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 

Abstract— While many efforts have been made in the audio 

signal classification field, the noise embedded signal problem is 

seldom concerned so far, especially in many telecommunication 

applications, where a real-time and noise robust approach is 

needed. In this paper a ‘Four Class Speech/Music Classifier’ is 

proposed which gives 95% classification accuracy in real world 

noise with less computation time.  
 

Keywords— White noise, Colored noise, Pink noise, Signal to 

Noise Ratio (SNR), Support Vector Machine (SVM). 

 

I. INTRODUCTION 

  Many available speech/ music classifier gives very good 

classification accuracy for clean audio input. But when we 

use these systems in noisy atmosphere like: army or military 

field areas, highways, traffic signals, process industries and 

railway stations, their classification accuracy are decreased. 

So there should be a classifier which gives good accuracy for 

these real world noisy applications. To design such type of 

noise robust system for classification, energy, pitch and 

cepstrum based feature are used. For noise embedding 

purpose colored and pink noise signals are used and for 

classification purpose Support Vector Machine [10, 11] is 

used, as it is most efficient and accurate classifier. 

 

II. MOTIVATION 

In real far-field area, available input audio signal is not only 

speech or music type, it may be speech containing music or 

other signal. So designed system should classify these four 

classes. As available surrounding environmental noise is not 

pure white Gaussian noise, it is colored noise. Pink noise is a 

type of colored noise that is appropriately resembles with real 

human audible noise. Thus classification should be done on 

this noise. Further in real world noise-embedding is not on 

fix SNR. So discrimination should be done on random signal 

to noise ratio. 
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III. PROPOSED WORK 

Feature Extraction- For analysis purpose features are 

extracted on clean then different-different type of noise is  

embedded to input signal on random SNR and again same 

feature values are extracted. Following clip level features are 

extracted and analysed: 

Average Pitch Density (APD) - It represents the 

differences of tones between speech and music. Real 

cepstrum is used to analysis the pitch information, since 

cepstrum is a powerful tool to show the details of spectrum by 

separating pitch information from spectral envelope. The 

real cepstrum is usually defined as 

 

 
 

 

. Where  is the short-time Fourier transform of the 

nth windowed audio frame, n is the frame index and real (·) 

denotes extracting the real part of the complex value.   

is a vector that contains all real cepstral coefficients of the nth 

frame signal. The low-order coefficients of  refer to 

the big scale information of spectrum like formants, and the 

high-order coefficients contain the detail information like 

pitches. High order coefficients are captured to distinguish 

between speech and music. Since in most telecommunication 

applications, the audio data are usually disturbed by 

unpredictable noises, the estimation of the accurate pitch 

positions and the holding lengths of pitches in real-time 

might be very difficult. So the pitch density (PD) is used to 

roughly characterize the pitch properties of music and speech, 

which is defined as 

 

 
Where  

 

 

Where  is the m-th coefficient of . PD (n) 

is the mean of absolute values of high-order coefficients of 

 within [l1, l2]. Based on empirical analysis, the 

average of overall high-order cepstrum content is used. For 

music signals, due to the characteristics of musical 

instruments and the existence of polyphony, the PD is tend to 

be higher than that of speech signals. To get a more reliable 
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estimation, the average PD (APD) within an audio segment 

is used, which is defined as 

 

 

 

Where N is the number of frames contained in an audio 

segment, k is the segment index, and β is the overlapping 

factor of each segment. Note that APD (k) is a scalar 

extracted from the kth audio segment. 

 

Relative Tonal Power Density (RTPD) - RTPD especially 

focuses on the distinct properties of the percussion 

instruments. For the noise-like music RTPD is considered. 

Firstly, every audio frame is marked as a tonal-frame or a 

non-tonal-frame according to the maximum of the 

high-order coefficients of . That is, if the maximum 

value is bigger than a predefined threshold θ, indicating a 

significant peak in the high-order part, the frame is then 

marked as a tonal-frame. Secondly, within the current audio 

segment, we compute the relative power density ratio of the 

tonal-frames to overall frames, i.e. RTPD, as 

 

Where θk denotes all tonal-frames inside the kth analysis 

segment. RMSx(n) is the root mean square of the nth  

windowed audio frame [1]. Note that RTPD (k) is also a 

scalar extracted from the k-th short audio segment. 

