
 

            International Journal of Modern Communication Technologies & Research (IJMCTR) 

                                                                                  ISSN: 2321-0850, Volume-1, Issue-7, September 2013   

 

                                                                                               4                                                          www.erpublication.org 

 

Abstract— In this project, we study the application of 

Polymer Optical Fiber and Laser sources in High Speed Data 

Communication. The advantages of using multicarrier 

modulation schemes like Discrete Multitone (DMT) are studied. 

We also study the application of Reed Solomon (RS) codes f o r  

Forward Error Correction (FEC) in optics.  We c o ns i de r  a 

particular RS code, RS (255,239), of length 255 and having 

capability to correct upto 8 errors. 

 
Index Terms— Forward Error Correction (FEC), Reed 

Solomon (RS), Discrete Multitone (DMT),  Bose, Chaudhary 

and Hocquenghem codes (BCH). 

 

I. INTRODUCTION 

  study in this research could be easily divided into two parts. 

First is the study of application of Forward Error Correction 

in general and Reed Solomon in particular in the field of 

optics. Second is the study of POF fibers with regards to 

their applications in short range data communication. We 

also study the need of using multicarrier modulation 

schemes like Discrete Multitone (DMT) therein. 

Let’s first talk about the need of Forward Error Correction 

in optics. There has been tremendous increase in the data 

rates along the optical fiber thanks to the advances in optical 

devices and enabling technologies. Technologies like 

DWDM (Dense Wavelength Division Multiplexing) have 

helped  in  high  speed  communications  which  in  turn  has  

made  various  luxuries  like  video conferencing, live video 

streaming etc. possible. But as we move on to high data 

rates, the performance of the channel degrades considerably. 

Several impairments like PMD (Polarisation Mode 

Dispersion), CD (Chromatic Dispersion), and various other 

fiber non-linearities come into picture. These impairments 

cause the data to get corrupted and it is here where FEC 

(Forward Error Correction mechanisms) come to help. 

Now let us consider Polymer Optical Fibers. POFs have 

enjoyed wide applications in the areas of automobiles and 

medicine for quite some time now, but its application in the 

field of FTTH (Fiber to the Home) is quite new.  Though 

POFs have very high attenuation as compared to glass 

fibers, their application in short range data communication is 
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a viable solution because of their easy-to-use setup 

facilitated by high core diameter. It was way back in 1992, 

when Bates of IBM demonstrated transmission over 100m 

SI-POF at 500 Mb/s [8]. It was no looking back since then. 

There has been constant innovation in the field of POFs and 

the following table gives some parameters of various POFs: 

 

Table1.1: Characteristics of different POF. 

High   data   rates   and   spectral   efficiency   makes   us   

look   for   advanced   communication technologies.  

 PLASTIC GLASS COPPER 

Connection Easy to 

connect  

Takes longer, 

require  

training  

HIGH 

Handling Easy Require  

training 

Easy 

Flexibility Flexible Brittle Flexible 

Component 

Costs 

Potentially 

Low 

More 

Expensive 

Low 

Loss High- 

medium 

Medium-low High 

Wavelength 

operating 

range 

Visible Infrared NA 

Bandwidth High(0.4) Low(0.1-0.2) NA 

System 

costs 

Low overall High Medium 

 

Table 2: Comparison of POF with Glass fiber and Copper 

wires over various parameters 
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One specific technology called Discrete Multitone (DMT) 

modulation has proved quite promising.  This technology 

combined with advanced modulation formats like M-ary 

Quadrature Amplitude Modulation (QAM) is a hot topic in 

the current research scenario and high data rates have been 

achieved using them. 

 

II. PROPOSED WORK 

Discrete  Multitone  Modulation  (DMT)  is  a  kind  of  

multicarrier  modulation  scheme  which transmits a high data 

rate serial signal over a number of slow parallel subcarriers; 

essentially maintaining the data rate. 

 

 
 

Figure 1: Schematic of DMT modulation and experimental 

generate colored noise. 

 

The serial data input is divided into N parallel subcarriers 

which are further mapped to M-QAM constellations. The 

Cn’s in the figure are the complex values of M-QAM. The 

modulator  of  DMT  is  implemented  using  Inverse  Fats  

Fourier  Transform  (IFFT)  while  the demodulator is 

implemented using Fast Fourier Transform (FFT). 

