

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-1, Issue-7, September 2013

 1 www.erpublication.org



Abstract— This paper describes several software side-channel

attacks based on inter-process leakage through the state of the

CPU's memory cache. This leakage reveals memory access

patterns, which can be used for cryptanalysis of cryptographic

primitives that employ data-dependent table lookups. The

attacks allow an unprivileged process to attack other processes

running in parallel on the same processor, despite partitioning

methods such as memory protection, sandboxing and

virtualization. In this paper, we propose an algorithm which

disables the cache memory .This would make the AES

impregnable to cache timing attack.

Index Terms— Side-channel attack, AES, cache memory,

security

I. INTRODUCTION

Traditionally attacks on cryptography are conducted

against the math of the cryptographic system which includes

differential and linear cryptanalysis. A few categories of

such attacks are: cipher text-only, known plaintext, or

chosen plaintext attacks. These methods rely either solely on

the ciphertext, on both the plaintext and ciphertext, or the

ability to define plaintext that is encrypted and the analysis

of the resultant cipher text. Today, however it has been

realized that encryption devices provide attackers more

information than previously presumed. These devices have a

tendency to unintentionally reveal more information about

the cipher than just the ciphertext. This extra information is

known as side channel information‟s and is defined as

“information‟s that can be retrieved from the encryption

device that is neither the plaintext to be encrypted nor the

ciphertext resulting from the encryption process [1] .With

the ability to gather side channel information‟s, a new class

of attacks called side channel attacks has been developed.

These attacks include timing attacks, power consumption

attacks, fault analysis attacks, and acoustic attacks. One of

the pioneers in this field, Kocher, has pioneered certain

timing attacks, simple power analysis attacks, and

differential power analysis attacks. Each of these attacks is

described. [2, 3, 4.] have implemented them against real

systems. It has been said that side channel attacks make

certain assumptions about the hardware, the message being

sent, or another piece of vital information. This class of

attack is important and should be thoroughly researched and

attempts be made to mitigate the ability to use this

information leakage to help determine key used to encrypt

data. When National Institute of Standards and Technology

Manuscript received August 25, 2013

Dipayan Dev is pursuing M.Tech Degree in Computer Science and

Engineering from National Institude of Technology, Silchar

(NIST) held the contest to find a new encryption standard to

replace the current Data Encryption Standard (to be termed

Advanced Encryption Standard), they were aware of this

new class of attacks and considered it in their evaluation of

the security of the AES candidates. When evaluating attacks

against implementations of candidates, NIST made specific

mention of timing and power analysis attacks in of [5].

Additionally, NIST stated [5] that table lookups are not

vulnerable to timing attacks. The AES contest winner

Rijndael, along with other AES candidates and block

ciphers, use large table lookups to increase the throughput of

their algorithms. Unfortunately, a major problem with this

method is that it allows for a specific timing attack to be

carried out against a system that relies on table lookups. The

attack obtains the information leaked by cache misses. This

paper focuses on a specific implementation of cache timing

attack against AES and identifies potential methods in which

this type of attack may be mitigated.

II. CACHE TIMING ATTACK

Cache timing attack – the name speaks for itself. This belongs

to a pattern of attacks that concentrates on monitoring the

target cryptosystem, and analyzing the time taken to execute

various steps in the cryptographic algorithm. In other words,

the attack exploits the facts that every step in the algorithm

takes a certain time to execute.

 Although, the cache-timing attack is well-known

theoretically, but it was only until April 2005 that a stout

researcher named Daniel Bernstein [6, 7] published that the

weakness of AES can reveal timing information that

eventually can be utilized to crack the encryption key. This

paper explains a successful cache timing attack by exploiting

the timing characteristics of the table lookups. Here is the

simplest conceivable timing attack on AES. AES software

implementations that use look-up tables to perform internal

operations of the cipher, such as S-boxes, are the one that are

most vulnerable to this attack. For example, the variable index

array lookup T0 [k [0] n [0]] near the beginning of the

AES computation. A typical hacker might think that the time

for this array lookup depends on the array index and the time

for the whole AES computation is well correlated with the

time for this array lookup. As a result, the AES timings leak

information about k [0] n [0] and it can calculate the exact

value of k[0] from the distribution of AES timings as a

function of n[0]. Similar comments apply to k[1] n[1],

k[2] n[2] etc. Assume, that the hacker watches the time

taken by the victim to handle many n's and totals the AES

times for each possible n[13], and observes that the overall

AES time is maximum when n[13] is, say, 147. Suppose that

the hacker also observes, by carrying out experiments with

Effective Countermeasures for Cache Timing Attack

on AES

Dipayan Dev

Effective Countermeasures for Cache Timing Attack on AES

 2 www.erpublication.org

known keys k on a computer with the same AES software and

the same CPU, that the overall AES time is maximum when k

[13] n[13] is, say, 8. The hacker concludes that the victim's

key k [13] is 147 8 = 155. This implies that a hacker can

easily attack a variable time AES algorithm and can crack the

encrypted data and eventually key [6].

Since in many AES algorithms all look up tables are stored in

the cache, by putting another thread or some different way,

attacker can easily get the encrypted data from the cache.

III. ATTACK MODEL AND STRATEGY

The attacks in this paper assume the computer performing the

encryption operation uses cached memory which can be

described using a simple model of the cache. A cache is a

small, fast storage area situated between the CPU and main

memory. When values are looked up in main memory, they

are stored in the cache, evicting older values in the cache.