The voiced speech usually has stronger energy than the 

unvoiced speech and the background noise, so that if the 

RTPD value is small, the audio signal may not be speech, 

which might be a clip of noisy music, such as rock music. 

 

Variance of Zero Crossing Rate (varZCR) - It is defined as 

the variance of zero crossing rates for a one second clip, 

whereas zcr is defined to be the number of time domain zero 

crossings within a processing window. A zero crossing is 

said to occur if successive samples have different algebraic 

signs. Thus, the zero-crossing rate [2] is the rate of 

sign-changes along a signal, i.e., the rate at which the signal 

changes from positive to negative or vice-versa. 

 
Where, M is total number of samples in a processing 

window and  

x (m) is the value of mth sample. 

High ZCR values correspond to a higher frequency signal 

portion and vice-versa. 

 
Where avg (ZCR) is average value of the clip and ZCR (i) 

is the ith frame value. 

 

Percentage of Low Energy Frame (POLEF)- STE is defined 

to be the sum of squared time domain data. This feature can 

be used in discrimination of audio on the basis of energy. The 

short time energy of a frame is given as 

 

 
 

Where, M = total no of samples in a processing window, and 

 x (m) = value of the mth sample of input speech signal 

POLEF is defined as the percentage of frames whose STE 

value is below 0.5 times average Short Time Energy of a 

particular window . 

 

 
where N is total number of frames, n is the frame index, 

STE(n) is the Short Time Energy at nth frame, avSTE is the 

average value of STE over the entire window length and sign 

( ) is the sign function. 

Variance of Spectral Flux (varSF) –  

It is defined as the variance of the spectral flux of a clip 

whereas spectral flux is the average variation value of a 

spectrum between the adjacent two frames of one second 

duration.  

 
Where  is the Discrete Fourier Transform of nth 

frame of input signal. K is the order of DFT, N is the total 

number of frames in a clip and n and n-1 are the frame 

indices. 

 
Where avg (SF) is average value of the clip and SF (i) is 

the ith frame value. 

It is a measure of how quickly the power spectrum of 

a signal is changing which is calculated by comparing the 

power spectrum for one frame against the power spectrum 

from the previous frame. It is usually calculated as the 

2-norm (also known as the Euclidean distance) between the 

two normalized spectra.  

Variance of RMS (varRMS) - It is defined as the variance of 

root mean squire value (RMS) for a one second clip. For this 

purpose first buffer the one second clip into frames of 32ms at 

8 kHz. Then evaluate root mean squire value for each sample 

and then find the variance using following formula. 
  

 
Where avg (RMS) is average value of the clip and RMS (i) 

is the ith frame value. 

Dynamic Range (DR) - It is defined as the ratio between the 

largest and smallest possible values of a changeable quantity, 

http://en.wikipedia.org/wiki/Signal_(information_theory)
http://en.wikipedia.org/wiki/Power_spectrum
http://en.wikipedia.org/wiki/Signal_(electrical_engineering)
http://en.wikipedia.org/wiki/Euclidean_distance
http://en.wikipedia.org/wiki/Audio_normalization
http://en.wikipedia.org/wiki/Ratio
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such as sample value audio signal. It is measured as a ratio, 

or as a base-10 (decibel) or base-2 (doublings, bits or stops) 

logarithmic value. For this purpose first signal is normalized. 

 

 

Where, y is one second audio clip. 

 

Average Mel-Frequency Cepstrum Coefficients (avgMFCC) 

- The motivation for using MFCC is due to the fact that the 

auditory response to the human ear resolves frequencies non 

-linearly. MFCC‟s are based on the known variation of the 

human ear‟s critical bandwidths with frequency; filters 

spaced linearly at low frequencies and logarithmically at 

high frequencies have been used to capture the phonetically 

important characteristics of speech. 

 
Fig.1 Steps in MFCC computation 

The computation of Mel-frequency cepstrum is similar to 

that of cepstral coefficients. The difference lays on 

mel-frequency warping before doing logarithmic and inverse 

DFT.  

Take average of all 31 frames and retrieve 12 MFCC 

coefficients for a clip. Then finally find out average MFCC of 

these 12 coefficients and get a single value for linear SVM 

input.    

