. 1/α defines the 

time constant which determines the speed at which the 

distribution’s parameters change. ωk,t is effectively a causal 

low-pass filtered average of the (thresholded) posterior 

probability that pixel values have matched model k given 

observations time 1 through t. This is equivalent to the 

expectation of this value with an exponential window on the 

past values.  

 The μ and σ parameters for unmatched distributions remain 

the same. The parameters of the distribution which matches 

the new observation are updated as follows 
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which is effectively the same type of causal low-pass filter as 

mentioned above, except that only the data which matches the 

model is included in the estimation. One of the significant 

advantages of this method is that when something is allowed 

to become part of the background, it doesn’t destroy the 

existing model of the background. The original background 

color remains in the mixture until it becomes the K
th

 most 

probable and a new color is observed. Therefore, if an object 

is stationary just long enough to become part of the 

background and then it moves, the distribution describing the 

previous background still exists with the same μ and σ2, but a 

lower ω and will be quickly re-incorporated into the 

background. 

 

i. Background Model Estimation 

 

 As the parameters of the mixture model of each pixel 

change, which of the Gaussians of the mixture are most likely 

produced by background processes is to be determined. 

Heuristically, the Gaussian distributions which have the most 

supporting evidence and the least variance is considered. 

 First, the Gaussians are ordered by the value of ω/σ. This 

value increases both as a distribution gains more evidence and 

as the variance decreases. After re-estimating the parameters 

of the mixture, it is sufficient to sort from the matched 

distribution towards the  most probable background 

distribution.This ordering of the model is effectively an 

ordered, open-ended list, where the most likely background 

distributions remain on top and the less probable transient 

background distributions gravitate towards the bottom and are 

eventually replaced by new distributions. Then the first B 

distributions are chosen as the background model, where 

 
 where T is a measure of the minimum portion of the data 

that should be accounted for by the background. This takes 

the “best” distributions until a certain portion, T, of the recent 

data has been accounted for. If a small value for T is chosen, 

the background model is usually unimodal. If this is the case, 

using only the most probable distribution will save 

processing. If T is higher, a multi-modal distribution caused 

by a repetitive background motion (e.g. leaves on a tree, a flag 

in the wind, a construction flasher, etc.) could result in more 

than one color being included in the background model. This 

results in a transparency effect which allows the background 

to accept two or more separate colors. 

i. Connected components 

 The method described above allows  to identify foreground 

pixels in each new frame while updating the description of 

each pixel’s process. These labelled foreground pixels can 

then be segmented into regions by a two-pass, connected 

components algorithm. Because this procedure is effective in 

determining the whole moving object, moving regions can be 

characterized not only by their position, but size, moments, 

and other shape information. Not only can these 

characteristics be useful for later processing and 

classification, but they can aid in the tracking process. 

 

C. Results 

 

 On an SGI O2 with a R10000 processor, this method can 

process 11 to 13 frames a second (frame size 160x120pixels). 

The variation in the frame rate is due to variation in the 

amount of foreground present. The tracking system has been 

effectively storing tracking information for five scenes for 

over 16 months.  

 

D. Drawbacks 

 One of its main drawbacks is the assumption that the 

background is static over short time scales. This is a strong 

limitation for scenes with spatiotemporal dynamics. Although 

the model allows each pixel to switch state, and tolerates some 

variability within the state, the Gaussian mixture assumes that 

the variability derives from noise, not the structured motion 

patterns that characterize moving water, burning fire, swaying 

trees, etc.Due to lack of consistency between the state of 

adjacent pixels, which sometimes leads to noisy 

foreground-background segmentations. 

III. GENERALIZED STAUFFER GRIMSON 

BACKGROUND SUBTRACTION FOR DYNAMIC 

SCENES  

A number of extensions to the background subtraction 

method of SG have been appeared. One of its main drawbacks 

is the assumption that the background is static over short time 

scales. This is a strong limitation for scenes with 

spatiotemporal dynamics.One approach that has shown 

promise for modeling these spatiotemporal dynamic 

processes is the dynamic texture representation. Dynamic 

textures model a spatiotemporal volume as a sample from a 

linear dynamical system (LDS),and have shown surprising 

robustness for video synthesis, classification , segmentation , 

and image registration.  

 While able to capture background dynamics, these 

approaches lack the two most compelling (and dynamic) 

aspects of the SG method: (1) the ability to account for 

transitory events, due to motion of foreground objects; and (2) 

simple model management. 