Subsequent lookups to the same memory address can then

retrieve the data from the cache, which is faster than main

memory; this is called a “cache hit.”

 Complicating matters is the fact that modern caches do not

store individual bytes, but groups of bytes from consecutive

“lines” of main memory. Line size varies between 32 bytes for

a Pentium III and 64 or 128 bytes on more recent Pentium IV

or AMD Athlon processors. Since the usual size of AES table

entries is 4 bytes, groups of 8 consecutive table entries share a

line in the cache on a Pentium III (this value is defined as ∂ in

[OST06]). So, for any bytes L, L′ which are equal to the lower

log2 ∂ bits (∂=number of „lines‟) (notated as L = L′ in

[OST06]), looking up address “L” will cause an ensuing

access to “L′ “to hit in cache. We view an AES encryption as a

sequence of 160 table lookups to indices l1, l2... l160. `

A “cache collision” occurs if two separate lookups

leni, lenj satisfy leni = lenj. In this situation, lenj should always

hit in the cache. If it were the case that leni ≠ lenj, then the

access to lenj may result in a cache miss if T [lenj] was out of

memory prior to the encryption and no previous access

fetched it. This should, on the average, take more time as it

will require a second cache lookup with non-zero probability.

We formalize this assumption:

A. Cache-collision assumption

 For any pair of lookups i, j, given a large number of random

AES encryptions with the same key, the average time when

leni = lenj will be less than the average time when leni ≠ lenj

 This assumption rests on the approximation that the

individual table lookups in the sequence are effectively

independent for random plaintexts, which seems to hold in

practice. This assumption greatly oversimplifies many the

intricacies of modern caches, as discussed in Appendix A, but

is well supported by experimental data as shown in Figure 1.

Notice that there is a clear correlation, especially for ≤ 10

collisions, which is where 90% of the data lies. We fit the

experimental data with a linear model where the unknowns

are defined as bonuses due to collisions between table

lookups in the final round, a total of 120 variables. Depending

on the mix of the processes running in the background the

model explains between 13% and 28% of the variance in the

timing data (the results are supported by five-fold

cross-validation).

 The notion of using collisions in the cache is by no means

unique to this paper. Because caches are specifically designed

to behave differently in the presence of a collision a

non-collision, they are a natural side channel for attacking

AES. This general notion has been used in several other

attacks on AES [TTMM02, Pag02, TSS+03, Lau05, OST06],

we seek to explicitly define the utility of cache collisions as

they apply to timing attacks (similar to [Acıi05, NSW06,

NS06]).

 Figure 1: Time deviation vs number of final round

cache-collision, Pentium III

IV. COUNTERMEASURES

A. Cache disabling algorithm

One brutal countermeasure against the cache-based attacks

is to completely disable the CPU‟s caching mechanism. Of

course, the effect on performance would be devastating. A

more attractive alternative is to activate a “no-fill” mode

where the memory accesses are serviced from the cache when

they hit it, but accesses that miss the cache are serviced

directly from memory (without causing evictions and filling).

The encryption routine would then proceed as follows:

(a) Preload the AES tables into cache

(b) Activate “no-fill” mode

(c) Perform encryption

(d) Deactivate “no-fill” mode

The section spanning (a) and (b) is critical, and attacker

processes must not be allowed to run during this time.

However, once this setup is completed, step (c) can be safely

executed. The encryption would not be slowed down

significantly (assuming its inputs are in cache when “no-fill”

is enabled), but its output will not be cached, leading to

subsequent cache misses. Other processes executed during

(c), via multitasking or simultaneous multithreading, will

however incur a performance penalty. Breaking the

encryption chunks into smaller chunks and applying the above

routine to each chunk would reduce this effect somewhat, by

allowing the cache to be occasionally updated to reflect the

changing memory work set.

 The server makes call to some assembly routine to disable

the cache memory after he has accessed it. He first ensures the

area of memory he is accessing currently.

International Journal of Modern Communication Technologies & Research (IJMCTR)

 ISSN: 2321-0850, Volume-1, Issue-7, September 2013

 3 www.erpublication.org

B. Flowchart

Figure 2: The detailed flowchart of the proposed cache

disabling algorithm

V. CONCLUSION

The proposed model narrated the novel idea of cache time

attack. A proper synchronizations need to be maintained to

avoid cache time attack. However time analysis need to be

done.

REFERENCES

 [1] Discretix Technologies Ltd. “Introduction to Side Channel Attacks.”

[2] P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems,” CRYPTO ‟96 Proceedings, 1996.

[3] P. Kocher, J. Jaffe, B. Jun, “Introduction to Differential Power Analysis

and Related Attacks,” December 1998.

[4] P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”December

1998.

[5] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Forti, E.

Roback, “Report on the Development of the Advanced Encryption Standard

(AES),”

[6] Daniel J. Bernstein, “Cache-timing attacks on AES”, The University of

Illinois at Chicago, IL 60607-7045, 2005.

[7] Joseph Bonneau and Ilya Mironov, “Cache-Collision Timing Attacks

against AES”, (Extended Version) revised 2005-11-20

Dipayan Dev is pursuing his M.Tech Degree in

Computer Science and Engineering from National

Institute of Technology, Silchar He received his

B.Tech Degree in Computer Science and Engineering

from Bengal College of Engineering and Technology,

(WBUT) in 2012. His research interest includes

Information Security and Cloud Computing