 

Mean of Minimum Cepstral Distance (MMCD) - The 

MMCD parameter is based on cepstral distances using Mel 

frequency cepstral coefficients (MFCC). The MMCD 

parameter finds a minimum cepstral distances among the 

neighbor frames. 

Since the low-order coefficients of cepstrum represent the 

spectral envelope, the cepstral distances between two frames 

becomes a parameter to measure the difference between them. 

The cepstral distance between the  nth  and (n+d)th  frame is 

defined as follows: 

 

 

Where K is the order of cepstrum, c (n, k) is kth cepstral 

coefficient of nth frame and d represents the frame interval 

between the two frames to be compared.  

The mean of cepstral distances is defined as follows: 

 
Then modified cepstral distance (MCD) is given by 

 

Where d1 and d2 indicate the range of candidate frames to 

be searched for minimum cepstral distance. Then we 

compute the MMCD, the mean of MCD, as follows:  

   

 
 

Average Delta Cepstral Energy (avgDCE) - The delta 

cepstrum measures the temporal change in audio 

characteristics and can be used to track energy change in 

speech or music over time. The energy variation can be 

observed by analyzing the sum of the squares of the delta 

cepstral coefficients for each frame. This sum of squares of 

the delta coefficients is termed the Delta Cepstral Energy 

(DCE). The DCE is computed using 

 
Where dij is the jth delta cepstral coefficient of the ith frame, 

N is the number of delta coefficients and Edi is the DCE for 

the ith frame. The computation of the delta MFCC 

coefficients is given by: 

 

 
Where N represents the delta window size, ct represents the 

MFCC at frame t and dt is the delta coefficient for frame t. 

Then finally find out average DCE of these 29 coefficients 

and get a single value for linear SVM input.    

 

Average Power Spectrum Deviation (avgPSDev) - Speech 

has greater energy at low frequencies, however, in the case 

of music, the higher frequencies also have significant 

energy. Thus, the energy in each filter of filter bank can also 

be used for speech and music discrimination. Power 

Spectrum Deviation (PSDev) is computed as the standard 

deviation of filter bank energies in each band. Thus, PSDev 

can be found using 

 
Where Pi is the PSDev for the ith frame, N is the number of 

filters in a filter bank and Eij is the energy in the jth filter of 

ith frame. Where avgEi is the mean energy value for all 

filters in the ith frame and can be computed using 

 

http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Binary_numeral_system
http://en.wikipedia.org/wiki/Doubling
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Stops_%28Dynamic_Range%29
http://en.wikipedia.org/wiki/Logarithmic_scale
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Then finally find out average PSDev of these 29 coefficients 

and get a single value for linear SVM input.  

   

Noise - Generally in communication, white noise is used for 

noise representation. But for real world noise presentation 

white noise is not correct option as true white noise has 

infinite power with infinite bandwidth. To represent real 

world noise, colored noise is used as it has finite power for 

limited bandwidth. To represent physical noise (audible) 

pink noise is used as it has constant energy per constant 

percentage bandwidth.  Comparision of white, colored and 

pink noise can see from figure 2. 

 

 
 

Figure2: Wave form of white, Colored and Pink noise 

 

Colored noise – Colored noise is mixture of all type of 

available environmental noises like pink, red, gray etc. 

From figure 3, it can easily notice that white noise has 

constant power spectral density across the entire frequency 

spectrum (extending up to infinity).There is no correlation 

between the samples of a white noise process at different 

time instances i.e. the auto correlation or the auto 

covariance of white noise is zero for all lags except for lag 

L=0. But for colored noise power spectral density of the 

noise is not uniform across the entire frequency spectrum. 

There exist non-zero values for auto correlation or auto 

covariance at different time instances for the colored noise. 

The auto covariance is maximum for zero lag (L=0) and 

decreases gradually for increasing and decreasing values of 

lag (L).  

 

 
 

Figure 3: Normalized auto-covariance of white and colored noise 

 

The frequency spectrum of white and colored noise is shown 

in figure 4. For white noise power spectrum is constant for 

all frequency band but for colored noise it is gradually 

decrease as frequency is increased and maximum for 0Hz.  