 
Fig. 2 A scene with dynamic background. The background 

consists of  water waves, which are changed by the turbulent 

wake of a boat 

  

Consider, for example, the aquatic scene of  Fig. 2. As the 

jet-skier traverses a video patch, the video goes through the 

following state sequence: normal waves, occluded by jet-ski, 

turbulent waves that trail the jet-ski, return to normal waves. 

In the absence of a hidden discrete state variable, the dynamic 

texture will slowly interpolate through all these states. Both 

the transition from occluded to turbulent, and turbulent to 

normal waves, will generate outliers which are incorrectly 
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marked as foreground. If the jet-ski cyclically passes through 

the same location, these errors will repeat with the same 

periodicity. 

 In summary, background subtraction requires both a state 

based representation (as in SG) and the ability to capture 

scene dynamics within the state (as in the dynamic texture 

methods). This suggests a very natural extension of the two 

lines of work: to represent spatiotemporal video cubes as 

samples from a mixture of dynamic textures . However, as in 

the static case, exact learning of the mixture parameters is 

computationally infeasible in an online setting. To address 

this problem,here  two observations are combined. The first is 

the main insight of SG: that parameter updates of a Gaussian 

mixture model only require a small set of sufficient statistics. 

The second is that, because the dynamic texture is a member 

of the exponential family , it exhibits the same property.  

 The generalized SG (GSG) algorithm [3] inherits the 

advantages : (1) it adapts to long-term variations via online 

estimation; (2) it can quickly embrace new background 

motions through the addition of mixture components; and (3) 

it easily discards outdated information by dropping mixture 

components with small priors.  

 

A. Basic approach 

 This model is used to extend the background subtraction 

algorithm of SG  to dynamic scenes. An overview of the 

proposed algorithm is shown in Fig. 2. Each video location is 

represented by a spatiotemporal neighbourhood, centered at 

that location (in this work we use a 7 × 7 × 5 volume). The 

background scene is modeled as a mixture of K dynamic 

textures, from which spatiotemporal volumes are drawn. The  

j 
th

 dynamic texture is denoted (both its parameters and image 

statistics) by j , and a prior weight ωj , s.t.  = 1, is 

associated with each dynamic texture. Given a spatiotemporal 

observation Y1:τ ∈ R
m×τ

 (m = 49 and τ = 5 in all experiments 

reported), the location is marked as background if the 

log-likelihood of the observation under an “active” 

background component is above a threshold. The background 

model is then updated, using an online approximation to EM. 

As in SG, this consists of updating the mixture component 

with the largest log-likelihood of generating the observation 

Y1:τ , if the log-likelihood is above a second threshold. If not, a 

new dynamic texture component learned from Y1:τ replaces 

the mixture component with lowest prior weight.  

 

 
 

Fig. 3 Overview of generalized Stauffer–Grimson 

background modelling for dynamic textures. A video location 

is represented by a neighbouring spatiotemporal volume Y1:τ . 

The location is marked as background if the log-likelihood of 

Y1:τ under the active background component is above a 

threshold. Next, the mixture component with the largest log 

likelihood of generating Y1:τ is updated, if the log-likelihood 

is above threshold. Otherwise, a new component is learned, 

replacing the component of lowest prior probability 

 

B. Background detection 

 

 The determination of whether a location belongs to the 

background requires the assignment of mixture components 

to background and foreground. Support for multiple 

background components is crucial for SG because 

background colors can switch quickly (e.g. a flashing light). 

Under the dynamic texture mixture model, rapid changes in 

color and texture are modeled by the dynamic texture 

components themselves. It follows that multiple active 

background components are not necessary, and we simply 

select the component of largest prior as the “active” 

background component. 

 
 A video location is marked as belonging to the background if 

the log-likelihood of the corresponding spatiotemporal 

volume Y1:τ under this mixture component is greater than a 

threshold T , 

 

 
 

Note that the log-likelihood can be rewritten in “innovation” 

form 

 

 
which can be efficiently computed with recourse to the 

Kalman filter. 

 

C. On-line updating of the background model 

 

  

 The background mixture model is learned with an online 

K-means algorithm. During training, an initial dynamic 

texture   is learned, and mixture weights are set to ω = [1, 

0, . . . , 0]. Given a new spatiotemporal observation Y1:τ , the 

mixture parameters are updated as follows. First, the mixture 

component with the largest loglikelihood of having generated 

the observation. 