On taking IFFT of N symbols a complex valued sequence is 

obtained, which is the case in OFDM. The output of IFFT of 

N symbols is as follows: 

 

         ...……K=0…..N-1 

 

To have a real valued signal, we need to take 2N point IFFT 

where the input values will satisfy the following conditions: 

C2N-n =Cn
*
…….n=1…….N-1 

Im{C0}=Im{Cn}=0 

These parallel data streams are converted to serial data 

stream before transmission. The Cn are obtained by 

demodulation using the FFT algorithm. 

        Cn=    ……n=0…..2N-1 

Adaptive Constellation Mapping of Cn 

After allocation of SNR over the subcarriers based on the 

frequency response of the system, bits are allocated over the 

subcarriers. The following figure shows the number of bits 

allocated or the order of QAM used for a given range of 

frequencies or equivalently subcarriers in a typical 512 

subcarrier system 

 

     
 

Figure 2: QAM constellation vs. Carrier  number 

The use of Cyclic Prefix- After parallel to serial conversion 

of a DMT frame, a portion of the last part of the frame is 

added in the front as shown in the figure below 

 
 

Figure3: Cyclic Prefix 

This repeated portion is called as a cyclic prefix. This cyclic 

prefix is useful in combating modal dispersion. The length of 

the cyclic prefix is chosen such that it is greater than the 

largest delay spread. Thus, dispersion will not  be able to 

affect the actual useful DMT frame.Review Stage 

 

Synchronization- For the receiver to be able to distinguish 

between different DMT frames and to avoid faulty 

demodulation of the transmitted sequence, synchronization 

is a must. It can obtain by the following ways: 

 

A.   By using the cyclic prefix of every DMT frame 

B.   By sending preambles 

 

The cyclic prefix of every DMT frame is correlated with 

its time shifted version. If the CP correlates with itself, a 

large value of correlation will be achieved .As shown in 

figure below, parts a and b are identical and are a part of 

preamble sequence. 
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Figure 4: Transmitted DMT frame consisting of a preamble 

and information frame 

 

The importance of Peak to Average Power Ratio (PAPR) 

In Discrete Multitone Modulation, sometimes high values of 

peak powers are generated due to constructive interference of 

the subcarriers. For a DMT frame the PAPR could be given 

by the following formula 

 

 

 

Here the E[] operator denotes the average. When N 

subcarriers add up constructively, the peak power would be 

N times the average power.  

 
 

Figure 5 : Simulated BER vs. SNR per DMT frame for 

different AD- and DA- Converter resolutions 

 

A large PAPR is disadvantageous in the sense that the 

DAC’s and the ADC’s used in the system have limited 

precision. Thus they might not be able to accommodate such 

high values of PAPR. For e.g. take a system with 511 

subcarriers. Thus the maximum value of PAPR for DMT 

frames would be 10log10(511) = 27 dB.The figure avobe 

shows the precision of DAC and ADC required to obtain 

appropriate BER values. 

We see from the figure that the probability that PAPR values 

will cross even 15 dB is less than 10
-4

. Thus it is not 

necessary for the DAC and the ADC to accommodate 

dynamic range for maximum value of PAPR. 

 
Figure 6.: Simulated CCDF of PAPR in DMT 

transmission with and without selective mapping 

 

Clipping of DMT signal 

We can achieve optimum performance by limiting the 

dynamic range of DAC and ADC to a proper value. To 

limit the DMT signal to the dynamic range of DAC and ADC, 

clipping is employed. A simple clipping could be easily 

implemented by the following algorithm  

 
Where  A  is  the  level  at  which  the  DMT  signal  is  

clipped. .   

 
 

Figure  7: Simulated BER at constant receiver noise power 
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versus clipping level for different AD- and DA- converter 

resolutions 

 

The  following  figure  shows  the performance  of   the  

system  with  respect  to  the  clipping  levels  employed  for  

different resolutions of DAC and ADC. 

 

Selective Mapping- This technique is cost efficient as 

compared to those wherein the PAPR reduction without 

introducing distortion reduces PAPR to such an extent that 

clipping is unnecessary. 