 
 

Figure 4: frequency spectrum of white and colored noise 

 

Colored noise is generated by passing the white noise 

through a shaping filter. The shaping filter is a dynamic 

filter usually a low pass filter. The response of the colored 

noise can be varied by adjusting the parameters of the 

shaping filter. 
whiteNoise=sqrt(variance)*randn(1,length(z))

; 

[coloredNoise]=filter(1-a,[1 

-a],whiteNoise); 

Colorednoise_embedded_signal=z+coloredNoise 

Where, „z‟ is input audio clip, „a‟ is filter parameter and 

variance for white noise is zero. 
 

Pink noise – Pink noise is a specific type of colored noise in 

which spectrum is inversely proportional to frequency. 

From figure 5 it can easily notice that white noise has 

constant power spectrum irrespective of frequency whereas 

pink noise has power spectrum inversely proportional to 

frequency.Pink noise has uniform power density for a 

relative bandwidth (octave, decade). It has constant energy 

per constant percentage bandwidth. This equates to a 

-3dB/octave frequency response.  
 

 
 

Figure5: Power Spectrum of White and Pink noise 

 

Pink noise is generated by passing the white noise through a 

-3dB per octave filter. This filter has parameter „A‟ and „B‟, 
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those values are specific and generate pink noise with 

+/-0.05dB tolerance [17]. 

 
B = [0.049922035 -0.095993537 0.050612699 

-0.004408786]; 

A = [1 -2.494956002 2.017265875  -0.522189400]; 

pinkNoise = filter(B,A,whiteNoise); 

pinknoise_embeddedsignal= z+pinkNoise; 

where „z‟ is input audio signal. 

 

Classifier – Support Vector Machine (SVM) is used as a 

classifier due to its reduced computational complexities and 

greater classification accuracies.   

Support vector machines use supervised learning methods 

for classification. SVMs map input vectors to a higher 

dimensional space if the data is not linearly separable. Then a 

hyper plane is constructed to separate the input vectors. Two 

parallel hyper planes are constructed on each side of the 

hyper plane. The hyper plane that maximizes the distance 

between the two parallel hyper planes is found to be the 

solution. In linear non-separable cases, a kernel function is 

required to transform the original feature space to a higher 

dimensional space in an implicit way such that the mapped 

data is linearly separable. Common kernels include 

Polynomial, Gaussian Radial Basis Function, Sigmoid, etc. 

The choice of kernel is an important issue in SVM 

classification. 

Optimal Hyper Plane for Linearly Separable Patterns: 
Consider the training sample  where  is the 

input pattern for the ith example and  is the corresponding 

desired response (target output). Let us assume that the 

pattern (class) represented by the subset  and the 

subset  are linearly separable. The equation of a 

decision surface in the form of a hyper plane that does the 

separation is  

 
Where   is the input vector, w is an adjustable weight vector 

and b is the bias.  

  Thus,   

 

 

 
Figure 6: Geometric construction of optimum hyper plane for two 

dimensional input space 

 

Hyper Plane for Non-Separable Patterns:  To set the stage 

for formal treatment of non separable data points, a new set 

of non negative scalar variables  is introduced in the 

definition of separating hyper plane. The  are called slack 

variables, they measure the deviation of data point from the 

ideal condition of pattern separability. 

 
 

The support vectors are those particular data points that 

satisfy equation (25) precisely even if .The primal 

problem in case of non separable case may thus be formally 

defined as follows, where C is user specified positive 

parameter also called as SVM penalty/cost parameter. 

 
 

Figure 7: Non-Separable Training Sets introduces misclassification 

 

And weight vector  minimizes the cost function 

 
The parameter C controls the tradeoff between complexity of 

the machine and the number of the non separable points; it 

may be therefore viewed as regularization parameter .The 

parameter C has to be selected by the user .This can be done 

in one of the two ways. The parameter C is determined 

experimentally via the standard use of training / (Validation) 

test set, which is crude form of resampling. It can be 

determined analytically. 

For patterns that are not linearly separable, the following 

mathematical operations are performed in construction of 

SVM optimal hyper plane. 

1. Non linear mapping of input vector into 

high-dimensional feature space that is hidden from 

both input and output. The low dimensional input 

data  is mapped into a high-dimensional feature 

space by mapping function . 

2. Construction of optimum hyper plane for features 

obtained for separating the features discovered in 

step 1. 