 
 

is selected. If this log-likelihood is above the threshold T 
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the sufficient statistics of the kth component are combined 

with the sufficient statistics  

derived from Y1:τ 

 
As before, α is a learning rate which weighs the contribution 

of the new observation. Finally, the parameters of the mixture 

component are re-estimated , and prior weights are adjusted 

according to 

 
(and normalized to sum to one). It can be shown that the 

successive application of the online estimation algorithm is 

equivalent to batch least-squares estimation with 

exponentially decaying weights on the observations. This 

allows the dynamic texture to adapt to slow background 

changes (e.g. lighting and shadows). If (5) does not hold, the 

component with smallest prior (i = argmin j wj ) is replaced by 

a new dynamic texture learned from Y1:τ . A regularization 

term σ I is added to the sufficient statistics , to 

guarantee a large initial variance (in ˆQ, ˆS, and ˆR). As the 

component is updated with more observations, the influence 

of this regularization term vanishes. Finally, prior weights are 

adjusted according to: 

 
and normalized to sum to one. The learning rate β adjusts the 

speed at which prior weights change, controlling how quickly 

a mixture component can become the “active” background 

component. The online background update algorithm 

is summarized in Algorithm 1.  

  

D. Conclusion 

 While the original algorithm restricts the background 

model to a Gaussian mixture, which is only suitable for static 

scenes, the generalization supports models with arbitrary 

component densities. The only restriction is that these 

densities can be summarized by sufficient statistics.They have 

applied the generalized SG model to the case where the 

component densities are dynamic textures, producing an 

adaptive background subtraction algorithm based on the 

mixture of dynamic textures, which is suitable for dynamic 

scenes. But when the dimension of the spatiotemporal 

volume, or the number of dynamic texture components, is 

large it may be impractical to compute and store the required 

sufficient statistics. 

 

IV. SPATIO-TEMPORAL LOCAL BINARY PATTERNS  

In order to model the dynamic scenes using both spatial 

texture and temporal motion information together, we extend 

ordinary local binary patterns from spatial domain to 

spatiotemporal domain, and propose a new online dynamic 

texture extraction operator, named spatio-temporal local 

binary patterns (STLBP) [4] . STLBP features have three 

advantages: 1) it is robust to monotonic gray-scale changes; 

2) it is online and very fast to compute; 3) it can extract spatial 

texture and temporal motion information of a pixel. These 

three advantages are all very important for modelling the 

dynamic natural scenes. 

 

A. Spatio-temporal Local Binary Pattern Histogram 

 

 Let ft be the current frame at time t and ft−1 be the previous 

frame at time t − 1. In the frame ft, the central pixel is (xt,c, yt,c) 

with grey value gt,c. P equally spaced neighboring pixels 

(xt,0, yt,0), . . . , (xt,P−1 yt,P−1) with grey values gt,0, . . . , 

gt,P−1 on a circle of radius RLBP in ft are defined to be the 

spatial neighboring pixels of (xt,c, yt,c). In the ft−1, the 

corresponding position pixels of P spatial neighboring pixels 

is (xt−1,0, yt−1,0), . . . , (xt−1,P−1, yt−1,P−1) which are 

defined to be the P temporal neighboring pixels of (xt,c, yt,c ) 

with grey values gt−1,0, . . . , gt−1,P−1. 

Local Binary pattern (LBP) is a gray-scale invariant texture 

description. 

 
where gc corresponds to the grey value of the central pixel 

(xc, yc) and gp to the grey values of the eight neighboring 

pixels. The function s(x) is defined as follows: 

 
Two P-bit LBP codes for central pixel (xt,c, yt,c) as follows: 

 

 
LBP

t
P,R(xt,c, yt,c) and LBP

t−1
P,R(xt,c, yt,c) are called spatial and 

temporal local binary patterns of pixel (xt,c, yt,c), respectively. 

The former extracts the spatial texture features and the latter 

extracts the motion information of neighboring two frames. 

7 

8 

6 
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where Ht,i and Ht−1,i are the histogram values at i

th
 bin of Ht 

andHt−1, respectively.Then these two histograms can be sum 

up to form a spatiotemporal local binary pattern (STLBP) 

histogram H as follows: 

 
where Hi is the histogram value at i

th
 bin of H. Parameter ω is 

the spatio temporal rate 

B. Background Subtraction Using STLBP 

 Based on STLBP histograms, a new method of dynamic 

background modeling and subtraction is proposed. In 

proposed method, the dynamic background model of a pixel is 

built using a group of STLBP histograms. When a new frame 

is arriving, a STLBP histogram of the pixel can be computed 

using the current frame and previous one which was stored in 

memory at last time. Then labeling the pixel and updating its 

background model is the same as that in texture based method 

. Notice that the previous frame of the video sequence is just 

stored in memory to compute STLBP histograms for pixels in 

the current frame. 