This is obtained by employing the following symmetry 

conditions on some second Input say Dn: 

     D2N-n=-Dn
*
.n=1.. . . . . . . . . . . .N-1 

     Im{D0}=Im{Dn}=0 

   Combining the two orthogonally and performing             

IFFT on them we get the following 

 

 

Now we can implement two different mappings on these 

two inputs. 

 

Reed Solomon codes- Forward Error Correction could be 

defined as a method to detect and/or correct errors in data 

transmission over   a faulty channel.  This is usually done by 

adding redundant data  to  the information carrying data. 

This technology is very much developed and has wide 

applications in the wireless world. In Optics, it was first 

used in WDM (Wavelength Division Multiplexing) to 

combat  ASE  (Amplified  Spontaneous  Emission)  a  form  

of  noise   associated  with  optical amplifiers. Today, a wide 

variety of FEC systems are available for error correction in 

the optical transmission networks. They differ in features 

like the amount of redundancy, the coding gain achieved, 

the BER performance etc. In this report we will discuss a 

very useful FEC mechanism called the RS (Reed Solomon) 

codes.   

 
Encoding RS Codes- Suppose α is a primitive element in 

GF(q), i.e. α
q-1 

= 1. Now, α, α
2
, α

3
, . . . . , α

2t  
are all the 

roots of the generator polynomial of the t error correcting 

RS code. The minimal polynomial фi(X) of α
i   

would 

simply be X-  α
i  

since α
i   

is an element of GF(q). Thus the 

generator polynomial g(X): 

g(X) = (X- α) (X- α
2
) (X- α

3
) . . . . (X- α

2t
) 

= g0 + g1X + g2X
2 

+ . . . . + g2t-1X
2t-1 

+ X
2t

 

 

The t-error correcting RS code with symbols from GF(q) : 

Block Length: n = q-1 

Number of Parity Check Symbols: n-k = 2t 

Dimension: k = q-1-2t 

Minimum Distance: dmin = 2t+1 

 

Decoding RS Codes-For decoding RS code, we not only 

need to calculate error locations but also need to calculate 

the error values. Let the transmitted code be 

v(X) = v0 + v1X + . . . . + vn-1X
n-1

 

Let the received code be 

r(X) = r0  + r1X + . . . . + rn-1X
n-1

 

The error polynomial can now be written as 

e(X) = v(X)-r(X) = e0 + e1X + . . . . + en-1X
n-1

 

Suppose the errors are located at locations X
j1

, X
j2

........., X
jv
 

and have values ej1, ej2........, ejv . 
The error polynomial can then be written as 

e(X)= ej1 X
j1

+ej2 X
j2 

+ ........+ ejv X
jv
.  

 

The outline for RS decoding could be given as follows: 

1.   First we compute the syndrome (S, S2, S3 . . . S2t) 

2.   Next we determine the error location polynomial σ(X) 

3.   Then we determine the error value evaluator 

4.   Having obtained error locations and error values, we 

could perform error correction 

 

The first two steps mentioned above are to done in a similar 

fashion as done in the case of BCH codes. So now we will 

see how to determine the error value evaluator. Let us define 

the syndrome polynomial S(X) as follows  

 

But we know the co-efficient of only the first 2t terms. 

Hence for 1≤ j <∞ , we define a term  

 

 Where δ and β are error values and error locations 

respectively 

 

            

 

Now, let us look at the product σ(X).S(X) 
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Now we define another parameter as Z0(X) : 

 

We can find the error value at location βk by the following: 

 
Reed-Solomon Codes in Optical Communication  

Reed Solomon codes have traditionally been used in CD’s 

and satellite communications. Today, Reed Solomon codes 

are being concatenated with other convolution codes to 

improve BER and also attain a low level of complexity .The 

history of the development of Forward Error Correction and 

Optical Communication could be easily captured in the figure 

below: 

 

 
 

Figure 8: Development of FEC in Optical Communication 

across time 

 

III. RESULTS 

Performance of Reed Solomon code is evaluated for awgn 

channel across various parameters 

 

A. Performance of Reed Solomon code as the order of the 

code varies but error correcting capability remains same: 

 

We implemented the code keeping the error correcting 

capability same, 8 in each case, but varying the order of code. 

We varied the order from m = 6 to m = 9 thus implementing 

RS (63,47), RS (127, 111), RS (255, 239) and RS (511, 495). 