 
Figure8: Non linear mapping from the input space to higher dimension feature 

space 

The separating hyper plane is now defined as a linear 

function of vectors drawn from the feature space rather than 

original input space.  
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Inner product kernel: The term  represents the 

inner product of two vectors induced in the feature space by 

the input vector x and the input pattern  pertaining to the ith 

example the inner product kernel denoted by K(x, ) and 

defined by  

 
In multiclass SVM, Radial Basis Function (RBF) kernel is 

used. As the RBF kernel nonlinearly maps samples into a 

higher dimensional space, so it, unlike the linear kernel, can 

handle the case when the relation between class labels and 

attributes is nonlinear. In RBF kernel number of hyper 

parameter is less which influence model complexity. Its 

equation is given as 

 
The width is kernel parameter specified apriori by the user 

( ). 

Cross-validation and Grid-search: There are two parameters 

while using RBF kernels: C and . It is not known 

beforehand which C and  values are the best for one 

problem; consequently some kind of model selection 

(parameter search) must be done. The goal is to identify good 

(C,  ) so that the classifier can accurately predict unknown 

data (i.e., testing data). Note that it may not be useful to 

achieve high training accuracy (i.e., classifiers accurately 

predict training data whose class labels are indeed known). 

Therefore, a common way is to separate training data into 

two parts of which one is considered unknown in training the 

classifier. Then the prediction accuracy on this set can more 

precisely reflect the performance on classifying unknown 

data. An improved version of this procedure is 

cross-validation. 

In v-fold cross-validation, the training set is first divided into 

v subsets of equal size. Sequentially one subset is tested using 

the classifier trained on the remaining v-1 subsets. Thus, 

each instance of the whole training set is predicted once so 

the cross-validation accuracy is the percentage of data which 

are correctly classified. The cross-validation procedure can 

prevent the over fitting problem. It is recommended to use 

“grid-search" on C and  using cross-validation.  

“Grid.py” is a program which performs a “grid-search" on C 

and  using cross-validation. Basically pairs of (C, γ) are 

tried and the one with the best cross-validation accuracy is 

picked. An exponentially growing sequences of C and  is a 

practical method to identify good parameters (for example, C 

= 2^-5, 2^-3, …., 2^15; and   = 2^-15, 2^-13,…., 2^3).The 

grid-search is a straightforward approach to determine the 

optimum values of C and .  

There are three reasons of preferring grid-search approach 

over other methods: 

1. It does an exhaustive parameter search by 

approximations or heuristics. 

2. The computational time to find good parameters by 

grid-search is comparable to that by advanced 

methods, since there are only two parameters to be 

determined. 

3. Unlike the advanced iterative processes, grid-search 

can be easily parallelized because each (C, γ) is 

independent. 

 
 

Figure 9: Plot of log2 C vs log2 gamma 

 

 

 

IV. EXPERIMENTAL SETUP 

For analysis purpose, four different type of database are 

used [DB1, DB2, DB3, DB4]. For DB1, standard database of 

Schierer [4] is used. For training purpose 40 files of Speech 

audio samples(S), 40 files of Music audio samples (M), 40 

files of Speech mixed Music audio samples (SM) and 40 files 

of other type audio samples (O) are created. For testing 

purpose 20 files of each class are created. Total 240 files are 

used for training and testing. Each audio clip is one second 

long and in .wav format. This database is recorded at 22.050 

kHz sampling frequency and at 16 bit, mono PCM. The 

fourth class of audio files includes all remaining types of 

audio signal for example silence, bird‟s sound, surrounding 

environmental noise etc. 

 For noise embedded input database, first white, colored 

and pink noise are generated in MATLAB environment and 

then added these noise with input audio database [DB1] to 

generate white noise embedded database [DB2], colored 

noise embedded database [DB3] and pink noise embedded 

database [DB4] respectively. These noisy databases also 

created in MATLAB environment at sampling frequency 

22.050 kHz and at 16 bit, mono PCM. In these noisy 

databases clip size is one second and in .wav format.  

For feature extraction purpose, first these clips are 

down-sampled to 8 kHz, in order to simulate with real time 

telecommunication. Frame size of 32millisecond with 

10millisecond overlapping, is used to avoid data loss in 

framing process. Then features are extracted for each clip. 