Parameter ω in Eq. 7 should be set according to changes 

degree of the dynamic background. A small value is sufficient 

for scenes which have small changes, whereas a larger value is 

required in the scenes which have strong changes.  

 

C. Drawbacks 

 However, such methods using filter responses require many 

parameters to be estimated for detecting saliency in dynamic 

scenes. 

 

V. SPATIOTEMPORAL SALIENCY DETECTION 

MODEL –PQFT  

Although previous approaches for detecting salient regions 

are very diverse, most of them fail to minimize false positives 

which occur in highly textured background areas.  Guo and 

Zhang proposed a spatiotemporal saliency model called phase 

spectrum of quaternion Fourier transform (PQFT) [5].  

 Furthermore, PFT can be easily extended from a 

two-dimensional Fourier transform to a Quaternion Fourier 

Transform (QFT) if the value of each pixel is represented as a 

quaternion composed of intensity, color and motion feature. 

The added motion dimension allows the phase spectrum to 

represent spatio-temporal saliency in order to engage in 

attention selection for videos as well as images. The Phase 

spectrum of QFT (PQFT) is used to obtain the 

spatio-temporal saliency map, which considers not only 

salient spatial features like color, orientation and etc. in a 

single frame but also temporal feature between frames like 

motion. 

 This method can be divided into two stages. First, the 

image should be represented as a quaternion image which 

consists of four features. Second, PQFT needs to be 

calculated in order to obtain the spatio-temporal saliency 

map. The spatio-temporal saliency map using PQFT 

considers the features such as motion, color, intensity and 

orientation mentioned in literature. These features are 

represented as a quaternion image, which means that they are 

processed in a parallel way. Thus, it saves a lot of 

computational costs and is fast enough to meet real-time 

requirements. 

VI. FUZZY COLOR HISTOGRAM  

Compared to previous methods using local kernels, the 

proposed method does not require estimation of any 

parameters (i.e., nonparametric). This is fairly desirable for 

achieving the robust background subtraction in a wide range 

of scenes with spatiotemporal dynamics. Specifically, here 

the local features from the fuzzy color histogram(FCH) is 

been proposed [1] . Then, the background model is reliably 

constructed by computing the similarity between local FCH 

features with an online update procedure. 

 

A. Color histogram 

 Each histogram bin represents a local color range in the 

given color space, color histogram represents the coarse 

distribution of the colors in an image. Two similar colors will 

be treated as identical provided that they are allocated into the 

same histogram bin. On the other hand, two colors will be 

considered totally different if they fall into two different bins 

even though they might be very similar to each other. This 

makes color histograms sensitive to noisy interference such as 

illumination changes and quantization errors. 

 Color histograms are easy to compute, and they are 

invariant to the rotation and translation of image content. 

However, color histograms have several inherent problems 

for the task of image indexing and retrieval. The first concern 

is their sensitivity to noisy interference such as lighting 

intensity changes and quantization errors. The second 

problem is their high dimensionality on representation. Even 

with coarse quantization over a chosen color space, color 

histogram feature spaces often occupy more than one hundred 

dimensions (i.e., histogram bins) which significantly 

increases the computation of distance measurement on the 

retrieval stage.  

 

B. CCH Versus FCH 

 A conventional color histogram (CCH) considers neither 

the color similarity across different bins nor the color 

dissimilarity in the same bin. Therefore, it is sensitive to noisy 

interference such as illumination changes and quantization 

errors. Furthermore, CCHs large dimension or histogram bins 

requires large computation on histogram comparison. To 

address these concerns, a new color histogram representation, 

called fuzzy color histogram (FCH) [6] is been presented, by 

considering the color similarity of each pixel’s color 

associated to all the histogram bins through fuzzy-set 

membership function.  

 

C. Mathematical approach 

  

 The color histogram is viewed as a color distribution from 

the probability viewpoint. Given a color space containing  n 
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color bins, the color histogram of image I  containing N pixels 

is represented as ,  where hi=Ni/N 

is the probability of a pixel in the image belonging to the ith 

color bin, and Ni is the total number of pixels in the i
th 

color 

bin. According to the total probability theory, hi can be 

defined as follows: 

 
where Pj is the probability of a pixel selected from image I 

being the j
th

 pixel, which is 1/N, and Pi/j is the conditional 

probability of the selected j
th

 pixel belonging to the i
th

 color 

bin. 