  

a. Performance of RS (63, 47) code: RS (63, 47) is a code of 

order 6 and has an error correcting capability of 8. The 

following plots were obtained after its implementation. 

 

 
 

Figure 9.1: Performance of RS (63, 47) 

 

 

 

b. Performance of RS (127, 111) code: RS (127, 111) is a 

code of order 7 and has an error correcting capability of 

8. The following plots were obtained after its 

implementation. 
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Figure 9.2: Performance of RS (127, 111) code 

 

c. Performance of RS (255,239) code: RS (255, 2 5 9 ) is 

a code of order 8  and has an error correcting capability of 

8. The following plots were obtained after its implementation. 

Figure 9.3: Performance of RS (255, 239) code 

 

d. Performance of RS (511, 495) code: RS (255, 239) is a 

code of order 8 and has an error correcting capability of 8. 

The following plots were obtained after its implementation. 

 

 
Figure 9.4: Performance of RS (511, 495) code 

 

The Input BER goes to zero at an SNR of about 17dB in 

each case. The SNR where Output BER goes to zero is 

called as ‘SNR Threshold’. The above performance could be 

tabulated as below: 

 

R

S 

C

o

d

e 

SNR Threshold (dB) Coding Gain (dB) 

RS(63, 47) 16 1 

RS(127, 111) 15.8 1.2 

RS(255, 239) 14.8 2.2 

RS(511, 495) 14.2 2.8 

 

Table 6.5: Performance parameters of various codes with 

same error correcting capability 

 

 

B. Performance  of  Reed  Solomon  code  as  the  

redundancy  of  the  code  varies  but  order remains same: 

 

We implemented the code keeping the order same, 8 in 

each case, but varying the order of code. We varied the 

redundancy from k = 5 to k = 8 thus implementing RS 

(255, 245), RS (255,243), RS (255, 241) and RS (255, 

239). 

 

a.  Performance of RS (255, 245) code: 

RS (255, 245) is a code of order 8 and has an error 

correcting capability of 5. The following plots were 

obtained after its implementation. 
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Figure 9.6: Performance of RS (255, 245) 

        

        code b.   Performance of RS (255, 243) code: 

RS (255, 245) is a code of order 8 and has an error 

correcting capability of 6. The following plots were 

obtained after its implementation. 

 

       Figure 9.7: Performance of RS (255, 243) code 

 

c.   Performance of RS (255, 241) code: 

RS (255, 241) is a code of order 8 and has an error 

correcting capability of 7. The following plots were 

obtained after its implementation. 

 

 

 

 

 

 

 
Figure 9.8: Performance of RS (255, 243) 

 

d.   Performance of RS (255, 239) code: 

RS (255, 239) is a code of order 8 and has an error 

correcting capability of 8. The following plots were 

obtained after its implementation. 

 

 
Figure 9.9: Performance of RS (255, 239) code 

 

 

RS Code SNR Threshold 

(dB) 

 

Coding Gain (dB) 

RS(255, 245) 15.4 1.6 

RS(255, 243) 15 2 

RS(255, 241) 14.8 2.2 
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RS(255, 239) 14.8 2.2 

   Table 6.2: Performance parameters of various codes 

IV. CONCLUSION 

The above results show that Reed Solomon codes are very 

flexible and are able to achieve significant BER 

improvement. We see that, for the same error correcting 

capability, as the order of the code increases the SNR at 

which Output BER becomes zero decreases. Thus, the 

coding gain achieved increases. 

 

We are also able to prove that for the same order as the 

redundancy of the code increases, we are able to achieve 

improved BER performance. We are able to achieve higher 

coding gain by increasing the redundancy. But in the process 

we are also reducing the code rate. 

 

We also see that, even if we are able to achieve the same error 

correcting capability for lower order of Reed Solomon codes 

and hence  low complexity  in the circuitry, the code rate is 

significantly low for them. And  for  the same error correcting 

capability if we move to higher order of Reed Solomon codes, 

though we gain in terms of code rate but we also lose in terms 

of complexity of the circuitry. This classical trade-off is 

somewhat resolved at RS (255, 239) which explains for its 

popularity for Forward Error Correction in Optical systems.  
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