For classification purpose SVM with a radial basis function 

(RBF) kernel is used due to its outstanding performance [10, 

11]. Specifically, a toolbox called LibSVM is utilized. A 

feature set of 40 down-sampled audio clips of each class are 

used to train SVMs. And remaining 20 audio clips are used 

for the tests. Each feature component is normalized to make 

their scale similar from 0 to 1. 

V. RESULTS 

When number of classes is increased for classification 

purpose then single feature or combination of two features is 

not sufficient to classify all classes, results are given in table 

1.  75.63% is the highest classification accuracy, when single 
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feature (average Delta Cepstral Energy) is used for clean 

database DB1.This classification accuracy can be increased 

up to 93.75%, when combination of APD (Average Pitch 

Density) and MMCD (Mean Minimum Cepstral Distance) is 

used.  

Table 1:  SVM Classification Accuracy for Four Classes (Speech(S), 

Music(M), Speech containing Music(MS) and Other audio signal(O)) using 

single feature and combination of two features for clean audio input (DB1) 

 

Feature Accuracy 

APD 50% 

RTPD 49.38% 

MMCD 65.63% 

POLEF 55.63% 

varZCR 56.87% 

avgPSDev 62.5% 

SF 45.63% 

varDR 39.38% 

avgMFCC 50% 

avgDCE 75.63% 

APD+RTPD 70% 

APD+MMCD 93.75% 

 

For combination of APD and MMCD, results of 

classification for noise embedded database (DB2, DB3, and 

DB4) are given in table 2. The classification accuracy for this 

combination is decreased when noise is embedded to input 

audio signal. For colore noise embedded input database DB3 

and for pink noise embedded  input database DB4, 

classification accuracy is decreased to 73.13% and 76.25% 

respectively. 

 
Table 2: SVM Classification Accuracy for FourClasses  

(Speech,Music, Speech containing Music and 

 Other audio signal) using APD+MMCD features 

 

Database Classification accuracy 

DB1 93.75% 

DB2 61.82% 

DB3 73.13% 

DB4 76.25% 

 

When noise is embedded to audio input signal, then its 

feature‟s value is changed from its clean state value. Due to 

this change, feature‟s discriminative power is decreased. 

Classification accuracy is directly proportional to the 

distance between centroid and inversely proportional to 

overlapping of two class features. In figure 10, APD is used 

as classifying feature for speech and music classification. At 

clean input, the centroid distance between speech and music 

feature‟s values is 0.006 unit and at colored noise embedded 

input, the centroid distance between speech and music 

feature‟s values is 0.001 unit. The centroid distance is 

decreased by 6 times means overlapping of two classes is 

increased by 6 times. Classification accuracy at clean audio 

input is 92.5% but when colored noise is embedded to input 

audio signal, classification accuracy is decreased to 62.25% 

(figure 10).          

 

 
 

Figure 10: Effect of Noise on Speech/Music classification 

 

Form table 3 results show that when all features are used 

for classification then accuracy is increased for both clean 

input database DB1 and noise embedded input databases 

(DB2, DB3, and DB4). For DB1 classification accuracy is 

96.5%. For white noise embedded input database 

classification accuracy is increased to 98.13%. For colored 

and pink noise embedded input databases DB3 and DB4 

classification accuracy are 88.13% and 95% respectively. 

  
Table 3: SVM Classification Accuracy for Four 

 Classes (Speech, Music, Speech containing Music  

and Other audio signal) using all features  
 

Database 
Classification 

accuracy 

DB1 96.5% 

DB2 98.13% 

DB3 88.13% 

DB4 95% 

 

This „four class classifier‟ takes 0.96 second CPU runtime on 

4 Gb RAM. This computation time is less than input audio 

clip duration. So this classifier system can use for real time 

applications.   

 

VI. CONCLUSION AND FUTURE SCOPE 

This paper proposes a noise robust four class classification 

system with accuracy of 96.5% at clean audio input and 95%  
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at pink noise embedded audio input. As proposed system 

deals with real world noise (colored and pink noise) so it is 

applicable in real world application. Also its computation 

time is 0.96 second which is less in comparison of clip time 

(1 second). So this system is also useful in real time 

application.   Future work will focus on optimizing number of 

features used for classification purpose.  
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