 

In the context of CCH, is defined as 

 
 

 This definition leads to the boundary issue of CCH such 

that the histogram may undergo abrupt changes even though 

color variations are actually small. This reveals the reason 

why the CCH is sensitive to noisy interference such as 

illumination changes and quantization errors.  

 Instead of using the probability Pi/j, FCH consider each of 

the N pixels in image I being related to all the n color bins via 

fuzzy-set membership function such that the degree of 

“belongingness” or “association” of the j
th

 pixel to the i
th

 color 

bin is determined by distributing the membership value of the 

j
th

 pixel,µij , to the i
th

 color bin.  

 Definition (Fuzzy Color Histogram): The fuzzy color 

histogram (FCH) of image I can be expressed as 

F(I)=[f1,f2,….,fn], where 

 
Pj has been defined as before, and µij  is the membership value 

of the j
th

 pixel in the ith color bin. 

 

D. Fuzzy Membership Based Local Histogram Features 

 First of all, in a probability view, the conventional color 

histogram (CCH) can be regarded as the probability density 

function. Thus, the probability for pixels in the image to 

belong to the i
th

 color bin wi can be defined as follows: 

 where  N 

denotes the total number of pixels.P(xj)  is the probability of 

color features selected from a given image being those of the 

j
th

 pixel, which is determined as 1/N. The conditional 

probability P(wi/xj) is 1 if the color feature of the selected j
th 

pixel is quantized into the i
th

 color bin and 0 otherwise.In 

contrast to that, FCH utilizes the fuzzy membership to relax 

such a strict condition.  

 

 
 

Fig. 4. Comparison of CCH and FCH between the 130th 

frame and the 137
th

 frame in the “campus” sequence [14] 

containing strongly waving leaves. Note that CCH and FCH 

are obtained from the local region of 4 4 pixels illustrated as 

the white square. 

  

 Fig. 4 shows the robustness of local FCH to dynamic 

textures compared to CCH. As can be seen, local CCHs 

obtained from the same pixel position of two video frames are 

quite different due to strongly waving leaves. In contrast to 

that, we confirm that FCH provides relatively consistent 

results even though dynamic textures are widely distributed in 

the background. Therefore, it is thought that our local FCH 

features are very useful for modeling the background in 

dynamic texture scenes.  

 Now, a rather critical issue is to efficiently compute such 

membership values. Here we employ a novel color 

quantization scheme based on the fuzzy –c means (FCM) 

clustering technique: First, the RGB color space is uniformly 

and finely quantized into m histogram bins (e.g., 4096) and 

subsequently convert them into the CIELab color space. 

Finally, we classify these m colors in the CIELab color space 

to clusters (each cluster represents an individual FCH bin) 

using the FCM clustering technique (m>>c). More 

specifically, the FCM algorithm finds a minimum of a 

heuristic global cost function defined as follows  

 
 where x and v denote the feature vector (e.g., values of each 

color channel) and the cluster center, respectively. b  is a 

constant to control the degree of blending of the different 

clusters and is generally set to 2. Then we have following 

equations, i.e.,  and   where Pj denotes 

the prior probability of P(wj) , at the minimum of the cost 

function. These lead to the solution given as 

 

 Where dij=
2
 Since (3) and (4) rarely have 

analytic solutions, these (i.e., cluster center and membership 

1 

1 

2 

3 

4 
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value) are estimated iteratively. It is worth noting that these 

membership values derived from (4) only need to be 

computed once and stored as a membership matrix in 

advance. Therefore, we can easily build FCH for the incoming 

video frame by directly referring to the stored matrix without 

computing membership values for each pixel. For the robust 

background subtraction in dynamic texture scenes, we finally 

define the local FCH feature vector at the j
th

 pixel position of 

the k
th 

video frame as follows: 

 
where W

k
j denotes the set of neighboring pixels centered at 

the position j. uiq denotes the membership value obtained from 

(4), indicating the belongingness of the color feature 

computed at the pixel position to the color bin as mentioned. 

By using the difference of  local features defined in (5) 

between consecutive frames,  can build the reliable 

background model easily.  

E. Background Subtraction With Local FCH Features 

 To classify a given pixel into either background or moving 

objects in the current frame, first compare the observed FCH 

vector with the model FCH vector renewed by the online 

update as expressed in (6) 

 
 

where  denotes that the j
th

 pixel in the k
th

 video 

frame is determined as the background whereas the 

corresponding pixel belongs to moving objects if 

T  is a thresholding value ranging from 0 to 1. 

The similarity measure S(.,.) used in (6), which adopts 

normalized histogram intersection for simple computation, is 

defined as follows: 

 

 

where  denotes the background model of the j
th

 pixel 

position in the k
th 

video frame, defined in (8). Note that any 

other metric (e.g., cosine similarity, Chi-square, etc.) can be 

employed for this similarity measure without significant 

performance drop.In order to maintain the reliable 

background model in dynamic texture scenes,  need to update 

it at each pixel position in an online manner as follows: 

 

where . is the learning rate. 

Note that the larger α denotes that local FCH features 

currently observed strongly affect to build the background 

model. By doing this, the background model is adaptively 

updated. 

 For the sake of completeness, the main steps of the 

proposed method is summarized in Algorithm 1. 

 

 
 

F. Conclusion 

 For computing FCHs, here an efficient method based on 

fuzzy c-means clustering algorithm performed on the color 

components recorded in the perceptually uniform CIELAB 

color space is proposed. 

 From the observation of the interplay between FCH and 

quadratic histogram distance, proposed FCH not only 

addresses the noise sensitivity issue of CCH but also avoids 

intensive online computation encountered in computing the 

quadratic histogram distance. Finally, exploiting FCH into 

other image processing frameworks and even extending 

similar soft clustering approach to other low-level visual 

features (e.g., shape, texture, etc.) are also recommended. 

 

VII. COMPARISONS 

To compare different algorithms discussed earlier three video 

sequences i.e., campus, fountain (both are 160*128 pixels ), 

and boat sequences ,(180*100 pixels)  are obtained. They are 

taken in outdoor environments with dynamic textures. We set 

the learning rate α=0.01 and used the local window  of 5 

* 5 pixels to extract local FCH features.m and c are set to 

4096 and 16, respectively 

 Fig. 5 shows several results of background 

subtraction.Traditional MoG (t-MoG) method, generalized 

MoG (g-MoG) method,STLBP-based method, PQFT-based 

method,CCH-based method and FCH based are compared 

here. To make fair comparisons,experimental results at a true 

positive (TP) rate of 0.8, which is good enough to correctly 

extract moving objects for further applications are reported. 

As can be seen in Fig. 5, previous methods fail to reliably 

build the background model due to variability from 

temporally dynamic textures. In particular, waving leaves 

widely distributed in the background lead to high-level false 

positive rates. Although some approaches (e.g., 

STLBP-based, PQFT-based, and CCH-based methods) 

perform rather stably, those still suffer from abrupt changes in 

the background such as turbulent water by a boat (see the last 

row of Fig. 5). In contrast to that, FCH approach provides 

5 

5 

6 



                                                                                

International Journal of Modern Communication Technologies & Research (IJMCTR) 

 ISSN: 2321-0850, Volume-1, Issue-9, November 2013   

                                                                                                9                                                                 www.erpublication.org 

 

reliable background models even in the presence of various 

dynamic textures.  

For the quantitative analysis, we evaluated the false positive 

(FP) rate at the TP rate of 0.8 based on 20 video frames 

randomly selected from each test video and corresponding 

results are shown in Table I. Moreover, we also plot the ROC 

curve using campus sequences in Fig. 6. From Table I and 

Fig. 6, we confirm that the FCH method is capable of 

correctly extracting moving objects with low false positives in 

dynamic texture scenes.The comparison of the processing 

time is shown in Table II. We can see that our method 

achieves about 0.027 s/frame (i.e., 37 fps) on average, which 

can be applied for various real-time applications, while 

providing much better background subtraction performance 

compared to previous methods. 

 

 
 

  

 

 

 
 

 

VIII. CONCLUSION 

Traditional background modeling and subtraction methods 

have a strong assumption that the scenes are of static 

structures with limited perturbation. These methods will 

perform poorly in dynamic scenes. A simple and robust 

method for background subtraction for dynamic texture 

scenes has been proved to be FCH. The basic idea is to adopt 

FCH in a local manner to minimize color variations generated 

by background motions. Background subtraction is conducted 

by computing the similarity between the observed and the 

model FCH features, renewed by online update procedures. 

Based on extensive experimental results, it is confirmed that 

the algorithmusing FCH provides the reliable background 

model in dynamic texture scenes. 
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